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This study demonstrates real-time maximization of power production in a stack of two
continuous flow microbial fuel cells (MFCs). To maximize power output, external resistances
of two air–cathode membraneless MFCs were controlled by a multiunit optimization algo-
rithm. Multiunit optimization is a recently proposed method that uses multiple similar units
to optimize process performance. The experiment demonstrated fast convergence toward
optimal external resistance and algorithm stability during external perturbations (e.g., tem-
perature variations). Rate of the algorithm convergence was much faster than in traditional
maximum power point tracking algorithms (MPPT), which are based on temporal pertur-
bations. A power output of 81–84 mW/LA (A ¼ anode volume) was achieved in each MFC.
VVC 2009 American Institute of Chemical Engineers Biotechnol. Prog., 25: 676–682, 2009
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Introduction

Power generation in a microbial fuel cell (MFC) from

renewable carbon sources is a potential alternative to fossil

fuel utilization.1,2 In a MFC, anodophilic microorganisms de-

grade organic matter and transfer electrons to the anode via

nanowires or self-produced mediators.3–5 Since the late 90s,

when intensive MFC development began, power density in

MFCs increased by several orders of magnitude.6 Yet, attain-

able power density of a single MFC is relatively low, in a

range of 50–200 W/m3
A (A ¼ anode chamber volume) and

the working voltage is limited to 0.3–0.5 V.7 Consequently,

a stack of MFCs might be required to obtain the desired

power output.7,8 As in any other battery, power generation in

a MFC strongly depends on the external resistance (load) so

that maximum power is produced when the external load is

equal to the internal resistance of the cell.9 As MFC is a bio-

logical system, the internal resistance depends on environ-

mental factors such as temperature and influent composition.

As a consequence, timely adjustment of the external load is

required to maximize power production.

The classical approach of real-time optimization consists

of two steps.10,11 First, a model of the process is used to

numerically calculate the optimum. Next, the model is

updated using the available measurements and the updated

model is then used for numerical optimization. However,

building and maintaining a sufficiently detailed model of a

MFC represents a challenge in itself. Also, the solution does

not converge to the optimum if the model structure does not

adequately describe the process.12

Extremum-seeking is an alternative approach13,14 where

optimization is achieved by following the necessary condi-

tions of optimality, i.e., in an unconstrained case, forcing the

gradient to zero. For gradient estimation, perturbation meth-

ods15 can be used, when measurements of the performance

criterion are available. If only auxiliary measurements are

available, a model-based gradient estimation approach is

needed.16 Maximum power point tracking (MPPT) algo-

rithms used in photovoltaic systems are also based on an

estimation of the gradient. These algorithms can also be

used to maximize the electrical power of microbial fuel cells

in real-time. The perturbation and observation method is the

most popular due to its simplicity of implementation.17

The multiunit optimization method18,19 is a recent tech-

nique for gradient estimation. Here, multiple identical units

are driven with inputs that are offset by a design parameter.

The gradient is obtained by a finite difference of the unit

outputs, which is then forced to zero. This method has

shown faster convergence than the perturbation method

mainly because perturbations are in the ‘‘units’’ dimension

instead of time dimension. The dynamics of the units are

compensated by taking the difference between two units.

Thus, there is no need to wait for the dynamics to die down,

thereby reducing the time required for optimization. How-

ever, the fact that the units have to be identical is a very
Correspondence concerning this article should be addressed to
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strong assumption which does not depict a realistic scenario.

The method can be modified to make it applicable to proc-

esses with similar but nonidentical units by introducing cor-

rectors. In this article, the multiunit optimization method is

used for real-time power output maximization of a stack of

two MFCs.

Materials and Methods

MFC design, instrumentation, and operation

Experiments were carried out in two continuous flow air–

cathode membraneless MFCs.20 Each MFC was constructed

with a series of polycarbonate plates. The anodic chamber

volume of each cell was 100 mL. The cells were equipped

with lines for influent, effluent, liquid recirculation, and gas

exits, as shown in Figure 1. The anode was made of a 5 mm

thick graphite felt measuring 10 � 5 cm2 (GFA5, Speer

Canada, Kitchener, ON, Canada). The cathode was made of

a 10 � 5 cm2 gas diffusion electrode with a Pt load of

0.5 mg/cm2 (GDE LT 120EW, E-TEK Division, PEMEAS

Fuel Cell Technologies, Somerset, NJ). The distance between

the anode and cathode was 1.5 cm.

The MFCs were inoculated with 5 mL of homogenized

anaerobic sludge (Lassonde Industries, Rougemont, QC,

Canada). A stock solution of carbon source was fed using an

infusion pump (model PHD 2000, Harvard Apparatus, Can-

ada) at a rate of 2.5–5 mL/d, which corresponded to an influ-

ent acetate concentration of 700–1,400 mg/L. One milliliter

of trace metals stock solution was added to 1 L of the dilu-

tion water. The dilution water was fed at a rate of 146 mL/d

using a peristaltic pump (Cole-Parmer, Chicago, IL) provid-

ing a retention time of 10 h. Another peristaltic pump was

used for liquid recirculation at a rate of 0.57 L/h in external

recirculation loop. MFC temperature was maintained at a

preset value using a 5 � 10 cm2 heating plate located on the

anodic chamber side of the MFC, a thermocouple placed in

the anodic chamber, and a temperature controller (Model

JCR-33A, Shinko Technos Co., Osaka, Japan). For each

MFC, four digitally controlled potentiometers connected in

parallel were used to enable resistor variation from 12 to

252 X (Model X9C102 from Intersil, Milpitas, CA). Voltage

was measured on-line using a data acquisition device (Lab-

jack U12, Labjack Corp, Lakewood, CO).

Media composition and analytical measurements

The stock solution of carbon source was composed of (in

g/L) acetate (40.0), yeast extract (6.7), NH4Cl (18.7), KCl

(148.1), K2HPO4 (64.0), and KH2PO4 (40.7). The stock solu-

tion of trace metals was prepared according to Ref.21 and

contained (in mg/L) FeCl2 � 4H2O (2000), H3BO3 (50),

ZnCl2 (50), CuCl2 (30), MnCl2 � 4H2O (500),

(NH4)6MO7O24 � 4H2O (50), AlCl3 (50), CoCl2 � 6H2O (50),

NiCl2 (50), EDTA (500), and HCl (1mL). All solutions were

filter sterilized and maintained at 4�C until use. Distilled

water was used for solution preparation, and the chemicals

and reagents used were of analytical grade. Acetate concen-

tration was determined using a gas chromatograph (Sigma

2000, Perkin-Elmer, Norwalk, CT) equipped with a 91 cm �
4 mm i.d. glass column packed with 60/80 Carbopack C/

0.3% Carbopack 20 NH3PO4 (Supelco, Mississauga, Ontario,

Canada). More details on analytical methods are provided in

Ref. 22.

Theory

Problem formulation

Consider a dynamic system with state x [ Rn and input

u [ Rm that has to be operated so as to maximize a convex

function J(x,u) at steady state. The problem is shown below:

max
u

Jðx; uÞ (1)

Subject to _x ¼ Fðx; uÞ � 0 (2)

where F(x, u) is the function describing the dynamics of the

system, which is assumed to be stable. The necessary condi-

tions of optimality23 are given by:

dJ

du
¼

@J

@u
�
@J

@x

@F

@x

8

>

:

9

>

;

�1@F

@u
¼ 0 (3)

As in the steepest descent method for numerical optimiza-

tion,23 extremum seeking makes the process evolve in the

direction of the gradient. However, instead of using the itera-

tion index as in numerical methods of optimization, the itera-

tions evolve in real time. The extremum-seeking control law

is an integral controller that forces the gradient to zero:

_u ¼ k
dJ

du

8

>

:

9

>

; (4)

where k is the controller gain. The key problem is the esti-

mation of the gradient, which could be addressed using sev-

eral methods.24,25 The multiunit method provides an

estimate of the gradient by finite differences as will be

shown next.

The multiunit scheme

Multiunit optimization18 requires a process with (m þ 1)

identical units. The units are operated with input values that

differ by an offset. For the application presented in this arti-

cle, u is a scalar, i.e., m ¼ 1. Then, (m þ 1) ¼ 2 identical

units are required. The scheme is presented in Figure 2. The

first unit is operated at the input value u1 ¼ u� D

2
whereas

the second unit is operated with input u2 ¼ uþ D

2
. Then, the

gradient estimated by finite difference between the two units

is given by:

Figure 1. Experimental setup.
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ĝðuÞ ¼
J2ðx2; u2Þ � J1ðx1; u1Þ

D
(5)

and the extremum-seeking control law is given by:

_u ¼ kĝTðuÞ (6)

Both units follow the same control law and always keep an

input offset of D from each other. The convergence of this

scheme to a domain around the optimum has been proven

despite the errors caused by the dynamics (which is assumed

to be stable) and the error due to finite differences.18 The

multiunit scheme will force the units to converge to a do-

main around the optimum considering u* is the averaged op-

timum of the two units. One unit converges to u* � D/2 and

the other will converge to u* þ D/2.

The main advantage of this approach is that the pertur-

bation is along the dimension of the units, as opposed to the

traditional methods where the perturbation is temporal. If

temporal perturbations are used, it is important to wait

until the system reaches steady state before the finite differ-

ence gradient can be evaluated. However, with the multiunit

scheme, the dynamics of the two units could be assumed

identical and would not interfere with the optimization.

Thus, more rapid convergence could be achieved with multi-

unit optimization as opposed to other perturbation methods.

Multiunit optimization with nonidentical units

The main limitation of the multiunit scheme as presented

in the previous section is the requirement of the two units

being identical. In reality, the units used are not necessarily

identical, and this difference between the units could cause

the system to converge toward a false optimum which may

not reflect the real optimum and/or could influence the sta-

bility of the scheme.

The differences between the various units can manifest in

the following ways: differences in dynamics, differences in

static responses, or differences in disturbance effects. The

case considered in this article assumes the following: (i) the

system has only one input, (ii) the dynamics are very fast

compared to the optimization time-scale, i.e., the process can

be considered quasi-static, (iii) no noise effects are consid-

ered, and (iv) the functions are convex.

Under these conditions, let the static characteristics of the

two units be represented by J1(u1) and J2(u2). The relation-

ship between the two static maps can be rewritten as:

J2ðuÞ ¼ J1ðuþ bÞ þ cþ JðuÞ (7)

where b ¼ u
opt
1 � u

opt
2 and c ¼ J2(u

opt
2 ) � J1(u

opt
1 ), u

opt
1 and

u
opt
2 are the optima of the first and second unit, respectively.

The transformation is to bring the second unit to the same

coordinates as those of the first unit by shifting the input and

the output of the second unit. In the neighborhood of the op-

timum, if the difference in curvature between the two units

at their respective optima is negligible, it can be assumed

that J % 0. An example of such different static characteris-

tics for two units is presented on Figure 3.

Differences in units cause the scheme to converge to a

value away from the desired optimum. As given in Ref. 26,

the converged solution is given by (see Appendix A)

u� ffi
u
opt
1 � u

opt
2

2
�

c

ðDþ bÞ @
2J1
@u2

(8)

and the stability condition leads to (see Appendix B):

ðDÞðDþ bÞ > 0 (9)

Several remarks can be made from these two conditions.

If the units have the same optimum, b ¼ 0, the stability

condition becomes D2
[ 0, which is true for any D.

The stability is not affected by the value of c. This in turn

means that if a measurement error exists (deterministic or

stochastic), the convergence is not affected.

Choosing a value of |D| [ |b| will assure the stability of

the multiunit scheme. However, if the value of D is smaller

than this distance, then the sign of b and D should be the

same.

If c ¼ 0, the multiunit closed-loop system will converge

around the point u* ¼ �b/D, which is the average of the op-

timum of the two units.

If b ¼ 0, then u� ¼ � c

D
@2J

@u2

. This indicates that, though the

optima of the two units are identical, the solution will be off

from the optimum. Moreover, for smaller D the solution will

be further away.

Use of correctors in multiunit optimization

with nonidentical units

As mentioned earlier, the multiunit scheme with nonident-

ical units can converge to equilibrium points that are quite

far away from the real optimal values, especially when c =

0. To avoid such an occurrence, a corrector could be used so

as to push each unit to its respective optimum. In this work,

it is assumed that b � 0.

Figure 2. Schematic for multiunit optimization.

Figure 3. Example of differences in static characteristics of
two units.
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A correction of c, ĉ, is applied (Eq. 13). The idea is to

bring the two units to the same input value from time to

time and the difference between the outputs would represent

the value of c. For this, the idea is to alternate between the

multiunit method and the calculation of the corrector. The

fact that the scheme is in the multiunit mode or in the cor-

rection mode is indicated by a function dmu.

dmuðtÞ ¼
1 if iðT1 þ T2Þ 	 t 	 iðT1 þ T2Þ þ T1

0 if iðT1 þ T2Þ þ T1 	 t 	 ðiþ 1ÞðT1 þ T2Þ

(

(10)

where i fi Z, T1 is the time allotted for multiunit operation,

and T2 for correction. So, the two units are synchronized as

follows:

u1 ¼ u�
D

2
dmu

u2 ¼ uþ
D

2
dmu

(11)

This means that there is a difference of D during the multiu-

nit operation and no difference between them when calculat-

ing the correction for c.

The multiunit adaptation law and the adaptation law for

the corrector are given by

_u ¼ k
J2 � J1 � c

D
dmu (12)

_̂c ¼ kcðJ2 � J1 � ĉÞð1� dmuÞ (13)

where, k and kc are positive constants.

It has been shown in Ref. 26 that the equilibrium of the

scheme described by Eqs. 12 and 13 on the average ðue; ĉeÞ
is given by ĉe ¼ c and ue ¼ u

opt
1 ¼ u

opt
2 , the real optimal

points of operation. Also, these equilibrium points are locally

asymptotically stable.

Results and Discussion

Polarization test

Before the test, both air–cathode MFCs were operated at

an acetate load of 3.3 g/(LA d) (A ¼ anode volume), a tem-

perature of 23�C, and an external resistance of 200 X. Under

these conditions, stable performance was observed with a

power density of 40–48 mW/LA. Acetate concentration in

the reactor effluent was measured at 300–400 mg/L, i.e., sub-

strate nonlimiting conditions were provided. To compare

performances of the two MFCs, polarization curves were

acquired by applying step changes to digital resistors con-

nected to each cell. First, the resistances were brought to

142 X and then decreased to 14 X in steps of 2.5 X. An

interval of 10 min was allowed between the changes. Fig-

ure 4 shows the resulting polarization curves for MFC-1 and

MFC-2. Linear parts of each polarization curve (Figure 4A)

were used to calculate internal resistances, which were esti-

mated at 45 X and 47 X for MFC-1 and MFC-2, respec-

tively. Importantly, power output in a MFC is maximized

when the external resistance is equal to the cell internal re-

sistance,9 therefore b � 0 in Eq. 7. However, at an optimal

external resistance power densities were different (Fig-

ure 4B), therefore c = 0. Finally, the curvatures around the

optimum were similar, i.e., J(u) � 0. Overall, the test dem-

onstrated the importance of external load optimization in

maximizing power output. Indeed, power output was

decreased by 25% when increasing external load to 150 X

from its optimal value of 45–47 X. Furthermore, MFC oper-

ation at external loads below its internal resistance resulted

in abrupt power decrease (Figure 4B).

MFC dynamics

A comparison of the polarization curves obtained by

decreasing external resistance from 142 to 14 X (sweep

down) with the curve obtained by increasing the external re-

sistance from 14 to 142 X (sweep up) showed similar results

except that the sweep up curves were slightly below the

sweep down curves (results not shown). This observation

suggested that MFCs might not have reached steady state in

the 10 min allowed between each resistance change. To

understand the dynamics better, single step changes were

applied at different operating points (Figure 5). These tests

gave an estimation of the MFCs response time between 15

and 20 min. This response time is characteristic of microbial

transformations and might reflect limitations of substrate

transformation and electron transfer by anodophilic microor-

ganisms.2,5,7 Also, a fast component of the dynamics (within

Figure 4. (A) Voltage as a function of current and (B) power density as a function of resistance.

The curves were obtained using 2.5 X step changes and a 10 min interval between resistance changes.

Biotechnol. Prog., 2009, Vol. 25, No. 3 679



first several minutes after a step change) was observed. This

component was associated with the electrochemical reaction.

An increase in external resistance immediately reduced

output power and this immediate decrease was followed by a

slow transition to a new steady state. The new steady-state

output power could be either lower or higher than the value

before the perturbation, depending on the region of opera-

tion. When the external resistance is below its optimal value,

an increase in the resistance leads to a higher output power

at steady state (Figure 5A). When the external resistance is

above the optimal value, a further increase results in a

decreased power at steady state (Figure 5B). Overall, the

system behaves like an inverse response system when the

external resistance is below its optimal value and without an

inverse response for external resistances above the optimal

value. This is typical of many nonlinear dynamic systems

with an optimum.27

A comparison of bump tests similar to Figure 5 demon-

strated that dynamics of the two MFCs are almost identical.

This confirmed applicability of the multiunit optimization

algorithm. A temporal perturbation method would require a

waiting period of at least 10 to 15 min, i.e., the time needed

for the inverse response effect to dissipate. With smaller

time intervals, any decrease in resistance would instantane-

ously increase the power and push the resistance to its lower

limit, thus missing the optimum. As the two MFCs featured

similar dynamics. The finite difference algorithm used in the

multiunit optimization method to estimate the gradient was

expected to eliminate or minimize this dynamic effect. Con-

sequently, the delay between the optimization steps can be

significantly reduced.

Multiunit optimization

The multiunit optimization algorithm was applied to maxi-

mize power output according to the following objective

function:

max
r

P ¼
U2

r
(14)

where r is the value of the external resistance (X), P is the

MFC power output (W), and U is the voltage measured at

the terminals of the external resistor (V).

The multiunit optimization method with a c corrector was

applied. As b � 0, the choice of D for stability is not an issue

here. Even a small value of D is suitable. For the optimiza-

tion, a 3 min interval was used between each recalculation of

the gradient and also between the recalculation of multiunit

convergence and gamma corrector. The following tuning pa-

rameters, found by trial and error, were used in the test: k ¼
90 X

2/mW; kc ¼ 1. Also, an average of four values acquired

with 500 ms intervals was used for voltage measurements.

The optimization test was started at 140 X external resis-

tances for both MFCs. Figure 6 shows the results of the mul-

tiunit optimization. In 1 h, the potentiometers were

positioned around their optimal point of operation: 34 X for

MFC 1 and 36 X for MFC 2 for a power output of 81.8 mW/LA

and 84.4 mW/LA, respectively.

A comparison of internal resistances estimated using a

polarization curve (Figure 4, 45 X for MFC 1 and 47 X for

MFC 2) with the optimal resistance obtained by the multiu-

nit algorithm (34 X for MFC 1 and 36 X for MFC 2, Fig-

ure 6) suggested the difference of about 10 X, which was

attributed to the chosen method of c estimation. It can be

seen from Figure 4, that the difference between the two

curves is not a constant and varies with the operating resist-

ance. Therefore, the value of c computed at one resistance

value cannot be used for all resistance values.

Also, c correction was performed with 3 min intervals.

This means that the adaptation was done before steady state

is reached. As r1 is increased and r2 decreased to reach the

same value, the dynamics are opposing and when the differ-

ence is taken, they sum up rather than cancel each other.

The accuracy of optimum estimation might be improved

with increasing the interval used for c corrections. In the

Figure 5. Power density variations in response to external re-
sistance changes below the internal resistance value
(A) and above the internal resistance value (B).

The curves were obtained in MFC-1 using step changes of 2.5
X with a 10 min interval between external resistance changes.

Figure 6. MFC behavior under a multiunit optimization
algorithm.
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experimental results presented here, the value of the opti-

mum was slightly underestimated. In another test, where an

offset of opposite sign was used, the optimum was overesti-

mated (þ30 X), confirming the theory developed in Eq. 8

(results not shown).

Tracking the optimum under perturbations

Once the multiunit optimization algorithm had converged,

a temperature perturbation was introduced into the process

as shown in Figure 5 (t ¼ 1.9 h). While the temperature was

increased to 28�C the resulting optimal values were slightly

reduced (by 2.5 X). After the temperature returned to 22�C,

the potentiometers were set back to their previous optimal

values by the optimization algorithm.

The interesting part of the multiunit scheme is the way it

responds to temperature perturbation. Although the power

increases drastically, and the temperature and its effect are in

their transient phases, the scheme does not significantly

change its operating point. This is due to the fact that it pri-

marily relies on the difference between the outputs of the two

units, which have similar dynamics. Consequently, the impact

of the process dynamics on the algorithm convergence is

minimized. However, the two MFCs were not identical and

the return of temperature to its previous value was accompa-

nied by dynamic differences. As a consequence, fluctuations

around the optimal point were observed (Figure 6). Yet, the

solution eventually converged to the optimal value.

Advantages of multiunit optimization

Electricity generation in a MFC is a microbiological pro-

cess with relatively slow dynamics. The main advantage of

the multiunit optimization algorithm was its fast convergence

toward the optimum in comparison with other types of maxi-

mum power point tracking (MPPT) algorithms. For temporal

perturbation algorithms, e.g., gradient-based or the perturba-

tion-observation method,14 each time step should be at least

10 min, so that the dynamics can pass beyond the inverse

response phase. So, even assuming that the gradient values

and the steps taken would be similar to that obtained by

multiunit optimization, there is an immediate gain of a factor

3–4 compared with temporal perturbation methods. If we

consider the perturbation-observation scheme in particular,

which does not use the gradient information, just to get from

the initial value of 140 X, to the optimal value of 40 X, with

a step of 2.5 X every 10 min, it would take about 7 h, com-

pared with 50 min obtained in this test.

The advantage of being insensitive to dynamics can also

be reiterated in the case of temperature perturbations. As

long as dynamics are identical, whether caused by external

sources, or intrinsic dynamics, the optimization scheme does

not get influenced by them. The heavy variations of the out-

put that do not affect the optimal point are nicely filtered out

by taking the difference.

Last but not least, the tuning and implementation of the

multiunit controller is easy and straightforward. There are

only two parameters to tune and they could be chosen fairly

intuitively.

Conclusion

Low voltage and power density of a single MFC requires

MFC stacking to produce significant amount of electricity.

As in any other battery, MFC power output depends on the

applied external load (resistance). As MFC is a biological

system its internal resistance changes with time due to exter-

nal perturbations, such as temperature, pH, and substrate

composition. Consequently, maximization of MFC power

output requires an on-line algorithm for tracking these varia-

tions. However, slow microbial transformations lead to rela-

tively slow MFC dynamics and thus slow convergence of

traditional optimization methods. Fast convergence of the

multiunit optimization algorithm, which does not require

steady state at each optimization step, is a clear advantage

above the more traditional MPPT methods. A stack of nearly

identical MFCs provides an ideal application for the multiu-

nit optimization method.

This article presented the first application of the multiunit

optimization algorithm to a stack of MFCs. Applicability of

the method to a process with similar but nonidentical units

has been successfully demonstrated. Future work should be

extended toward developing a normalization procedure,

which would allow for improved calculations of b and c

correctors.
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Appendix A: Equilibrium Point With
Two Nonidentical Units

The converged solution is given by ĝ(u) ¼ 0, i.e., J2(u
�
2) �

J1(u
�
1) ¼ 0. So using Eqs. 5 and 7 gives

J1ðu
�
2 þ bÞ þ cþ Jðu�2Þ � J1ðu

�
1Þ ¼ 0 (A1)

Assuming J ¼ 0, the second order Taylor series expansion

around u
opt
1 gives the following equation. Note that u�2 ¼ u�1 þ D

and the zeroth and first order terms are zero or get canceled.
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Then, the solution for u�1 can be written as,

u�1 ¼ u
opt
1 �

Dþ b

2
�

c

ðDþ bÞ @
2J1
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(A4)

Since u� ¼ u�1 þ
D
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Appendix B: Stability Condition With
Two Nonidentical Units

Applying the multiunit scheme described by Eqs. 5 and 6 to

the system represented by Eq. 7 gives

_u ¼
k

D
ðJ2ðu2Þ � Jðu1ÞÞ (B1)

To evaluate the stability around the equilibrium u�1 and u�2,

consider the Jacobian of the right hand side evaluated at the

equilibrium. The Jacobian I is given by:
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Using Eq. 7, considering a first-order Taylor series expansion

of the derivative around u
opt
1 , and neglecting @2J

@u2
� 0, gives
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As J1 is a convex function, its second derivative is positive

and so is the fraction k

D
2. So, the stability of the scheme is

then guaranteed if D(D þ b)[ 0.
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