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Two key intermediates of CL-20 degradation are potential markers of its natural attenuation in soil.
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a b s t r a c t

Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used

explosives such as RDX and HMX, but little is known about its fate in soil. The present study was con-

ducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic

conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater

organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was

accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degra-

dation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while

hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively

identified as CH2]N–C(]N–NO2)–CH]N–CHO or its isomer N(NO2)]CH–CH]N–CO–CH]NH. Due to

their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of

CL-20 in soil.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The polycyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-

hexaazaisowurtzitane (China Lake 20; CL-20), is one of the most

powerful high energy materials and is being considered as

a possible replacement for the currently used cyclic nitramine

explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octa-

hydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (Geetha et al.,

2003; Simpson et al., 1997). The manufacturing and usage of

munitions has resulted in severe contamination of both soils and

groundwater (Pennington and Brannon, 2002; Best et al., 2006).

Toxicological studies showed that CL-20 did not adversely affect

terrestrial plants and indigenous soil microorganisms (Gong et al.,

2004) but was highly toxic to the earthworm Eisenia andrei (Robi-

doux et al., 2004) and potworms Enchytraeus crypticus and Enchy-

traeus albidus (Dodard et al., 2005; Kuperman et al., 2006). These

findings suggested that the fate of CL-20 in soil required investi-

gation prior to its large-scale production in order to determine the

potential adverse impacts of accidental release of CL-20 in the

environment.

Several studies have investigated the abiotic and biotic degra-

dation of CL-20 in aqueous media (Table 1, Fig. 1). These studies

showed consistently the formation of nitrite and formate ions,

usually at respective stoichiometries of w2 and �2. Although less

reported in the literature other products of CL-20 include ammonia

(NH3), nitrous oxide (N2O), glyoxal (CHOCHO), and glycolate

(CH2(OH)COO
�) (Table 1). In addition to these end products, early

intermediates have been tentatively identified using a combination

of LC/MS and amino- or nitro-labeled [15N]-CL-20 (Fig. 1). The

detection of these intermediates allowed proposing three initial CL-

20 transformation routes prior to ring cleavage (Fig. 1): (1) the loss

of one nitro group (denitration), (2) the reduction of one or two

nitro group(s) to nitroso group(s) (nitroreduction), and (3) the

transformation of a nitramine group into an amino group

(denitrohydrogenation).

Although degradation of CL-20 in aqueous media, including

formation of degradation products has been studied extensively,

only little information is available on the degradation products of

CL-20 in soil. CL-20 was reported to biodegrade in soil under

aerobic (Trott et al., 2003; Crocker et al., 2005; Panikov et al., 2007)

and anaerobic (Strigul et al., 2006; Panikov et al., 2007) conditions.

Several strains capable of degrading CL-20, including Agrobacterium

sp. strain JS71 (Trott et al., 2003), Pseudomonas sp. strain FA1

(Bhushan et al., 2003), and Clostridium sp. EDB2 (Bhushan et al.,
* Corresponding author. Tel.: þ1 514 496 6259; fax: þ1 514 496 6265.
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2004c), have been isolated from soils and sediments. Beside its

susceptibility to microbial degradation, CL-20 can also degrade

abiotically in soils that are alkaline (Balakrishnan et al., 2004a) or

that contain ferrous iron or clays (Szecsody et al., 2004). However,

only formate (HCOO�) and nitrite (NO2
�) have been identified as CL-

20 products in two of these studies with soil (Balakrishnan et al.,

2004a; Szecsody et al., 2004).

Our objective was to determine the fate of CL-20 under abiotic

and biotic conditions in two sandy soils that differ in organic carbon

content and pH. We aimed at elucidating the degradation path-

way(s) of CL-20 by identifying the intermediate and end products

formed during its degradation in soil, and selecting those products,

which could be used as markers for monitoring the natural atten-

uation of CL-20 in soil in case of its accidental release in the

environment.

2. Materials and methods

2.1. Chemicals

Crystalline CL-20 (CAS 135285-90-4; 3-isomer, purity 99.3%, as determined by

HPLC), amino-labeled and nitro-labeled [15N]-CL-20, and uniformly labeled [14C]-CL-

20 (radiochemical purity, 98.8%; chemical purity 96.7%, specific activity of 0.75 mCi/

Table 1

CL-20 products and their normalized molar yields obtained after chemical or enzymatic degradationa

Reaction Products Reference

NO2
� N2O NH3 HCOO� CH2OHCOO

� CHOCHO

In water

Hydrolysis (pH 10) 1.9 0.9 0.8 0.5 NDb ND Balakrishnan et al. (2003)

Hydrolysis (pH 9.5) 2.2–3.5 ND ND 0.75 ND ND Szecsody et al. (2004)

Alkaline hydrolysis 2 ND ND ND ND ND Karakaya et al. (2005)

Photolysis (300 nm) 3.9c ND 0.8 2.0 ND ND Hawari et al. (2004)

Reduction by Fe0 0.04d 2.3 1.1 0.4 0.4 0.4 Balakrishnan et al. (2004b)

Nitroreductase 1.8 3.3 1.3 1.6 ND 1.0 Bhushan et al. (2004a)

Monooxygenase 1.7 3.2 0.6 1.5 ND ND Bhushan et al. (2004b)

In soil/water

Alkaline sterile soil 2 ND ND þ
e ND ND Balakrishnan et al. (2004a)

Subsurface sediments 1.4–5.0 ND ND 0.4–1.9 ND ND Szecsody et al. (2004)

a Values were calculated from the product concentrations obtained at the end of each experiment, and the stoichiometries are calculated based on the number of moles of

product observed for each mole of reactant consumed.
b ND, not determined.
c NO2

�
þNO3

�.
d Two equivalents of NO2

� were initially formed but subsequently reduced by Fe0.
e Detected but not quantified.
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g) were manufactured and provided by ATK Thiokol Propulsion (Brigham City, UT,

USA). All other chemicals were of reagent grade and used without purification.

Formate, nitrite, and ammonium were obtained from Alltech (Deerfield, IL, USA);

glyoxal and glycolic acid were obtained from Sigma (Oakville, ON, Canada); and

potassium hydroxide (KOH) was obtained from EM Science (Gibbstown, NJ, USA).

Acetonitrile (CH3CN, HPLC grade) was from Fisher (Nepean, ON, Canada). Deionized

water was obtained with a Milli-QUV plus (Millipore, Mississauga, ON, Canada)

system.

2.2. Soils

Two soils were used in this study: a sandy agricultural soil (VT) originating from

Varennes, Quebec, Canada, and a sandy soil provided by Agriculture Canada (SAC).

Selected physical and chemical properties of the two soils are shown in Table 2. Each

soil was passed through a 2 mm sieve and air dried in a fume-hood before use. A

portion of each soil was sterilized by gamma irradiation from a 60Co source (50 kGy)

over 2 h at the Canadian Irradiation Center (Laval, Quebec).

2.3. Abiotic and biotic degradation of CL-20 in soil

Degradation of CL-20 under anaerobic conditions was investigated separately in

VT and SAC soil over six-month periods. VT or SAC soil (2.0 g) and CL-20 (0.32 or

1.20 mmol introduced from an acetone stock solution (10,367 mg L�1) and corre-

sponding to 70 or 263 mg CL-20 kg soil�1) were mixed in autoclaved 20-mL head-

space glass vials. Solvent was evaporated before adding sterile deionized water

(1 mL). Each soil was saturated with water. Bottles were sealed with butyl rubber

stoppers, degassed under vacuum for 5 min then charged with oxygen-free argon,

which was passed through a sterile Millex PTFE 0.20-mm filter. This was repeated

four more times. The bottles were kept static, in the dark, at 22�1 �C. At various

time intervals, four replicates were sacrificed. Before opening the bottles, gaseous

products were sampled with a gas-tight syringe and analyzed as described below.

Two samples were treated with acetonitrile (9 mL), sonicated for 18 h, and filtered

through a Millex-HV 0.45-mm syringe filter (Millipore Corp., Bedford, MA) for CL-20

and early intermediates analysis. Deionizedwater (9 mL) was added in the other two

samples, which were then filtered and analyzed for various products (HCHO,

CHOCHO, CH2OHCOO
�, NH4

þ, NO2
�, HCOO�). Abiotic degradation experiments were

conducted using the same procedure but with gamma irradiated soil. Controls

consisting of VTor SAC soil incubated in the presence of deionizedwater without CL-

20 were included in analytical determinations at each time interval.

2.4. 14C partitioning experiments

Uniformly labeled [14C]-CL-20 was used to determine the rate and extent of CL-

20 mineralization in VT or SAC soils. Sterile or non-sterile dry soil (2 g), and

deionized sterile water (1 mL) were added to 20-mL headspace glass vials

Table 2

Physical and chemical properties of soilsa used in this study

Soil Granulometry TOCb (%) pH Kd (L kg�1)c

% Sand % Silt % Clay

SAC 98.6 1.3 0.1 0.08 8.1 2.43� 0.04

VT 83 12 4 2.3 5.6 15.06� 0.42

a VT, varennes topsoil; SAC, soil from agriculture Canada.
b Total organic carbon on a dry basis.
c Soil–water distribution coefficient measured for CL-20 (data from Balakrishnan

et al. (2004a)).
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containing a CO2 trap (1 mL KOH 0.5 M). Bottles were sealed with butyl rubber

stoppers, degassed under vacuum for 5 min then charged with oxygen-free argon,

which was passed through a sterile Millex PTFE 0.20-mm filter. The degassing–

refilling step was repeated four times before the radiotracer, [14C]-CL-20 (20 mL of an

acetone stock solution (4750 mg L�1), 0.071 mCi, 0.217 mmol), was introduced. All

bottles were incubated in the dark at 22�1 �C under static conditions. Formation of
14CO2 was monitored in the KOH trap using a Tri-Carb 4530 liquid scintillation

counter (model 2100 TR; Packard Instrument Company, Meriden, CT). Mineraliza-

tion experiments were carried out in triplicate.

Twomicrocosmswere sacrificed after 97 d for VTand 185 d for SAC to determine

the 14C distribution between gaseous, aqueous, and solid phases. Water (9 mL) was

added to each microcosm, which was shaken periodically and manually over a 4-h

period at room temperature. After settling down, 1 mL of the aqueous phase was

decanted. The soil suspension was then acidified by the addition of 1 mL 0.1 M HCl

and periodically agitated over a 24-h period before sampling. The aqueous phase

was then removed and the soil was extracted with 10 mL of CH3CN (65 h at room

temperature). Extracts were analyzed by liquid scintillation counting.When the sum

of radioactivity of all extracts represented less than 95% of the radioactivity intro-

duced, the soil was burned to evaluate the amount of radioactive carbon irreversibly

bound to soil.

2.5. Analytical methods

CL-20 was analyzed by HPLC connected to a photodiode array (PDA) detector as

described previously (Monteil-Rivera et al., 2004). Nitrous oxide (N2O) was measured

as previously described (Sheremata and Hawari, 2000). Glyoxal was determined as its

derivatized product with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochlo-

ride (PFBHA) (Balakrishnan et al., 2004b). Ammonium, nitrite, nitrate, formate, and

glycolate were analyzed by ion chromatography (IC) (Balakrishnan et al., 2004b) in

water extracts after removing the glyoxal by precipitation with PFBHA. Methanol

(CH3OH) was analyzed on a Hewlett Packard 6890 gas chromatograph coupled to an

FID using a Hayesep Q micropacked column (2 m� 0.03 mm, Supelco, Oakville, ON,

Canada) (detection limit, 0.1 mg L�1).

Intermediate products of CL-20 were analyzed by LC/MS using a Bruker bench-

top ion trap mass detector attached to a Hewlett Packard 1100 Series HPLC system

equipped with a DAD detector. The samples were injected into a 5 mm-pore size

Zorbax SB-C18 capillary column (0.5 mm ID by 150 mm; Agilent, Mississauga, ON,

Canada) at 25 �C. The solvent system was composed of a CH3CN/H2O gradient (30–

70% v/v) at a flow rate of 15 mLmin�1. For mass analysis, negative electrospray

ionization mode was used to produce deprotonated molecular ions [M–H]�; or

nitrate adduct ions [MþNO3]
�. The mass range was scanned from 40 to 550 Da.

Detected intermediates were tentatively identified using amino and nitro-labeled

[15N]-CL-20. LC/MS analyses were also conducted in the presence of trifluoroacetic

acid (0.1 mL L�1 in water) because as it was observed in our laboratory with

RDX, HMX, CL-20, and their nitroso derivatives, trifluoroacetate anion (TFA)

forms adduct ions [Mþ TFA]� with cyclic nitramines, which facilitates their

identification.

[14C]-CL-20 and its products were separated by HPLC using a Discovery C18

column (Supelco) and a solvent system composed of a CH3CN/H2O gradient (30–70%

v/v). Radioactivity was determined in each collected fraction by liquid scintillation

counting.

3. Results and discussion

3.1. Transformation of CL-20 in VT soil

3.1.1. Time courses

Incubation of CL-20 under non-sterile anaerobic conditions led

to the disappearance of the parent chemical with only 10% of the

Table 3

Distribution of 14Ca in microcosms containing [14C]-CL-20 (0.217 mmol; 0.071 mCi)

and sterile or non-sterile VT or SAC soils after anaerobic incubation

Conditions Gaseous

phase

Aqueous

phase

Solid phase Total

10 mM

HCl

extract

CH3CN

extract

Soil

combustion

VT-Non-sterileb 2.9� 0.9 14.6� 2.7 w0 80.6� 0.6 NDc 98.1� 4.0

SAC-Non-steriled 67.5� 3.6 19.9� 3.5 w0 1.3� 0.5 4.6� 0.8 93.3� 0.3

SAC-Steriled 50.1� 2.9 34.5� 3.8 w0 1.6� 0.5 5.2� 1.4 91.4� 0.5

a Values are reported in % of total 14C added. Values are presented as mean�

standard error of duplicate samples.
b Incubation time: 97 d.
c ND, not determined.
d Incubation time: 185 d.
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extracts after anaerobic incubation of [14C]-CL-20 in non-sterile VT soil (97 d) or SAC
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nitramine remaining in the soil after six months (Fig. 2). The first-

order degradation rate constant calculated after the lag phase was

0.018 d�1 (t1/2¼ 38.5 d). Under sterile conditions, very little

degradation of CL-20 occurred in VT soil with 96.4% of the nitr-

amine recovered after 6 months (Fig. 2). The persistence of CL-20 in

sterile controls indicated that the degradation in non-sterile soil

was biological. With a greater organic C content (2.3%), VT soil was

expected to support microbial activity without nutriment amend-

ment. Moreover, its acid pH prevented hydrolysis of CL-20 from

occurring.

The disappearance of CL-20 was accompanied by the formation

of formate, formaldehyde, glyoxal, and glycolate (Fig. 2). Formate,

with 1.8 mmol formed (1.6 molar equivalents per CL-20 reacted),

was the main C-containing product detected. Formaldehyde,

glyoxal and glycolate were detected at low levels of 0.15, 0.005, and

0.02 molar equivalent at their maxima, respectively. Glyoxal and

glycolate were transient products and their concentrations

decreased after reaching their respective maxima between days 35

and 44. Although present in the system, N-containing products

such as ammonium, nitrate, and nitrous oxide were not included in

the time course because the three chemicals were also found in

large amounts in controls containing only VT soil and water.

However, the presence of CL-20 induced a rapid diminution of

nitrate and nitrous oxide amounts compared to the controls

without CL-20 (Fig. 3), suggesting that the energetic chemical

significantly affected the microflora responsible for the nitrogen

cycle. N2O, for instance, was detected in all controls without CL-20,

whereas it was only detected in the first set of CL-20-containing

microcosms (day 14).

3.1.2. 14C partitioning

Experiments were conducted with [14C]-CL-20 to determine the

partitioning of CL-20 carbon among the gaseous, aqueous, and solid

phases. Abiotic controls were not carried out with [14C]-CL-20 due

to the low degradation rate measured under sterile conditions.

Anaerobic mineralization of CL-20 in non-sterile VT soil was slow

with only 2.4% of 14C recovered as CO2 after 97 d (Table 3). At the

end of the mineralization experiment, sequential extraction, using

water, 0.01 M HCl, and acetonitrile, was performed to determine

the amount of 14C reversibly or irreversibly bound to soil. A rela-

tively small fraction of the 14C was recovered from the aqueous

phase (14.6%) (Table 3). The extraction in acid aqueous phase was

done in order to release amino products that could have bound to

soil humic matter through amide linkages. No 14C was recovered

from this acid washing. In contrast, most of the radioactivity (80.6%)

was recovered in the acetonitrile extract suggesting that the

insoluble fraction of CL-20 and its products was not covalently

bound to soil. Given the high radiolabel recoveries measured

(98.1%), combustion of the resulting soil was not performed.

Radiochemical HPLC analysis of the aqueous extract showed that

most of the radioactivity in this phase was attributable to CL-20

(18–21 min, 85%) (Fig. 4). A 14C peak comprising 5% of the total

radioactivity in the aqueous extract eluted at approximately

3.5 min, in the typical eluting zone for polar and/or ionized mole-

cules. Formate and formaldehyde found in cold samples are prob-

ably contributing to this early 14C peak. Radiochemical HPLC

analysis of the acetonitrile extract showed a different pattern with

CL-20 corresponding to about 45% of the radioactivity and the

remaining 55% eluting over a broad zone between 10 and 18 min

(Fig. 4). Tentative identification of these peaks was performed by

LC/MS as described below.

3.1.3. Intermediates identification by LC/MS

LC/MS analyses were run in the presence of TFA. Fig. 5 repre-

sents the extracted ion chromatograms of CL-20 (I) and three

suspected intermediates (II–IV) detected in the acetonitrile extract

of VT soil after 143 d of incubation under non-sterile conditions.

Peak I with a retention time (r.t.) of 15.2 min was that of CL-20

which appeared as a TFA adduct [Mþ TFA]� at 551 Da (Fig. 5,

compound I). Peak II, appearing at 14.8 min, was only detected in

trace amounts and showed a [Mþ TFA]� mass ion at 535 Da (Fig. 5,

compound II), matching a molecular formula of C6H6N12O11. Using

the ring or nitro-labeled [15N]-CL-20, the previously detected mass

ion for II was observed at 541 Da, an increase of six atomic mass

units (amu) for both labeled compounds, thus confirming the

involvement of the 12 CL-20 nitrogen atoms in compound II. The

later was tentatively identified as the mononitroso derivative of CL-

20. Beside this trace compound, a major intermediate, III (r.t.

11.9 min), with a [Mþ TFA]� mass ion at 506 Da (Fig. 5, compound

III), matching a molecular formula of C6H7N11O10 was also

observed. Using [15N]-CL-20 labeled at either the amino or nitro

groups, the previously detected mass ion gave [Mþ TFA]� mass

ions at 512 and 511 Da, respectively, suggesting the involvement of

the six amino 15N atoms and only five of the six nitro 15N atoms in

the intermediate. Intermediate III was tentatively identified as the

denitrohydrogenated product of CL-20. Finally, compound IV,

appearing at 11.1 min, was also detected in trace amounts and

showed a [Mþ TFA]� mass ion at 490 Da (Fig. 5, compound IV),

matching a molecular formula of C6H6N11O9. It was tentatively

identified as the nitroso derivative of compound III. Compounds II,

III and IV have all been already observed when treating CL-20 with
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Fe0, UV light or enzymes (Fig. 1). Compounds V and VI specific of

a denitration process (see Fig. 1) were, however, not detected in VT

microcosms either because this degradation route was not active in

that soil or because the two intermediates were too unstable to be

detected.

These results showed that CL-20 was biodegradable in VT soil

under anaerobic conditions and without nutriment amendments.

Biotransformation of CL-20 has led to little mineralization and to

formation of ring cleavage products. Most of the products were

extractable with acetonitrile and consisted of compounds exhibit-

ing the caged structure of CL-20. Among them, the denitrohydro-

genated compound III, was detected as a major intermediate at all

sampling times. Persistence of compound III in soil, and its distinct

structure that differentiates it from naturally occurring chemicals,

suggest that compound III has the potential for use as a marker of

natural attenuation of CL-20 in anaerobic soil if the latter is released

in the environment.

3.2. Transformation of CL-20 in SAC soil

3.2.1. Time courses

Biotic and abiotic transformation of CL-20 was also investigated

in SAC soil which was previously shown to support hydrolysis

of CL-20 under abiotic conditions (Balakrishnan et al., 2004a).

Comparison of CL-20 loss under sterile and non-sterile conditions

showed similar trends (Fig. 6), indicating a degradation dominated

by abiotic processes, as it was expected from the low organic C

content (0.08%) and slight alkalinity of this soil.

The transformation experiment was carried out starting from

either 1.2 or 0.3 mmol of CL-20. In both cases, the amount of CL-20

degraded after 185 d was approximately equal to 0.3 mmol, corre-

sponding to 25 or 100% of the initially introduced amount. The first-

order degradation rate constants calculated from the biotic and

abiotic experiments performed with 1.2 mmol of CL-20 were equal

to 0.0012 d�1. These rate constants were approximately 300 times

lower than the rate constant of 0.29 d�1 determined by Balak-

rishnan et al. (2004a) when stirring 1.2 mmol of CL-20 with 1.5 g of

SAC in 10 mL of water. These results demonstrated that using

kinetics data determined in the laboratory to predict CL-20

degradation in the environment can lead to inaccurate estimates

because the amount of water present in field soil will affect the rate

of CL-20 degradation.

The disappearance of CL-20 was accompanied by the formation

of formate, ammonia, nitrous oxide, and nitrite, with about one

molar equivalent of the latter being accumulated under abiotic

conditions for each mol of CL-20 reacted (Fig. 6). Under biologically

active conditions nitrite ions were not detected indicating their

consumption by indigenous microorganisms. Glyoxal was detected

under sterile and non-sterile conditions but only during the first 2

weeks of monitoring and at low levels (<0.010 mmol).
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3.2.2. 14C partitioning

The fate of carbon was investigated using [14C]-CL-20 under

sterile and non-sterile conditions. Transformation of CL-20 led to

high carbon recoveries of 50.1 and 67.5% in the KOH trap in sterile

and non-sterile treatments, respectively, after 185 d (Table 3). In

both cases, most of the remaining non-gaseous 14C was present in

the aqueous phase (Table 3). Small amounts of 14C (w1%) were

retrieved from the acetonitrile extract and close to 5% were

recovered as irreversibly bound material. Radiochemical HPLC

analysis of the aqueous phase of the non-sterile sample revealed

two main zones of elution: one early peak (3–5 min) consisting of

50% of the total 14C in the aqueous phase and corresponding to

polar or ionized compounds, and a second peak (18–21 min, 38%)

corresponding to unreacted CL-20. Formate and glyoxal deter-

mined in the cold samples likely contributed to the early peak.

The use of KOH to trap 14C labeled CO2 is a common method for

measuring the mineralization of organic molecules. The large

amount of 14C in the KOH trap under abiotic conditions was

unexpected and could result from sources other than complete

mineralization of CL-20. Formate (pKa 3.75) is ionized at pH 8.1

and thus was not expected to volatilize in the present media.

Glyoxal with a boiling point of 50.4 �C could volatilize partially

into the headspace, and then be trapped by the KOH as it is known

to react easily with bases (Yadav and Gupta, 2000). When we

introduced an aqueous solution of [14C]–CHOCHO in a closed flask

containing a KOH trap for 21 d, we recovered 21% of the glyoxal

radioactivity in the trap. However, attempts to identify glyoxal

products in the trap were unsuccessful, and the contribution of

glyoxal to the measured radioactivity remains hypothetical. Other

volatile and unidentified chemicals might have contributed to the

high radioactivity measured in the KOH trap, especially under

abiotic conditions.

3.2.3. Intermediates identification by LC/MS

Intermediates resulting from abiotic degradation of CL-20

(1.2 mmol) in SAC soil (1.5 g in 10 mL H2O) were monitored using

LC/MS in the presence and absence of TFA. Analyses were con-

ducted after 7 d incubation. A trace quantity of compound III was

detected in the acetonitrile extract in the presence of TFA, sug-

gesting that very few cyclic nitramine products were present in the

system. Analyses of the aqueous phase without TFA showed

a major signal (VII) eluting at 2.0 min with a [M–H]� mass ion at

155 Da (Fig. 7) matching a molecular formula of C4H4N4O3. When

using the amino and nitro-labeled [15N]-CL-20, the detected mass

ions were observed at 158 and 156 Da (Fig. 7), respectively, con-

firming the involvement of three ring N atoms and one nitro N

atom in intermediate VII. Compound VII could be derivatized with

2,3,4,5,6-pentafluorobenzylhydroxylamine, indicating that this

compound contains one carbonyl group. We thus tentatively

identified VII as CH2]N–C(]N–NO2)–CH]N–CHO or its isomer

N(NO2)]CH–CH]N–CO–CH]NH. The concomitant formation of

nitrite ions (see Fig. 6) suggests that compound VII can be

a product of denitration or denitrohydrogenation. The absence of

compound III in the medium suggests that denitration is the most

probable abiotic pathway. Being also a unique CL-20 product,

compound VII has the potential for use as marker of in situ natural

attenuation of CL-20.

4. Conclusion

The present study demonstrated that CL-20 can be abiotically or

biotically degraded in soil. Biotic degradation was prevalent in VT

soil, which contained a greater organic C content and was slightly

acidic, while the slightly alkaline SAC soil favored the hydrolysis of

the cyclic nitramine. Biotic degradation of CL-20 occurred through

the initial denitrohydrogenation route, with the formation of

denitrohydrogenated derivative III, as the major product. Hydro-

lysis led to fast opening of the cage rings as revealed by the

formation of a ring cleavage product, VII, that was tentatively

identified as CH2]N–C(]N–NO2)–CH]N–CHO or its isomer

N(NO2)]CH–CH]N–CO–CH]NH. Under both abiotic and biotic

conditions, CL-20 degradation led to the formation of formate

(HCOO�) and glyoxal (CHOCHO). Nitrite (NO2
�), ammonium (NH4

þ),

and nitrous oxide (N2O) were also formed under abiotic conditions

but were not detected in biotic experiments. The detected key

intermediates, including the denitrohydrogenated compound III,

and the ring cleavage product VII, have the potential for use as

markers of natural attenuation of CL-20 in soil in case of its acci-

dental release in the environment.
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