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Abstract

The pyrolysis of automobile shredder residue (ASR) has been studied using a labo-

ratory scale screw kiln reactor with a feed rate of about 100 g h−1. Pyrolysis at

temperatures between 500 and 750°C resulted in the production of gas, liquid and

solid fractions with hydrocarbon yields of the organic fraction present in the feed in-

creasing from 60–85% with increasing pyrolysis temperature. While the hydrocarbon

pyrolysis product yield increased with pyrolysis temperature, the yield of the oil frac-

tion was higher at the lower pyrolysis temperatures. The composition of the pyrolysis

oil also changed with pyrolysis temperature, containing larger quantities of aliphatic

compounds at the lower temperatures than at higher temperatures where aromatics

were the major compounds. Many of the liquid pyrolysis products have been iden-

tified including polycyclic aromatic hydrocarbons as well as organo nitrogen, sulphur

and chlorine compounds. The data obtained have been compared with that obtained

from a process using short pyrolysis residence times. © 1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

One of the technologies which is receiving a great deal of interest in the recycling

of polymeric waste streams is pyrolysis. This technology is particularly applicable to

mixed and contaminated plastic wastes which can be converted back to petrochem-

ical feedstocks, along with some carbonaceous char. While incineration with energy

recovery may be an attractive process to deal with these waste streams [1,2], public

pressure regarding environmental emissions has restricted its universal acceptance.

Pyrolysis, on the other hand, is seen as an environmentally attractive alternative for

the recovery of hydrocarbon materials from a wide range of polymeric waste

streams such as plastic waste [3,4] and tires [3,5], with several processes being

investigated by industry [6–9].

Automobile shredder residue (ASR) is a particularly heterogeneous polymeric

waste stream for which pyrolysis may represent a viable resource recovery process.

This material is a mixture of plastics, rubber, foam, textiles, glass and dirt, the

waste produced by shredding operations during the recycling of automobiles

[10,11]. In North America alone, over 3 million tonnes of ASR is generated each

year [12] with the vast majority destined for landfill disposal. Because ASR is such

a heterogeneous material whose composition can be influenced by processing

conditions [13–15], pyrolysis appears to offer many advantages as a resource

recovery option. Consequently several studies have been reported on the pyrolysis

of ASR [3,16–25], including a survey of several pyrolysis processes currently under

development [26]. In a previous scientific investigation of the pyrolysis of ASR, we

focussed our attention upon a fast pyrolysis process, known as ‘Ultrapyrolysis’ [22].

Subsequently to that study we examined the pyrolysis products produced by a

commercial screw kiln process [23]. Although many similarities were noted in the

pyrolysis products, significant differences were also noted. Similar quantities of

pyro-gas were formed in the two processes but the major difference was in the

production of pyro-oil (‘Ultrapyrolysis’ produced no pyro-oil at 700–850°C

whereas the commercial screw kiln process produced 21% pyro-oil at 500°C).

Because different ASR feeds and pyrolysis temperatures were used in each of these

two studies we felt it appropriate to perform some experiments using a laboratory

screw kiln pyrolysis unit and the same ASR feed material as that used in the fast

‘Ultrapyrolysis’ process [22]. The data presented in this paper summarizes the

results obtained in our laboratory screw kiln pyrolysis unit.

A major concern with pyrolysis processes that employ high pyrolysis tempera-

tures and long residence times is the possible formation of carcinogenic compounds

of environmental concern such as polycyclic aromatic hydrocarbons (PAH’s),

polychlorinated biphenyls, dioxins and furans [24,27,28]. Rausa and Pollesel [24]

pyrolyzed ASR at 650, 800 and 850°C and detected several PAH’s as well as

phenol, benzaldehyde, and chlorobenzene as pyrolysis products. At 650°C, the

PAH’s accounted for 1.3% of the pyrolyzate while at 800 and 850°C they increased

to 32.3 and 55.1%, respectively. Meanwhile the substituted benzene species repre-

sented 28.6, 55.0 and 35.8% of the vapours at pyrolysis temperatures of 650, 800

and 850°C, respectively. Williams and Besler [27] also detected PAH’s in the
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pyrolysis of a variety of biomass material, as well as municipal solid waste (MSW)

and have concluded that PAH production mainly occurs through secondary

reactions which are favoured by high temperatures (\700°C) and long gaseous

residence times encountered in slow pyrolysis processes. Evans and Milne [29] also

found that the fast pyrolysis of wood produced negligible concentrations of PAH’s.

However, increased concentrations of PAH’s were produced when secondary

cracking reactions of the primary pyrolysis products occurred at higher tempera-

tures (above 850°C). Diebold et al. [30,31] also found increased quantities of PAH’s

in the fast pyrolysis of MSW in an entrained flow reactor above 700°C.

2. Experimental

2.1. The ASR feed

The ASR used in this series of tests was the regular ASR material that was used

in the ‘Ultrapyrolysis’ study [22]. This material was collected during a characteriza-

tion study reported previously [14]. The physical and chemical characterization of

this feed material are presented in Table 1. It should be noted that the data

reported in Table 1 was for ASR which had been ground cryogenically to produce

a material with a particle size less than 1 mm and is comparable to the material

previously used in the ‘Ultrapyrolysis’ experiments [22]. This size reduction was

required in order to ensure uniform feed rates through the screw auger used in our

experiments.

Table 1

Characteristics of the ASR feed material

Moisture content (wt.%) 2.6

Organic fraction (wt.%) 39.3

58.1Ash content (wt.%)

Particle size B1

mm

438Density (kg m−3)

Calorific value (MJ kg−1) 10.18

Elemental analysis (wt.%, dry basis)

27.9C

4.0H

N 0.9

S 0.3

0.5Cl

Fe 17.6

8.6Si
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Fig. 1. Schematic of the screw kiln pyrolysis apparatus.

2.2. The screw kiln pyrolysis unit

The pyrolysis unit employed in this study is shown schematically in Fig. 1. For

the sake of simplicity it can be considered to be composed of three zones: a feed

zone, a pyrolysis reaction zone and a product collection zone. The ASR is loaded

into a sealed hopper which can be flushed with nitrogen prior to pyrolysis. The

ASR in the hopper is fed by gravity into the auger which feeds the material into the

reaction zone. The feed rate of material into the reactor is controlled by adjustment

to the speed of an electric motor linked directly to the auger. The reaction chamber

consists of a stainless steel tube 44.5 cm long with an i.d. of 4.7 cm. This reactor

tube is centrally located in a Lindberg tube furnace whose temperature is controlled

to 92°C of the desired value by a feedback control system. Quoted temperatures

are the reactor wall temperature and no attempts were made to measure the actual

feed temperature in the reactor. However, it was not anticipated that the feed

temperature would be significantly lower than the reactor temperature as the feed

was prewarmed as it moved slowly along the screw. On exiting the reactor, solid

residue was collected in a catch pot. Hot volatiles, meanwhile, passed through two

glass cold traps, in series, maintained at 0 and −82°C, respectively. The remaining

non-condensable gases were collected in a 401 Tedlar sampling bag.

2.3. Operational procedure

With the furnace at room temperature and the auger feed switched off, the feed

hopper was loaded with an accurately weighed quantity of ASR (usually about 200

g). The system was then closed and flushed with dry nitrogen for a period of about

15 min, while the furnace was heated to the selected pyrolysis temperature. Once

the desired temperature had been reached, the gas and liquid collection systems

were connected to the reactor, the feed motor was switched on at the desired feed

rate setting and the nitrogen supply closed. The test was then allowed to run for the

desired time period, after which the feed motor was stopped and then the collection

sections closed off for subsequent analysis. Following the cool down of the reactor,
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the feed remaining in the hopper was reweighed to determine the weight subjected

to pyrolysis. The weight of each pyrolysis fraction was then determined, prior to

detailed chemical analysis.

A range of pyrolysis temperatures were evaluated in this study, starting at 500°C

and going to a high of 750°C. Most experiments were conducted using a feed rate

of about 0.88 g min−1 which results in a pyrolysis residence time in the reactor of

about 3.2 min. While some variations in total pyrolysis time were employed during

the study, a typical run would last for about 100 min. Only one experiment was

conducted for each set of conditions. Mass balances were all above 92% except for

the 600°C pyrolysis which was 76%.

2.4. Analysis of the pyrolysis gas

The quantity of evolved pyrolysis gas was determined by discharging the gases

from the gas bag into two pre-evacuated stainless steel cylinders (500 ml each) and

a pre-evacuated tank of known vol. (21.28 l) and measuring the temperature and

pressure of the contents. The 500 ml cylinders were pressurized with helium to 1.3

atmospheres and chemical analysis was achieved by gas chromatography using a

Hewlett Packard (HP) 5890 Series II gas chromatograph (GC). The analyses were

performed by injecting 1 ml gas samples onto a 3.66 m×3.2 mm Porapak Q

(80/100 mesh) packed stainless steel column using a stainless steel injection loop

hooked up to a two position rotary Valco valve. The separation was achieved using

temperature programming which involved holding at −50°C for 3 min., followed

by a ramp of 15°C min−1 to 120°C then 30°C min−1 to 240°C where it was held

for a further 20 min. The separated gases were detected using a thermal conductiv-

ity detector (TCD) operated at 280°C. Scott Specialty Gases, Scotty I Can Mixes

219, 221, 234 and 242, with accuracy of analysis92%, were used to create linear

calibration curves from which the individual major pyrolysis gases could be

identified and quantified.

2.5. Analysis of the pyrolysis liquid

In all cases the pyrolysis liquids collected in both traps were combined and the

total reported. The pyrolysis liquid was found to contain both an oil phase and an

aqueous phase. The oil phase was subjected to chemical analysis using an HP5890

Series GC coupled to an HP 5972A series mass-selective detector (MSD) both as a

neat liquid and diluted with diethyl ether. Separation of the chemical components

was achieved using a 30 m×0.25 mm, 0.25 mm coated HP-5 M.S. (crosslinked 5%

phenyl methyl silicone) fused silica capillary column, operated in both the split

mode (100:1) and splitless. The column was programmed from 30 to 240°C at 20°C

min−1 after an initial hold of 3 min at 30°C and a final hold of 60 min at 240°C.

Mass spectra peak areas were used for qualitative data comparisons and tentative

compound identification was determined by Hewlett Packard’s probability-based

matching (PBM) library search of the 75 000 compound NIST PBM Library. The

GC oven contained both the Porapak Q packed column and the capillary column

so maximum oven temperature was limited to 240°C.
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2.6. Analysis of the solid residues

The solid residues, produced by the pyrolysis process, were analyzed to determine

the organic content, carbonaceous char and ash content by performing weight-loss

experiments using a tube furnace. The procedure involved accurately weighing

about 1 g of the residual solid into a ceramic boat. The boat was placed in a tube

furnace and a flowing inert nitrogen atmosphere (125 ml min−1) was passed over

the sample. The sample was heated from room temperature to 640°C at about 40°C

min−1 and then maintained at this temperature for 3 h. The measured mass loss

was assumed to be due to the organic material remaining in the sample. The

residual sample was returned to the tube furnace with a 125 ml min−1 flow rate of

air and the sample was heated to 680°C and maintained there for 3 h. The

measured mass loss was assumed to be due to the oxidation of the carbonaceous

char. The remaining mass was a measure of the inorganic ash content. Additional

samples (10–20 g) of the solid residues were Soxhlet extracted with 750 ml of

tetrahydrofuran (THF) for 5 h and the extracted oil was analyzed via GC/MSD as

described for the pyrolysis liquids

3. Results and discussion

3.1. Product distribution

As would be anticipated from a feed with a high inorganic content, the solid

residue was the major product of the pyrolysis process, ranging from 80% at 500°C

to 70% at 750°C. The yield of solid residue was clearly dependent upon pyrolysis

Fig. 2. Yield of solid residue fraction as a function of pyrolysis temperature.
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Fig. 3. Yields of pyrolysis gas [�] and pyrolysis liquids [�] as a function of pyrolysis temperature.

temperature as can be seen from the data presented in Fig. 2. High pyrolysis

temperatures caused greater degradation of the organic matter in the ASR and

lowered the yield of the solid residue. This observation was similar to that reported

in the ‘Ultrapyrolysis’ study [22] at a 700°C pyrolysis temperature. At 750°C the

‘Ultrapyrolysis’ process yielded approximately 10% less solid residue than was

obtained in the screw kiln experiment.

Yields of the pyrolysis liquid and pyrolysis gas as a function of pyrolysis

temperature are presented in Fig. 3. It will be noted that the yield of pyrolysis gas

shows a steady increase from about 8% at 500°C up to about 20% at 750°C,

although there appears to be a leveling off in the gas yield at temperatures above

700°C. These pyro-gas quantities are similar to those observed in the ‘Ultrapyroly-

sis’ experiments [22]. The screw kiln pyrolysis liquid yield appears to be highest at

the lower pyrolysis temperatures, and decreases as the pyrolysis temperature

increases. This arises because the higher pyrolysis temperatures causes greater chain

scission reactions to occur, resulting in higher yields of the lower molecular weight

gaseous products. While the yields of the pyrolysis liquid in the screw kiln pyrolysis

experiments were not high, they were at least measurable. In the case of the

‘Ultrapyrolysis’ experiments [22], no measurable quantities of pyrolysis liquid were

obtained.

Although only one experiment was performed to determine the effect of residence

time on pyrolysis product distribution, the results are summarized in Table 2. At a

pyrolysis temperature of 550°C, increased residence time of the ASR in the kiln

caused a slight increase in the material pyrolyzed. The yield of pyrolysis gas also

increased while the yield of the pyrolysis liquid decreased.
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Table 2

Influence of residence time on pyrolysis product distribution

Solid (mass.%) % Liquid % GasResidence time (min) Reactor temperature (°C)

10.5 11.63.2 77.8550

8.511.6 550 14.975.4

The yields of pyrolysis liquid obtained in this study are lower than those reported

by Braslaw et al. [17] for his bench scale experiments (33.9–36.8 mass.%), but close

to those obtained with the commercial screw kiln process (9.494.2 mass.%) at

pyrolysis temperatures of 610–650°C [23].

3.2. Composition of the pyrolysis gas

Analysis of the ASR pyrolysis gas indicated that the major chemical species were

hydrogen, carbon dioxide, carbon monoxide and low molecular weight hydrocar-

bons. The product yield of these major compounds in the pyrolysis gas as a

function of pyrolysis temperature is presented in Figs. 4 and 5. These values were

calculated based upon the 18 major compounds detected while correcting for any

nitrogen, oxygen and water that may have entered the system. From Fig. 4 it can

be seen that the composition of hydrogen in the gas mixture remains relatively

constant over the range of pyrolysis conditions employed.

From both Figs. 4 and 5 it can be seen that the yields of all the major gases

increase with pyrolysis temperature. However at the higher pyrolysis temperatures,

Fig. 4. Mass yields of hydrogen [�], carbon dioxide [�], carbon monoxide [�] and methane [�]

expressed as a percentage of ASR feed, plotted as a function of pyrolysis temperature.
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Fig. 5. Mass yields of ethylene [�], ethane [�], propylene [�] and propane [�] expressed as a percentage

of ASR feed, plotted as a function of pyrolysis temperature.

the yields of the C3 hydrocarbons show noticeable decreases while the yield of CO

and methane continue to increase. In the case of the hydrocarbons, it would appear

that peak quantities are formed at specific temperatures above which there is a

steady decline. In the case of methane and ethylene this maximizing appears to

occur around 750°C, while in the case of ethane, propane and propylene it occurs

at a lower temperature, around 600°C.

The effect of residence time on the composition of the pyrolysis gas at a pyrolysis

temperature of 550°C is summarized in Table 3. From this data it appears that the

quantities of hydrogen decrease with increased residence time while the quantities

of the small hydrocarbon molecules increase. This suggests that cracking of the

primary pyrolysis products may be occurring at longer residence times.

At first glance the levels of CO2 appear to be high considering that the pyrolysis

was conducted in an inert atmosphere. However, it should be noted that automo-

tive plastics such as polyesters [32] and polycarbonates [33] can yield relatively high

yields of CO2 under pyrolysis conditions. Carbonate fillers are also present in

automotive plastics and can also contribute to CO2 production [17]. At 700°C

Table 3

Influence of residence time on composition of pyrolysis gas (vol.%)a

CH4 CO2Residence time (min) C2H4H2 C2H6 C3H6 C3H8 C4H8 C4H10CO

7.04 19.46 2.80 1.943.2 2.9759.50 0.53 0.52 0.025.20

5.25 0.050.940.793.502.8353.74 3.1611.6 19.5610.12

a All values are averages of two GC/TCD injections. Pyrolysis temperature=550°C.
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pyrolyses, CO2 production was higher in the screw kiln experiment than in

‘Ultrapyrolysis’ (residence time=1.4 s) [22], i.e. 8.1 versus 4.2 mass.% of feed,

respectively. Similarly, CH4 was double, whereas CO and C2H4 were the same and

C3H6 was one-sixth of that observed in ‘Ultrapyrolysis’.

The calculated high heating values of the gases obtained at pyrolysis tempera-

tures of 600–750°C were fairly constant at 28.1–29.0 MJ kg−1. However, at lower

pyrolysis temperatures of 500 and 550°C lower values of 20.0 and 26.1 MJ kg−1,

respectively were obtained.

The average molecular weight of the pyrolysis gas decreased as the pyrolysis

temperature increased (Av. MW=18 at 500°C and 14 at 750°C).

3.3. Composition of the pyrolysis liquid

The pyrolysis liquid not only condensed out in the two cold traps but was also

present in the tubing from the reactor to the traps. The oil fractions were collected

both as neat liquids and diluted with diethyl ether (solvent used to wash the traps

and tubing). Both neat liquids and the resulting ether solutions were then analyzed

using GC/MSD to determine the chemical composition of the mixture. Pyrolysis

liquid quantities were determined by weighing all sections of the screw kiln and its

traps before and after each pyrolysis.

Based upon the data presented in Fig. 3, it can be clearly seen that as the

pyrolysis temperature increased the yield of pyrolysis liquid decreased. Thus

although the extent of degradation was increasing (see Fig. 2), the higher pyrolysis

temperatures were responsible for secondary degradation reactions leading to lower

molecular weight compounds, causing increased yields of pyrolysis gases as has

been observed in the literature [28]. The composition of the pyrolysis liquid was

also significantly different at the lower temperatures than was obtained at the

highest temperature (750°C).

At a pyrolysis temperature of 500°C, when the highest yield of pyrolysis liquid

was obtained, over 100 organic compounds were detected. Table 4 provides a

partial listing of some of the compounds present in the liquid with peak areas over

2%. From this data it can be seen that 16 compounds have peak areas over 2%. At

the 1% cut-off level, this number would double to 32 compounds. It is interesting

to note that while the aromatic compounds, benzene and toluene, are the com-

pounds with the largest peak areas, it is the aliphatics which dominate the pyrolysis

liquid at this temperature, with a peak area ratio of aliphatics to aromatics of about

4 to 1, see Table 10.

The 15 major compounds of both 550°C pyrolysis experiments are listed in

Tables 5 and 6. Once again, over 100 compounds were detected in each experiment.

The 550°C product lists are similar to that observed at 500°C. Increasing the ASR

residence time at 550°C from 3.2 to 11.6 min appears to increase the quantities of

benzene and toluene. It also appears that the quantities of PAH’s increased on

increasing the pyrolysis temperature from 500°C to 550°C as shown in Table 10.

The longer 550°C pyrolysis residence time of 11.6 min further increased both the

mono-aromatic and PAH production over that of the 3.2 min residence time in
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Table 4

Major compounds detected in pyrolysis liquid from pyrolysis at 500°C

Area (%)Compound

Benzene 5.75

5.54Toluene

5.501-Hexene

Pentane 5.26

Styrene 4.47

2-Butanone 4.24

3.812,4-Dimethyl-1-heptene

1-Propene, 2-methyl- 3.45

1-Heptene 2.85

2.82Ethylbenzene

2,3-Pentadiene 2.71

2.682-Methylfuran

2.65Cyclopentene

2.591-Pentene

1-Octene 2.40

3-Pentanone 2.08

keeping with the observations of Williams and Besler [27] for slow biomass

pyrolysis processes.

The 18 major compounds, out of a total of 34, observed for the 600°C pyrolysis

are listed in Table 7. Based upon this data it would appear that results obtained

with the 600°C experiment could be an anomaly in that no detectable quantities of

benzene were found in the liquid fraction while benzene was the major liquid

Table 5

Major compounds detected in pyrolysis liquid from pyrolysis at 550°Ca

Compounds Area (%)

Benzene 6.19

1-Hexene 5.02

4.79Toluene

Cyclopropane 4.38

4.101,3-Butadiene

1,3-Butadiene, 2-methyl- 3.71

3.38Styrene

1-Pentene 3.03

2-Butanone 2.77

Ethylbenzene 2.62

1-Heptene 2.55

Cyclopentene, 1-methyl- 2.37

2.36Cyclopentene

Cyclopropane, 1,2-dimethyl-, cis- 2.07

1-Buten-3-yne, 2-methyl- 2.03

a Residence time=3.2 min.
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Table 6

Major compounds detected in pyrolysis liquid from pyrolysis at 550°Ca

Area (%)Compounds

Benzene 9.34

7.96Toluene

5.561-Pentene

4.11Ethylbenzene

Styrene 3.80

1-Hexene 3.57

2.832-Butanone

2.751-Propene, 2-methyl-

1,3-Pentadiene 2.63

Cyclopropane, 1,2-dimethyl-, cis- 2.58

2.39Cyclopentene, 1-methyl-

2.23p-Xylene

1-Heptene 2.18

1.741-Octene

1,3-Cyclopentadiene 1.70

a Residence time=11.6 min.

product in all the other pyrolyses. It should also be noted that the mass balance for

this experiment was also inconsistent with the other experiments, suggesting that

the results obtained at 600°C should be interpreted with care. However, of the

compounds detected, methylstyrene and styrene had the largest peak areas. The

Table 7

Major compounds detected in pyrolysis liquid at 600°C

Area (%)Compounds

.alpha. -Methylstyrene 12.96

10.64Styrene

10.591H-Indene, 1-methyl-

5.89Benzene, 1-propenyl-, (E)-

Acetophenone 5.43

4.10Naphthalene

3.93Ethylbenzene

3.53Indene

3.32Benzene, 2-butenyl-

3.10p-Xylene

2.64Phenol, 2-methyl-

2.59Phenol, 4-methyl-

2.46Benzene, 1-propenyl-, (E)-

2.441H-Indene, 1,1-dimethyl-

2.39Naphthalene, 1-methyl-

Naphthalene, 2-methyl- 2.23

4,7-Methano-1H-indene, 3a,4,7,7a-tetrahydro- 2.16

Benzonitrile, 2-methyl- 2.03
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Table 8

Major compounds detected in pyrolysis liquid from pyrolysis at 700°C

Area (%)Compounds

Benzene 30.37

Toluene 17.25

Styrene 10.55

Naphthalene 4.72

3.98Benzene, 1,3-dimethyl-

3.24Acetone

2.32Indene

1,3-Butadiene 2.07

Thiophene 1.97

1.782-Norbornene

1.661,3-Cyclopentadiene

Ethylbenzene 1.58

1.55Bicyclo [2.2.1] hept-5-ene-2-carbonitrile

1.43Phenol

1.30Naphthalene, 2-methyl-

Benzonitrile 1.10

Benzene, 1-propenyl- 1.08

1.04Anthracene

600°C pyrolysis liquid also had very few aliphatics (4% peak area) and large

portions of mono-aromatics (59% peak area) and PAH’s (37% peak area) as listed

in Table 10.

The major 18 compounds of the 45 detected in the 700°C pyrolysis liquid are

listed in Table 8. Benzene was the compound with the largest peak area response.

The increase in mono-aromatics also continued as the pyrolysis temperature was

increased (see Table 10), however, the PAH content dropped with respect to the

questionably very high values observed at 600°C.

All 14 detected compounds in the 750°C pyrolysis liquid are listed in Table 9. In

this case the mono-aromatics (see Table 10) were the most dominant organic

compounds identified in the pyrolysis liquid, with benzene, toluene, naphthalene

and styrene being the major components. However, it should be noted that the yield

of the pyrolysis liquid produced at this pyrolysis temperature, 750°C, was one half

of that obtained at the lower pyrolysis temperature of 500°C (see Fig. 3). The

PAH’s were maintained at the 700°C pyrolysis level but the aliphatics content

almost disappeared (see Table 10).

The product yields of several of the major liquid compounds are presented, in

Figs. 6 and 7, as a function of pyrolysis temperature, for the major aromatic and

aliphatic compounds, respectively. From this data it can be seen that the yield of

the aliphatic compounds fall off rapidly as the pyrolysis temperature increases while

that of the aromatic compounds remain relatively constant.

Although the compounds listed in Tables 4–9 represent the major compounds

produced; from an environmental point of view, it is interesting to know what

organo sulphur, nitrogen, and chlorine compounds are produced. In terms of
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Table 9

Major compounds detected in pyrolysis liquid from pyrolysis at 750°C

Area (%)Compound

52.77Benzene

Toluene 19.92

8.71Naphthalene

Styrene 6.33

2.48Phenanthrene

Indene 1.96

p-Xylene 1.32

1.16Acenaphthylene

1.02Benzonitrile

0.80Naphthalene, 2-methyl-

0.77Naphthalene, 2-ethenyl-

Aniline 0.76

Fluorene 0.67

0.46Acetonitrile

nitrogen containing compounds, the following were detected: propanenitrile, bu-

tanenitrile, 1-butylpyrolidine, 2-methylbenzonitrile, benzonitrile, pyridine, 2-

methylpyridine, pyrrole, p-aminotoluene, aniline, indole, quinoline, and

isoquinoline. Only two organo-sulfur compounds were detected, i.e. 1-dodecane

thiol, and thiophene. Several organo-chloride compounds were also detected,

including: 1-chloro-1-propene, 1-chlorooctadecane, 5-chloro-2-methylbenzofuran,

and 1-chlorohexadecane. Other species of possible concern included: 2-methylfuran,

2,5-dimethylfuran, benzofuran, acetophenone, 2,2%-oxybisethanol, phenol, 2-

methylphenol, and 4-methylphenol.

The distribution of phenols in the pyrolysis liquids, as a function of pyrolysis

temperature, is listed in Table 11. Only two methylphenols were detected in the

600°C experiment while phenol was detected in the 500, 550 and 700°C liquids.

Much smaller quantities of phenol were detected in the 500 and 550°C pyrolysis

liquids. Phenolic compound production dropped off above 600°C pyrolysis temper-

atures. This contrasts sharply with the data observed by Rausa and Pollesel [24]

who observed maximum phenol production at 800°C. These differences are indica-

Table 10

Peak area percentages of classes of compounds found in the pyrolysis liquid

Aliphatics PAH’sPyrolysis temperature (°C) Residence time (min) Mono-aromatics

22.5577.283.2500 0.18

550 1.613.2 77.58 20.79

2.65550 11.6 65.55 31.81

58.78600 37.363.2 3.86

700 13.00 69.53 17.473.2

3.2 1.32 82.12 16.55750
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Fig. 6. Mass yields of the pyrolysis liquids benzene [�], toluene [�], styrene [�] and naphthalene [�]

expressed as a function of ASR feed, plotted as a function of pyrolysis temperature.

tive of the two pyrolysis processes. The PAH formation data is listed in Table 12.

This data on PAH formation is similar to that observed by Rausa and Pollesel [24]

using Italian ASR and by Williams and Besler [27] pyrolysing shredded municipal

solid waste, wood waste and rice husks. No PAH’s were observed in the 500°C and

550°C pyrolysis liquids. Naphthalene and its methyl derivatives were the com-

Fig. 7. Mass yields of the pyrolysis liquids pentane [�], 2-butanone [�], 2,4-dimethyl-1-heptane [�] and

1-hexane [�] expressed as a percentage of ASR feed, plotted as a function of pyrolysis temperature.
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Table 11

Phenols present in ASR pyrolysis liquids

600 700Pyrolysis temperature (°C) 500 750550 550

3.2Residence time (min) 3.23.2 3.23.2 11.6

Compounds

1.43Phenol B0.01 B0.05 B0.05

2.702-methylphenol

4-methylphenol 2.65

5.35 1.43Total peak areas 0.00B0.01 B0.05 B0.05

pounds with the largest peak area percentages at the 600°C pyrolysis temperature.

Naphthalene was also the compound exhibiting the largest peak area percentage at

700°C, with its concentration increasing as the pyrolysis temperature increased,

similar to the flash-pyrolysis results of Rausa et al. [24]. Clearly many of the PAH

organo-chlorine compounds are undesirable if the oil is to be used as a fuel. This

situation could be exaggerated by the presence of PVC in the feed under certain

pyrolysis conditions as has been reported elsewhere [34].

3.4. Composition of the pyrolysis solid residues

The solid residues can be considered to be composed of three components. An

organic fraction composed of organic material (not fully degraded polymeric

Table 12

Peak area percentages of some polycyclic aromatic hydrocarbons (PAH’s) in ASR pyrolysis liquids

550 550Pyrolysis temperature (°C) 600500 700 750

Resdence time (min) 3.2 3.2 11.6 3.2 3.2 3.2

Compounds

Indene 1.962.323.53

4.10 4.72Naphthalene 8.71

1.07Acenaphthylene 0.61 1.16

Fluorene 0.670.23

1.42Phenanthrene/anthracene 1.39

Fluoranthene 0.25

Pyrene 0.45

Derivatives

4.62 2.18Naphthalene, methyl 0.80

1.35 0.91Naphthalene, 2-ethenyl 0.77

Naphthalene, dimethyl 1.56

0.13Anthracene, methyl

Naphthalene, 2-phenyl 0.23

15.4613.4516.230.000.00 0.00Total peak areas
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Fig. 8. Weight distribution of organic [�], char [�] and inorganic [
] ash fractions in the solid residue

product as a function of pyrolysis temperature.

species and high molecular weight products), a carbonaceous char and inorganic

ash. The composition of these three components in the solid residues is presented in

Fig. 8 as a function of pyrolysis temperature.

From this data it can be seen that the organic fraction decreases while the

inorganic content increases as the pyrolysis temperature increases. The carbona-

ceous char yield, however, was found to remain relatively constant between 7 and

9% over the whole range of pyrolysis temperature conditions explored.

From the quantities of pyro-gas, pyro-oil and residue-extracted oil it would

appear that a relatively high conversion rate of between 60 and 85% was achieved

for the organic material in the ASR at the temperatures used in this study.

In terms of the variable residence time experiments at 550°C, it would appear

that increasing the residence time from 3.2 to 11.6 min had little influence on the

ash content of the solid residue (Table 13). However, the increased residence time

did result in a reduction in the organic content, and an increase in the carbonaceous

char produced in the solid residue.

Table 13

Composition of solid residues of samples pyrolyzed at 550°C

Carbonaceous charOrganic fraction Ash contentsTotal solidsResidence time

(%)(%)(min) (%)(%)

3.2 77.8 7.6 8.1 84.3

84.29.95.911.6 75.4
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Table 14

Phenols present in ASR pyrolysis residue extracts

600 700Pyrolysis temperature (°C) 500 750550 550

3.2Residence time (min) 3.23.2 3.23.2 11.6

Compounds

2-methylphenol 1.27 0.59 0.98

4-methylphenol 1.42 0.96 1.28

2,5-dimethylphenol 0.77 0.65 0.51

3-(1-methylethyl)phenol 1.07 0.35

2,4,6-tris(1,1-dimethylethyl)phenol 0.74 1.940.87 0.86

3.18 0.292,6-bis(1,1-dimethylethyl)-4-ethylphenol 2.64 0.292.47 1.83

5.12Total peak areas 0.297.91 0.295.89 5.46

GC/MSD analysis of the THF residue extracts from the solid residues indicated

the presence of between 32 (600°C pyrolysis) and 90 (500°C pyrolysis) organic

species. The occurrence of phenols in the pyrolysis residue extracts is presented in

Table 14. The quantities of phenols drop off dramatically above pyrolysis tempera-

tures of 600°C which is consistent with the observations for the pyrolysis liquids.

Some of the tentatively identified polycyclic aromatic hydrocarbons (PAH’s) are

listed in Table 15. A few PAH’s were detected in the 500 and 550°C pyrolysis

residue extracts while none were detected in the corresponding liquids (Table 12).

The 600°C pyrolysis residue extract however indicated the presence of phenan-

threne/anthracene only, while no other PAH’s were detected. When the pyrolysis

temperature was increased to 700°C the variety and quantities of PAH’s increased

dramatically. An increase in PAH content was observed with increased residence

time (3.2 vs. 11.6 min), at a 550°C pyrolysis temperature, see Table 15.

The THF extracts obtained from the 700 and 750°C pyrolysis residues also

yielded some compounds not observed in the pyrolysis liquids, namely, the nitrogen

compounds: benzothiazole, carbazole, 9-anthracenecarbonitrile, 2-naphthalenecar-

bonitrile, 5-methylquinoline, the sulfur compounds: benzothiozole, dibenzothio-

phene as well as dibenzofuran, and butyrolactone.

4. Conclusions

Pyrolysis of ASR offers an alternative process for the recovery of hydrocarbon

resources from an otherwise waste material. However, while the use of the screw

kiln technology may be relatively easy to perform and control, the value of the

hydrocarbon products obtained still needs to be fully evaluated. Clearly, based

upon the information provided in this paper, the gaseous and liquid hydrocarbon

products of pyrolysis are a complex mixture of organic compounds in which the

quantities obtained are very much dependent upon the pyrolysis conditions em-

ployed (i.e. temperature and residence time). While the gas fraction may be

acceptable as a fuel for most applications, it would appear that the pyrolysis liquid
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may need further processing to achieve a marketable product. The fate of chlorine

associated with poly(vinyl chloride) and flame retardants present in the ASR still

remains a major concern which is the focus of a separate paper [34]. The pyrolysis

residue could be separated into heavier organic compounds, recyclable metals and

a waste stream for disposal. The pyrolysis technique, its temperature and both the

material and gaseous product residence times can be varied in an attempt to

maximize the yield of the desired products (types and quantities gases or liquids).

Low screw-kiln pyrolysis temperatures (500°C) favoured the production of liquids

and these liquids contained mainly akanes, alkenes and mono-aromatics with

undetected polycyclic aromatic hydrocarbons but some PAH’s were extractable

from the solid residue.

Table 15

Peak area percentages of some polycyclic aromatic hydrocarbons (PAH’s) in ASR pyrolysis residue

extracts

550 550 600 700 750Pyrolysis temperature (°C) 500

3.23.23.2 3.2Residence time (min) 11.63.2

Compounds

0.43Indene 1.630.68 0.93

Naphthalene 2.30 10.59 8.251.712.98

Acenaphthylene 3.79 2.89

Acenaphthene 0.66 0.34

1.69Fluorene 3.640.32 1

Phenanthrene/anthracene 0.58 0.90 5.41 6.910.302.02

Fluoranthene 1.47 2.82

0.43Pyrene 0.38 0.43 1.69 2.68

Benzo(a)anthracene 0.75 0.74

0.640.54Chrysene

Derivatives

1H-Indene, 1-methyl 1.27 1.90 0.35

2.83 6.851.57 2.42Naphthalene, methyl

0.53 0.61Naphthalene, 2-ethenyl 2.00 1.35

Naphthalene, dimethyl 3.05

1,1%-Biphenyl, 3-methyl 0.59 0.22

2-Naphthalenecarbonitrile 0.310.60

1.43 0.169H-Fluorene, 1-methyl

0.84 0.69Naphthalene, 1-phenyl

Anthracene, methyl 3.06 1.02

0.44 1.03 1.05Naphthalene, 2-phenyl

11H-Benzo[b]fluorene 0.84 0.81

0.22Pyrene, 2-methyl

34.7748.460.907.515.43 4.49Total areas
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