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a b s t r a c t

Styrene was grafted onto ultrahigh molecular weight polyethylene powder (UHMWPE) by gamma irradia-

tion using a 60Co source. Compression moulded films of selected pre-irradiated styrene-grafted ultrahigh

molecular weight polyethylene (UHMWPE-g-PS) were post-sulfonated to the sulfonic acid derivative

(UHMWPE-g-PSSA) for use as proton exchange membranes (PEMs). The sulfonation was confirmed by X-

ray photoelectron spectroscopy (XPS). The melting and flow properties of UHMWPE and UHMWPE-g-PS

are conducive to forming homogeneous pore-free membranes. Both the ion conductivity and methanol

permeability coefficient increased with degree of grafting, but the grafted membranes showed compa-

rable or higher ion conductivity and lower methanol permeability than Nafion® 117 membrane. One

UHMWPE-g-PS membrane was fabricated into a membrane–electrode assembly (MEA) and tested as a

single cell direct methanol fuel cell (DMFC). Low membrane cost and acceptable fuel cell performance

indicate that UHMWPE-g-PSSA membranes could offer an alternative approach to perfluorosulfonic acid-

type membranes for DMFC.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Fuel cells are electrochemical devices that convert chemical

energy directly into electricity, and are regarded as one of the

promising clean future power sources. The proton exchange mem-

brane fuel cell (PEMFC) and direct methanol fuel cell (DMFC),

which use polymeric proton conductive membranes as one of

the key components, are drawing increasing attention for their

utility in automotive and portable applications [1,2]. Of these

two PEMFC systems, DMFC is advantageous for portable power

applications, primarily because it avoids the difficulties of stor-

ing hydrogen and because of the relatively good electrochemical

reactivity of methanol (although it is far below that of hydro-

gen). It is of interest to operate DMFCs under a variety of

operating conditions depending on specific system requirements

(methanol concentration, flow rate, humidification, cell temper-

ature, operating voltage or current, etc.), in order to improve

efficiency. Today, commercially available DMFCs (e.g. Antig, MTI

Micro, SFC Smart Fuel Cell AG) are based on Nafion® membranes

� NRCC Publication No. 51718.
∗ Corresponding author. Tel.: +1 613 993 9753; fax: +1 613 991 2384.

E-mail address: michael.guiver@nrc-cnrc.gc.ca (M.D. Guiver).

or similar perfluorosulfonic acid (PFSA) membranes because they

exhibited a number of desirable properties, such as high ionic

conductivity, mechanical strength, and chemical/thermal stabil-

ity. However, high cost, limited operation temperature (≤80 ◦C),

high methanol crossover, and environmental recycling uncer-

tainties of Nafion® and other PFSA membranes are limiting

their widespread commercial application in fuel cell systems

[3,4].

Therefore, a concerted effort is being made to develop new

high-performance proton conductive membranes as an alterna-

tive to commercially available PFSA membranes. These efforts were

generally divided into two categories. The first is to modify the

Nafion® membranes by surface treatment or by blending them with

other polymers or inorganic materials, primarily in an attempt to

reduce methanol permeability. Nafion®/silica composites [5,6] and

Nafion®/poly(vinylidene fluoride hexafluoropropylene) blended

membranes [7] are good examples of this category. The second is

to develop new synthetic polymeric membranes that have ionic

clusters with a smaller percolation size compared with Nafion®.

These include sulfonated derivatives of poly(ether sulfone) (SPES)

[8,9], poly(ether ether ketone) (PEEK) [2,10], polyimide (SPI) [11,12],

polyimidazole [13], poly(aryl ether) [14,15], polyphenylene [16,17],

polybenzimidazole [18], hybrid membranes [19] and radiation-

grafted membranes [20–22].

0378-7753/$ – see front matter. Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.
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The large percolation size of PFSA membranes is an advantage,

being the source of high proton conductivity. Unfortunately, at the

same time it is also the source of higher methanol crossover, which

is the major limitation of PFSA membranes in the DMFC application.

Thus methanol transport and proton conductivity have somewhat

of a trade-off relationship in that it is difficult to selectively reduce

one without affecting the other and vice versa [23]. In general,

hydrocarbon or partially fluorinated membranes possess consider-

ably lower methanol permeability, which allows the corresponding

DMFC to be operated with relatively higher methanol concentra-

tion. Ultrahigh molecular weight polyethylene (UHMWPE) is an

inexpensive material with high crystallinity that offers an excellent

combination of properties in terms of chemical inertness and good

mechanical strength, which made UHMWPE the material of choice

in a number of applications. However, UHMWPE-based PEMs have

not been reported yet for the evaluation of DMFC performance.

The present study is focused on the evaluation of an inexpensive

hydrocarbon polymer electrolyte membranes based on radiation

induced styrene-grafted onto UHMWPE. A 60Co gamma source was

used for irradiation. The prepared proton exchange membranes

were characterized by X-ray photoelectron spectroscopy (XPS), and

surface analyses were performed by using SEM. Proton conductiv-

ity and methanol permeability are also presented and compared

with Nafion® 117. A selective membrane was also assessed for DMFC

performance.

2. Experimental

2.1. Materials

Styrene-grafted UHMWPE (UHMWPE-g-PS) films used were

prepared by the author as described in our previous paper [24].

Chlorosulfonic acid (ClSO3H) sulfonating agent and dichloroethane

solvent were obtained from Sigma–Aldrich. Analytical grade

dichloromethane was obtained from EMD Ltd. All chemicals were

used as received.

2.2. Radiation grafting

Methanol-washed and vacuum dried UHMWPE powder was

used for irradiation. To carry out irradiation, UHMWPE powder was

placed in screw-cap air-tight glass vials sealed with rubber septa,

each vial containing 2.0 g of UHMWPE powder. Ar gas was used to

create inert atmosphere. The vials were then inserted into the irra-

diation chamber, where the irradiation was carried out to obtain

5 kGy absorbed dose in Ar atmosphere. The 60Co source was used

for �-irradiation at a calibrated dose rate of 649 Gy h−1 and the

source was supplied by MDS Nordion, Canada. Solutions of styrene

monomer were added to the pre-irradiated samples of UHMWPE

powder and maintained at 60 ◦C for 24 h. Monomer concentrations

were varied from 10 to 40% by volume in toluene solvent, lead-

ing to the UHMWPE samples having a final degree of grafting (DG)

ranging from 12 to 44%. Following the styrene-grafting reactions,

the polymers were washed and dried under vacuum until constant

weight was reached. The degree of grafting was obtained by using

the following equation

Degree of grafting (%) =
Wg − Wo

Wo
× 100 (1)

where Wo and Wg are the weights before and after the grafting

reaction, respectively.

2.3. Sulfonation

Styrene-grafted UHMWPE powder was converted into films by

a compression moulding technique. For this purpose, measured

amounts of grafted UHMWPE powder were pressed between two

thin stainless steel plates using 6000 psi pressure at a set plate

temperature of 220 ◦C for 10 min. The detailed description of the

film forming procedure is presented elsewhere [24]. Sulfonation

of the UHMWPE-g-PS films was carried out by directly immersing

the film in a 0.2 M chlorosulfonic acid solution of dichloroethane

for 5 h at 50 ◦C, then overnight at room temperature. After sulfona-

tion, the membranes were removed from sulfonating solution and

immersed in fresh dichloromethane for 3 h followed by washing

with dichloromethane for removal of residual acid. After wash-

ing with dichloromethane, the films were thoroughly washed with

deionized water.

The ion exchange capacity (IEC) of the sulfonated polymers was

measured using a typical titration method. The IEC was calculated

using the following equation

IECexp =
0.05 × VNaOH

Wdry
(mequiv. g−1) (2)

where VNaOH (mL) is the volume of the 0.05 M NaOH solution used

for titration. Wdry (g) is the dry weight of the polymer electrolyte

membrane in the protonic form.

2.4. XPS analysis

The samples were analyzed, using the Kratos Axis Ultra

X-ray photoelectron spectrometer (XPS) equipped with a non-

monochromated Al X-ray source. Three analyses were performed

on each sample to ensure reproducibility. Analyses were carried

out using an accelerating voltage of 14 kV and a current of 10 mA.

Charge build-up was compensated for using the Axis charge balanc-

ing system. The pressure in the analysis chamber during analysis

was 2.0 × 10−9 Torr. Survey scans were carried out in the binding

energy range of 1100–0 eV and pass energy of 160 eV to identify all

the species present. High resolution scans were performed for C 1s,

O 1s and S 2p regions at pass energy of 40 eV. Peak assignments were

based on the NIST database (http://srdata.nist.gov/xps/Bind E.asp),

High Resolution XPS of Organic Polymers [25] and relevant pub-

lications. Peak fitting was performed using CasaXPS (ver. 2.2.107)

data processing software. Shirley background correction proce-

dures were used as provided by CasaXPS. Curve fitting procedures

used for high resolution spectra presented in this paper used a

Gaussian–Lorentzian (30) function. High resolution analyses were

calibrated to adventitious C 1s signal, at 285 eV. Quantification was

performed using sensitivity factors provided by CasaXPS’s Scofield

element library.

2.5. Scanning electron microscope (SEM) studies

Scanning electron microscopy (SEM, LEO 440, UK, magnifi-

cation = 5× to 300,000×, resolution = 3.5 nm) was used for the

morphological analysis of the sulfonated and non-sulfonated sam-

ples. For SEM analysis, small pieces of UHMWPE, UHMWPE-g-PS

and UHMWPE-g-PSSA samples were pasted onto aluminum stubs

with silver paste. Once the paste was dry the films were coated

with a thin layer of gold (Au) by a sputtering technique using a

Magnetron sputtering device (MSD). The gold-coated samples were

placed in the SEM sample chamber and analyzed at a magnifica-

tion of 2500×. The detector used was a secondary electron (SE)

detector.

2.6. Proton conductivity

Proton conductivity measurements of the UHMWPE-g-PSSA

membranes were derived from AC impedance spectroscopy mea-

surements over a frequency range of 1–107 Hz using a system based

on a Solatron 1260 gain phase analyzer. Each membrane sample

http://srdata.nist.gov/xps/Bind_E.asp
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Fig. 1. XPS survey spectra of the (a) pristine UHMWPE, (b) 33% styrene-grafted

UHMWPE and (c) 33% styrene-grafted and sulfonated UHMWPE 1.94 mequiv. g−1 .

was cut into sections 2.5 cm × 1.0 cm prior to being mounted in the

cell. The cell was placed in a temperature controlled container open

to air by a pinhole where the sample was equilibrated at 100% RH

at ambient atmospheric pressure and clamped between two elec-

trodes. The proton conductivities of the samples were measured in

the longitudinal direction and were calculated from the impedance

data, using the following relationship:

� =
l

RS
(3)

where � is the proton conductivity (in S cm−1), l is the dis-

tance between the electrodes used to measure the potential

(l = 1.0 cm), S is the membrane cross-sectional surface area (mem-

brane width × membrane thickness) for protons to transport

through the membrane (in cm2) and R is derived from the low inter-

section of the high frequency semicircle on a complex impedance

plane with the Re (Z) axis.

2.7. Methanol permeability

Methanol permeability was measured using a simple two-

compartment glass diffusion cell. A membrane (2.5 cm × 2.5 cm)

was placed between two silicone rubber gaskets and with the two

compartments clamped together around the gaskets. The active

area of the membrane was 1.767 cm2. Compartment A was filled

with 100 mL of 10.0 vol.% methanol with an internal standard of

0.2 vol.% 1-butanol in aqueous solution. Compartment B was filled

with 100 mL of 0.2 vol.% 1-butanol solution. The diffusion cell was

placed in a water bath held at 30 ◦C, and each compartment was

stirred by a separate stir plate to ensure uniform stirring. Sam-

ples (7 �L each) were removed from compartment B at intervals

of ∼20 min each. Methanol concentrations were determined by 1H

NMR spectroscopy. The methanol permeability was calculated [26].

2.8. Single cell DMFC test

The UHMWPE-g-PSSA membrane (DG = 22%) was selected for

the DMFC testing. For this purpose, membrane was sprayed with

catalyst with the final loading of 2 mg cm−2 Pt–Ru at the anode

and 1 mg cm−2 Pt at the cathode side. Nafion® 5% solution (in

lower aliphatic alcohol/H2O mixture) was used as ionomer solu-

tion. Catalyst coated membrane was then sandwiched by anode

and cathode electrodes, and hot-pressed at 90 ◦C under 2000 lbs

pressure for 15 min. The obtained membrane–electrode assembly

(MEA) was then sandwiched between two graphite current col-

lectors with a serpentine design for the fuel and air distribution

of 5 cm2 geometrical active MEA area (Electrochem Inc.). Current,

power and impedance values are normalized for the 5 cm2 geomet-

rical area. The single cell consisted of two ribbed graphite plates,

which were compressed between two gold plated stainless steel

plates. These plates were provided with liquid and gas-feed tubes

and were connected with the electric wires for the measurements

in the cell. Electrical heaters and a thermocouple were embedded

into the plates to control the operating temperature of the FC. All

electrochemical measurements were conducted in this cell. DMFC

performance curves were measured at 40 and 60 ◦C.

2.8.1. Current–voltage curves

A peristaltic pump (Ismatec IPC 4, Cole-Parmer Inst. Co.) was

employed to supply aqueous 1 M CH3OH solutions to the anode at

2 mL min−1. O2 was fed to cathode at 100 sccm and at atmospheric

pressure. O2 was humidified by passing through a humidifier (Fuel

Cell technologies) at 40 ◦C. Current–voltage curves were measured

Fig. 2. High resolution XPS spectra and curve fitting of S 2p3/2 and S2p1/2 from UHMWPE-g-PSSA: (a) DG = 22%, IEC = 1.5 mequiv. g−1; (b) DG = 33%, IEC = 1.94 mequiv. g−1 .
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Fig. 3. High resolution XPS spectra and curve fitting of O 1s from UHMWPE-g-PSSA: (a) DG = 22%, IEC = 1.5 mequiv. g−1; (b) DG = 33%, IEC = 1.94 mequiv. g−1 .

Fig. 4. High resolution XPS spectra and curve fitting of C 1s from UHMWPE-g-PSSA: (a) DG = 22%, IEC = 1.5 mequiv. g−1; (b) DG = 33%, IEC = 1.94 mequiv. g−1 .

galvanostatically using an electronic load (Keithley 2440, Alliance

Test Equipment, Inc.). Prior to the measurements, the cell was

operated at 0.4 V and 40 ◦C for 2 h to condition the MEA. The cell per-

formance was found to stabilize within 3 days of the measurements.

The current–voltage polarization curves presented here were mea-

sured after 3 days of repeated conditioning and measuring the cell

performance, unless otherwise stated.

3. Results and discussion

3.1. X-ray photoelectron spectroscopy (XPS)

Fig. 1 illustrates representative XPS survey spectra of the pristine

UHMWPE, styrene-grafted UHMWPE (UHMWPE-g-PS), as well as

sulfonated styrene-grafted UHMWPE (UHMWPE-g-PSSA). Strong,

well-defined peaks at approximately 285 and 533 eV, indicative

of C 1s and O 1s were observed in each survey scan. The strong

C 1s peak at 285.0 eV, characteristic of C–C and C–H bonds, is

shifted very slightly for UHMWPE-g-PS and UHMWPE-g-PSSA due

to the presence of C C in UHMWPE-g-PS and C C and C–SO3 in

UHMWPE-g-PSSA. Deconvolution of the high resolution carbon

spectra is discussed below. Weaker, poor signal-to-noise ratio, F

and N peaks were found at 689.5 and 400.3 eV, respectively, in pris-

tine UHMWPE (Fig. 1a) and styrene-grafted UHMWPE (Fig. 1b). The

reason for their presence is unclear, but is thought to be due to

environmental impurities.

Survey scans of the sulfonated styrene-grafted UHMWPE sam-

ple revealed a weak sulfur peak at approximately 169 eV (Fig. 1c).

This confirmed the successful sulfonation of the styrene-grafted

UHMWPE. The high resolution sulfur spectra (Fig. 2b) reveal S 2p

present at a binding energy of 169.2 eV, which is consistent with

oxidized sulfur (SO3
−).

Fig. 1c shows the XPS survey spectrum of the sulfonated styrene-

grafted UHMWPE (UHMWPE-g-PSSA) membranes as the PEMs.

High resolution spectra of the PEMs reveal that, in addition to

significant O 1s (Fig. 3b) and C 1s (Fig. 4b) peaks, a relatively

weak S 2p peak was resolved at a binding energy of approxi-

mately 169 eV. This indicates that the membrane contains sulfonic

acid groups. The possible presence of double bonds cannot be

neglected during the styrene-grafting reaction [27]; therefore,

it is possible that a side reaction took place when the mem-

branes were sulfonated by chlorosulfonic acid. A possible side

Table 1

Calibrated binding energies for C 1s spectra of representative membranes.

Sample DG/% IEC/mequiv. g−1 Binding energy

C–C, C–H C–O (SO3) C O COOH

UHMWPE 0 0 285.0 285.4 285.8 286.2 286.7 288.2 289.4

UHMWPE-g-PS-33 33 0 285.0 285.4 285.8 286.2 286.7 288.1 289.3

UHMWPE-g-PSSA-22 22 1.5 285.0 285.4 285.8 286.2 286.7 288.0 289.4

UHMWPE-g-PSSA-33 33 1.94 285.0 285.4 285.8 286.2 286.7 288.2 289.5
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Table 2

Atomic percent ratios based on XPS analyses for representative membranes.

Sample DG/% IEC/mequiv. g−1 C/O C/S O/S

UHMWPE 0 0 12.7 – –

UHMWPE-g-PS 33 0 16.2 – –

UHMWPE-g-PSSA 22 1.5 12.2 69.6 5.7

UHMWPE-g-PSSA 33 1.94 10.6 41.1 3.9

reaction is the addition reaction of the chlorosulfonic acid with

the double bonds on the grafts. The result of the side reactions

is that there will be Cl atoms in the sulfonated membranes;

however, no detectable Cl was observed in the survey spectra.

Hence, if indeed there are double bonds present in the grafted

membrane, which will react with chlorosulfonic acid during sul-

fonation, the amount present is below the level detectable by

XPS.

Fig. 2 shows the XPS high resolution spectra and curve fitting

of the UHMWPE-g-PSSA membranes. The peak area increases with

increasing degree of grafting, as illustrated by the S 2p signal of the

Fig. 5. SEM micrographs at magnification = 2500×: (a) pristine UHMWPE; (b) UHMWPE-g-PS (DG = 33%); (c) UHMWPE-g-PSSA (DG = 33%); (d) cross-sections of UHMWPE-g-PS

(DG = 33%); (e) cross-sections of UHMWPE-g-PSSA (DG = 33%).
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33% sulfonated styrene-grafted UHMWPE (Fig. 2b) versus the same

signal for the respective 22% membrane (Fig. 2a).

The carbon spectra were fitted based on the fitting of high den-

sity polyethylene (PE) and polystyrene (PS) provided by Beamson

and Briggs [25] and Lukas and Tyrackova [28]. The high resolution

carbon spectra were typically fitted with synthetic curves having a

full width half maximum of 1.2 eV. The O 1s spectra (Fig. 3a and b)

have been fitted with the oxygen peak at 532.5 which is attributed

to oxygen of sulfonic acid group.

There is a high degree of overlap between the carbon peaks,

making them virtually indistinguishable. Peaks 1–4 represent

vibrational fine structure with the higher binding energy compo-

nents due to low-level oxidation [25]. The higher energy C 1s peaks

are consistent with peak fittings by Lukas and Tyrackova [28] of PE

and PS. Synthetic peak position, peak assignments, atomic percent

and atomic ratio calculation are summarized in Tables 1 and 2.

3.2. Scanning electron microscope (SEM) studies

The SEM images were obtained by using compression moulded

films of pure UHMWPE, UHMWPE-g-PS and sulfonated UHMWPE-

g-PS. The surface of pure UHMWPE films (Fig. 5a) is observed to

be smooth with no observable discontinuity, indicating complete

melting and flow. Thus compression moulding is an appropriate

technique for film formation of UHMWPE, which is insoluble in

almost any solvent. However, there is possible difference in the

melt temperature of pristine and styrene-grafted UHMWPE. There-

fore, the temperature applied during compression moulding of

UHMWPE-g-PS was maintained higher well above the melting

point of pristine UHMWPE.

Fig. 5b shows the image of film prepared from 33% styrene-

grafted UHMWPE powder. The appearance of surface roughness is

due to the presence of PS grafts. A few distinctive particles with

macroscopic phase separation also appear that can be attributed to

the possible presence of some non-melted portion of highly grafted

UHMWPE-g-PS powder. However, the accumulation of the styrene

graft on the surface of the film is not observed, which is considered

as a significant advantage of employing the post-grafting film for-

mation from UHMWPE-g-PS powder, as opposed to grafting onto

pre-formed films. The accumulation of graft units on the surface

can cause film brittleness; moreover, inhomogeneous penetration

of the grafting units throughout the volume of film contributes

to a higher resistance in transfer of conducting ions through the

film, which would adversely affect the PEM. UHMWPE-g-PS films

were sulfonated with chlorosulfonic acid to convert them to proton

conducting membranes. SEMs of selected UHMWPE-g-PSSA mem-

branes are illustrated in Fig. 5c. In comparison with UHMWPE-g-PS,

no new features were observed in the UHMWPE-g-PSSA mem-

Fig. 6. Representative structure of UHMWPE-g-PSSA.

Fig. 7. AC impedance spectra for UHMWPE-g-PSSA membrane (DG = 12%,

IEC = 0.97 mequiv. g−1).

branes other than the significant increase in surface roughness,

which may be due to the swelling effect brought about by sulfona-

tion of the film.

Fig. 5d and e shows the cross-sectional view of the UHMWPE-g-

PS and UHMWPE-g-PSSA membranes, respectively. The micrograph

shows that PS grafts are present not only on the surface of the film

but throughout the volume of the membrane, which confirms the

uniformity of grafting and then sulfonation process during PEMs

development.

3.3. Proton conductivity/methanol permeability

Membranes for use in DMFC systems must possess both ade-

quate proton conductivity and be effective barriers for methanol

crossover from the anode to the cathode, to prevent loss of

methanol and oxidation with oxygen, leading to a mixed poten-

tial. Proton conduction is due to the presence of protogenic groups,

Fig. 8. AC impedance spectra for UHMWPE-g-PSSA membrane (DG = 44%,

IEC = 2.26 mequiv. g−1).
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Fig. 9. Proton conductivity versus water uptake (vol.%) of UHMWPE-g-PSSA relative

to Nafion® 117.

and UHMWPE-g-PSSA contains sulfonic acid groups that afford pro-

ton conduction. The structure of UHMWPE-g-PSSA is represented

in Fig. 6.

In addition to the presence of sulfonic acid groups as protogenic

group, in the case of Nafion®, its interconnected ionic domains

strongly contribute to its high proton conductivity, but at the

same time contribute to fast methanol diffusion. High methanol

crossover is a significant drawback of Nafion® in the DMFC appli-

cation. Methanol transport and proton conductivity often have a

trade-off relationship, whereby it is difficult to selectively reduce

one without affecting the other.

Nasef et al. [29] and Gubler et al. [30] outlined in detail the prob-

lems encountered during proton conduction measurements for the

grafted PEMs, in which grafting was conducted on polymer film

substrates. It was described that at low DG, the polystyrene grafts

are located near the surface of the film while the membrane interior

remains ungrafted and subsequently exerts a high local resistance

to proton conduction due to inhomogeneous distribution of ion

exchange sites over the area of the membrane. Thus the conductiv-

Fig. 10. Proton conductivity versus methanol permeability of UHMWPE-g-PSSA rel-

ative to Nafion® 117.

ity data obtained from their results show considerable scatter at low

and medium DG values of ≤20%, because the AC impedance spec-

tra obtained were of poor quality and unsuitable for the extraction

of meaningful numbers. Gubler et al. also confirmed the inhomo-

geneous distribution of ion exchange sites over the area of the

membrane by observing the patchy coloring of the membranes

upon the introduction of an indicator dye. It was also described that

the membranes became increasingly brittle at higher graft levels,

and thus could not even be used for conductivity measurements

because of fracturing. Both of these challenges (1) penetration of

graft throughout the membrane and (2) brittleness for high DG

films, are adequately addressed in the present study by applying

a new fabrication protocol, i.e., irradiation grafting modification of

the base polymer in the powder, subsequent film fabrication and

post-sulfonation. The present methodology considerably improved

the uniformity of grafting distribution throughout the film cross-

sectional volume and is confirmed by the continuity in conductivity

data. The impedance curves obtained even for the membrane with

lower DG, i.e., UHMWPE-g-PSSA having a DG of 12% were of better

Table 3

Comparison of proton conductivities of PEMs based on radiation induced styrene-grafted copolymers.

Base polymer Thickness/�m Monomer DG/mass% Proton conductivity/mS cm−1 Ref.

UHMWPE 90a Styrene 12 16b –

UHMWPE 92a Styrene 22 61b –

UHMWPE 102a Styrene 33 111b –

UHMWPE 122a Styrene 44 140b –

Nafion® 117 176a Styrene – 54b [26]

PVDF 80c Styrene 36–39 50d [31,32]

PVDF 40c Styrene 39 48d [31,32]

PVDF 15c Styrene 36 16d [31,32]

ETFE 50c Styrene 36–39 43d [31,32]

FEP 75c Styrene 34 108d [31,32]

PTFE 35c Styrene 16 70e [33,34]

FEP(R-4010) 75a Styrene 22 90e [33,34]

LDPE(R-5010M) 195a Styrene 16 30e [33,34]

LDPE 125c Styrene 9 54f [35,36]

ETFE 50c Styrene 14 18f [35,36]

PFA 120c Styrene 16 33d [37]

a Thickness of grafted and sulfonated membrane.
b At 35 ◦C and 100% RH.
c Thickness of base polymer film.
d At room temperature and 100% RH.
e In situ in cell of 5 cm2 activated area, 50 ◦C, H2/O2 at 4/5 atm, full humidification.
f At room temperature in 0.1 M HCl.
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quality as shown in Fig. 7. This further improved with DG as excel-

lent impedance curves were obtained for UHMWPE-g-PSSA having

DG of 44%, as shown in Fig. 8.

Fig. 9 shows that the proton conductivity and water uptake are

interrelated properties. Water uptake value of UHMWPE-g-PSSA

membranes increases gradually with increase in IEC. This increase

in water uptake leads to increased proton conduction due to reason

that H2O act as proton carrier, as H+ conducts in the form of H3O+ or

H2O5
+ through the membrane. Fig. 10 shows that the proton con-

ductivity of the UHMWPE-g-PSSA membranes increases with DG

and IEC but at the same time the methanol permeability value also

increases undesirably. Due to this trade-off relationship between

methanol permeability and proton conductivity, it is of little value

to select a membrane having very high IEC. Thus the membrane of

choice will be that which bears low methanol permeability along

with reasonably high proton conductivity.

Selectivity, which is defined as the ratio of proton conductivity

to methanol permeability, is often used to evaluate the potential

performance of polymeric films. Figs. 9 and 10 also present the rel-

ative values of proton conductivity, water uptake and methanol

permeability of UHMWPE-g-PSSA membranes to Nafion® 117. It

was found that UHMWPE-g-PSSA membranes have higher selec-

tivities compared to Nafion® 117. The methanol permeability of

UHMWPE-g-PSSA at 30 ◦C were in the range of 1.45 × 10−6 to

4.86 × 10−8 cm2 s−1, several times lower than the methanol perme-

ability of Nafion® 117 (1.5 × 10−6 cm2 s−1).

For the purpose of comparison, the proton conductivity of few

PEMs based on radiation induced styrene-grafted onto different

base polymers are presented along with the measurement condi-

tions in Table 3. As it was observed that in most cases, grafting

studies were performed using fluorinated base polymers which are

costly and environmentally unfriendly contrary to UHMWPE, being

purely hydrocarbon. Moreover, UHMWPE-g-PSSA has an excellent

proton conductivity.

3.4. DMFC performance of UHMWPE-g-PSSA membrane

The UHMWPE-g-PSSA membrane (DG = 22%, 92 �m thickness)

was selected for evaluation of the DMFC performance, due to

its considerably lower methanol permeability together with sat-

isfactory proton conductivity and water uptake, as shown in

Figs. 9 and 10. The fabricated single cell was fed with 1 M aqueous

methanol to the anode and O2 to the cathode, under atmo-

spheric pressure. After the cell attained stable conditions, the

current–voltage (I–V) performance of the cell was recorded at 40

and 60 ◦C. For comparison, Nafion® 117 (176 �m thickness) was also

Fig. 11. DMFC performance of UHMWPE-g-PSSA (DG = 22%) compared to Nafion®

117 at 40 ◦C.

Fig. 12. DMFC performance of UHMWPE-g-PSSA (DG = 22%) compared to Nafion®

117 at 60 ◦C.

tested under the same conditions, and the results are presented in

Figs. 11 and 12.

The open cell voltage (OCV) values of the membrane increases

slightly at higher temperature that is possibly due to the decrease

in resistance for cations movement through the membranes while

methanol permeability as already checked is very low. In all graphs,

there are clear regions of activation, ohmic and concentration polar-

ization. The activation and ohmic polarization is significant at 40 ◦C,

but becomes lower at 60 ◦C while the portion of the curves rep-

resenting concentration polarization are almost similar at both

temperatures. By comparing the power density curves of the mem-

branes at 40 and 60 ◦C temperatures (see Fig. 11) it is obvious

that UHMWPE-g-PSSA membrane shows superior performance at

higher temperature at every low and high current density regions

of the curves.

Since Nafion® ionomer was used for MEA fabrication and the

UHMWPE-g-PSSA membrane is purely hydrocarbon, it would be

expected that compatibility between the membrane and ionomer

would compromise the connectivity of the membrane–electrode.

However, smooth polarization curves were obtained, and the power

density is comparable to that of Nafion®. With optimization of the

membrane–electrode interface and further improvements in MEA

fabrication, it is likely that the performance could be improved.

Furthermore, due to the significantly lower methanol crossover,

Fig. 13. Variation in DMFC performance of UHMWPE-g-PSSA (DG = 22%) at different

temperatures.
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the performance of UHMWPE-g-PSSA membrane could also be

improved by its use in a DMFC with higher methanol feed con-

centration, while the performance of Nafion® membranes in DMFC

declines when the methanol feed concentration exceeds 2 M, due

to high methanol crossover [38]. Fig. 13 shows that the DMFC

performance of UHMWPE-g-PSSA is improved with increasing tem-

perature. This trend supports the appropriate connectivity of the

ionic sites throughout the volume of the membrane, which results

in higher conductivity with increasing temperature. The power

density of UHMWPE-g-PSSA (DG = 22%) membrane obtained was

about 32 mW cm−2 at 40 ◦C to 45 mW cm−2 at 60 ◦C.

4. Conclusions

Fuel cell membranes based on styrene-grafted polyethylene

were successfully prepared. The sulfonation was confirmed by XPS

spectroscopy. SEM analysis confirmed that compression moulded

films of the pre-styrene-grafter polymer UHMWPE-g-PS could

be suitably prepared with essentially pore-free and homoge-

neous structures. The resulting films were post-sulfonated to

provide grafted membranes having comparable or higher proton

conductivity and lower methanol permeability than Nafion®117

membrane. The DMFC test demonstrated the practicability of using

these membranes, as smooth polarization curves were obtained.

UHMWPE-g-PSSA is an inexpensive membrane material and hence

is a viable alternate to Nafion® for DMFCs applications.
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