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NUMERICAL SIMULATION OF FLOATING ICE FORCES ON BRIDGE PIERS

A. Barker, M. Sayed, and G. W. Timco
Canadian Hydraulics Centre, National Research Council, Ottawa, Canada

ABSTRACT:

A numerical model of river ice interaction with bridge piers is presented.  The model is based on a Particle-In-Cell
(PIC) approach combined with a viscous plastic ice rheology. The plastic yield follows a Mohr-Coulomb criterion.
The Zhang-Hibler (1997) numerical scheme is used to solve the momentum equations.  The model is used in this
paper to examine the role of the shape of the structure, ice thickness, ice properties, and velocity on the resulting
ice forces. The results show good agreement with field measurements.

1. INTRODUCTION

Estimates of ice forces on bridge piers involve
uncertainties, which motivated several field
measurements and numerical studies. There have
been numerous programs of measurements.
Recently, Johnston et al. (1999) presented an
overview and analysis of available data, including the
measurements at Hondo, Pembridge, Rideau and St.
Regis Rivers piers. Numerical simulations of river ice
interaction with hydraulic structures include a discrete
element formulation by Daly and Hopkins (1998). Lu
and Shen (1998) used both a viscous plastic and an
elastic viscous plastic continuum rheology to model
river ice transport.

The present work uses a model developed earlier for
ice forecasting (Sayed and Carrieres, 1999). It was
also used by Sayed et al. (2000) to study pack ice
forces on wide offshore structures. The present
implementation  of  the  model  employs  a  continuum

rheology based on a cohesive Mohr-Coulomb yield
criterion. The viscous plastic approach of Hibler (1979)
is used to numerically approximate the rigid-plastic
idealization. Furthermore, a Particle-In-Cell (PIC)
approach (Flato, 1993) is used to account for ice
advection. The solution of the governing equations
follows the implicit scheme of Zhang and Hibler
(1997), that provides significant computational
efficiency. The numerical formulation of the various
aspects of the model has been covered by Sayed and
Carrieres (1999), and in the above references. The
emphasis of this work is rather on examining the
appropriate choice of material properties, predicting
forces on bridge piers, and verification of the
numerical results.

In the following sections of the paper, a brief
description of the numerical model is given. The
analysis of ice-pier interaction follows. Next, the
resulting forces and behaviour of the ice cover are
presented. The results are then compared to field
measurements and other calculation methods. Finally,
conclusions are presented.
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2. MODEL

2.1 Governing Equations

The ice cover is represented by a two-dimensional
formulation. Thickness, however, is allowed to
change.  An assembly of discrete particles represents
the ice according to the PIC approach. Each particle
has a volume, which remains constant. The area of
each particle may be reduced, and the thickness
accordingly increases, as pressure increases. This
situation would correspond to increasing ice thickness.
Thus, ice pile-up and ridging can be accounted for.
Note that ice growth and decay are not a concern for
the present problem.

The linear momentum and rheology equations govern
the movement and deformation of the ice cover.
Particles are individually advected in a Lagrangian
manner. Therefore, a continuity equation is not
needed. The linear momentum equations include the
inertial terms, water drag, and gradient of the internal
ice stress, and are expressed as follows

[2.1] wice dt

ud
h τσρ r

r

+⋅∇=

where ρice is the ice density, h is the ice thickness, u
r

is the velocity vector, σ is the stress tensor, and wτr  is

the water drag stress. Water drag stress is given by
the following quadratic formula
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where cw is the water drag coefficient, wU
r

 is water

velocity, and ρw is water density.

Rheology is introduced by the following general stress-
strain rate relationship,

[2.3] ( ) ijkkijijij p δεηζεηδσ
••

−++−= 2  

where 
•

ijε  is the strain rate, p is the mean normal

stress, η is the shear viscosity, and z is the bulk

viscosity. The common assumption of zero bulk
viscosity is used here.

The mean normal stress, p, is expected to increase
with increasing ice compactness, A (area of ice/total
area).  Hibler (1979) presented the following formula

[2.4] ( ))1(exp* AKhPp ice −−=

where P* is a reference ice strength, and K is a
constant. Other variations of Eq. (2.4) may be used
(see for example Lu and Shen, 1998).

In order to satisfy the Mohr-Coulomb criterion, the
shear viscosity, η, is assigned the following value

[2.5]
( )

∆
+= φφη sincot pc

where f is the angle of internal friction, and c is the
cohesion. The strain rate ∆ is given by

[2.6] 
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where 
•

1ε  and 
•

2ε are the principal strain rates and 
•

0ε
is a threshold strain rate. At small rates of
deformation, the shear viscosity becomes constant,
and the corresponding rheology would be viscous.
Otherwise the deformation is plastic. A very small

threshold strain rate (typically 
•

0ε = 10-20 s-1) is used in

order to maintain a predominantly plastic deformation.

2.2 Numerical Approach

The numerical approach is briefly outlined in this
section. A comprehensive treatment of the subject is
outside the scope of this paper, and would be too
lengthy to include here. Details of the present
numerical formulation, however, were covered in
Sayed and Carrieres (1999).

The momentum and rheology equations are solved
using an Eulerian (fixed) grid. The semi-implicit finite
difference method of Zhang and Hibler (1997) is used.
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The method is based on uncoupling the velocity
components and employing an over-relaxation
scheme. An iteration loop is also carried out to ensure
that the yield condition is satisfied.

For the PIC formulation, a bilinear interpolation
function is used. At each time step the velocities are
interpolated from the grid to each particle. Thus,
particles can be individually advected.  From the new
positions, values of particle area and mass are
mapped to the grid. The resulting ice mass and area
for each grid cell are then used to update ice thickness
and concentration. The present discussion is intended
to briefly convey the essential aspects of the PIC
formulation. See Sayed et al. (2000) for more details.

The solution steps can be summarized as follows.
Particles are advected to their new positions. The area
and mass of each particle are next mapped to the
grid. The ice area and mass for each grid cell are in
turn used to determine ice thickness and
concentration on the grid. At that point, the momentum
and rheology equations are solved on the grid. Finally
the resulting velocities are mapped from the grid to the
particles. The preceding operations are repeated for
each time step.

2.3 Boundary conditions

Solution of the momentum equations incorporates
specified velocity values at boundary nodes. Zero
velocities, for example, can be specified at fixed
boundaries to give a no slip condition. Constant (non
zero) velocity values can also be specified at boundary
nodes, which is useful in modelling oncoming ice that
may be considered to enter a study area under
constant velocity. A velocity mask is used in the
present model to identify boundary nodes and specify
the velocities of those nodes.

The PIC formulation is convenient for dealing with free
boundaries at the interface between ice-covered areas
and open water. The particles can move at such an
interface, and no conditions need to be prescribed.
Open water nodes, however, should have the
appropriate velocities. This is accomplished by solving
the momentum equations over the open water nodes
of the grid.

The use of particles also makes it possible to
introduce a full slip boundary condition. Allowing the
particles to move freely parallel to a boundary satisfies
that condition. The particles are not allowed, however,
to cross that boundary (displacement perpendicular to
the boundary is reset to zero).

3. TEST CASES

Simulation runs focused on a common pier geometry,
consisting of a rectangular shape with a circular front.
Zabilansky (1996) reported on detailed measurements
of ice forces on such a pier in the White River. His
measurements, along with similar measurements
made by Sodhi et al. (1983), are used to verify the
numerical results.  The details of these field
measurements are present in section 5.

Figure 1 shows a schematic of the numerical grid and
the pier. The pier instrumented by Zabilansky (1996)
was 1.22 m wide. A 200 by 85 node grid represents
the study area. Grid cell size is 0.3 m. The grid thus
covers 60 m along the length of the river, and 25.5 m
along the width. Full slip boundary conditions were
used at the top and bottom of the grid, which
represent riverbanks. If a particle moved, for example,
through the top boundary, its y-position would be
changed to bring it back within the grid without
changing its x-position. A no slip boundary condition
was used for the pier. Velocities of the nodes within
the pier were set to zeros. Additionally if a particle
crossed the boundary of the pier, its normal
displacement was reset to zero. The latter procedure
accounted for the circular shape of the pier. Note that
just fixing node velocities to zeros would produce a
step-like boundary for the pier instead of a circular
one.
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Figure 1 Base grid

The ice cover was driven against the pier by imposing
a constant velocity upstream. The constant driving
velocity was applied to a 36 m wide zone at the
upstream side (node number 80 to 200 along the x-
direction, Fig. 1). The relatively large size of that zone
ensured that a sufficient supply of particles would flow
against the structure during the runs. A 7 m wide part
of the grid adjacent to the downstream boundary was
initialized with no ice. This allowed the ice cover to



246

move freely past the pier, without interference from the
downstream edge of the grid.

Simulations were chosen to cover a range of plausible
ice properties and other parameter values. The role of
ice properties was examined by varying cohesion, c,
angle of internal friction, f, and compressive strength
parameter, P*. Several values of ice velocities and
initial ice concentration were also used. In addition,
preliminary runs examined the effect of grid cell size,
number of grid nodes, and size of the time step.
Those preliminary tests ensured that the chosen grid
and time step do not introduce spurious numerical
effects.

As an example, the results of a base case are
presented here. The parameters used for that case
are:
•  Angle of internal friction, f = 450.
•  Cohesion, c = 50 kPa.
•  Compressive stress parameter, P* (Eq. 2.4) =

100 kPa.
•  Ice velocity = 0.5 m/s.
•  Drag coefficient = 0.005.
•  Time step = 0.1 s.

The resulting force on the pier is plotted versus time in
Fig. 2. The force was estimated by summing the
stress (along the x-direction) and multiplying this by
grid cell length for the grid cells immediately in front
(upstream) of the pier. The lateral force on the pier
was approximately zero. The force shown in Fig. 2
reaches a maximum after approximately 17 s. A
number of runs were done for different durations and
grid sizes and showed that the force remains at that
maximum value.
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Figure 2 Force-time record for the base case

Contours of the normal stress in x-direction, and ice
concentration are shown in Figs. 3 and 4, respectively.
These plots, zoomed in to highlight the portion of the
grid nearest the pier, show snapshots after
approximately 15 s from the start of the run, which is
slightly before the occurrence of the maximum force.
The normal stress contours show higher values in a
bulb-shaped zone in front of the pier, as would be
expected. Concentration contours display a similar
pattern, with high values in front of the pier. A
concentration of one (full ice coverage) is evident in
the high-pressure zone. There was no noticeable
thickness build-up for the base run. That indicated that
the compressive strength of the ice cover is relatively
high. A weaker strength (lower P*) would cause an
increase of ice thickness in high-pressure zones (see
for example Sayed et al. 2000).
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Figure 3 Normal stress in x-direction for base case
run after 15 seconds
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Figure 4 Concentration for base case after 15
seconds
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Velocity vectors, which correspond to the above stress
and concentration results, are plotted in Fig. 5. They
show the expected behaviour of uniform values and
direction away from the pier. The ice cover velocity,
however, slows in front of the pier.
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Figure 5 Velocity for base case after 15 seconds

4. PARAMETRIC STUDY

In addition to the base case, a parametric study was
done, as mentioned earlier. The purpose was to
determine sensitivity of the predicted forces to various
factors and parameters, and to determine the
appropriate parameter values that may lead to
agreement with field measurements. The role of
material properties is illustrated by plotting the force on
the pier versus time for a range of values of the angle
of internal friction, f, in Fig. 6. A similar plot for
different values of the cohesion, c, is shown in Fig. 7.
All other variables remained similar to those of the
base case.
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Figure 6 Force-time series for different values of f
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Figure 7 Force-time series for different values of
cohesion

The results in Figs. 6 and 7 indicate that the cohesion
has a significant influence on the predicted force. The
peak force values range from 0.03 MN for zero
cohesion to a value of 0.15 MN for a cohesion of 60
kPa.  The angle of internal friction, f has less
influence on the force. The maximum force varied
from 0.105 MN for f = 40°, to 0.142 MN for f = 55°.

Although there have been a number of studies
investigating the behaviour of ice rubble, to the
authors knowledge, there have not been any
measurements made of the mechanical properties of
loose, broken ice floes. Thus, in the present case, the
model cannot use independently derived, mechanical
properties. The range of values chosen for c and φ in
these runs are in the range quoted for ice rubble (see
e.g. Ettema and Urroz-Aguirre, 1991).
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The role of ice velocity was examined by testing
values ranging from 0.1 m/s to 0.5 m/s.  The resulting
forces are plotted versus time in Fig. 8. Somewhat
surprisingly, ice velocity shows minor influence on the
maximum force. This result may be explained by
viewing the plot of velocity vectors in Fig. 5. It indicates
that ice decelerates in a relatively small zone in front
of the pier. Therefore the inertia effects would be small
for the relatively narrow pier considered here. It should
be noted, however, that this result should not be
extrapolated to wide structures where the inertia of the
ice cover may have more significant effects.
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Figure 8 Force-time series for different ice
velocities

5. COMPARISON WITH MEASUREMENTS AND
OTHER CALCULATION METHODS

There have been several field investigations to
measure the impact loads on a bridge pier with
moving broken river ice. These measurements have
recently been reviewed and summarized by Johnston
et al. (1999). For the present case, there are 2 studies
that are appropriate to cite. Sodhi et al (1983) reported
on measurements of river ice interacting with a bridge
pier on the Ottauquechee River in Vermont. In this
case, the pier was vertical and 0.61 m wide with a V-
shape. They reported a river ice run with floe sizes on
the order of 1 to 10 m, with a thickness range of 0.15
m to 0.6 m. The maximum load was reported to be
0.12 MN, with a high static load of 0.11 MN. The static
load occurred due to bridging of the ice floes between
the pier and the shoreline. More recently, Zabilansky
(1996) reported on measurements made on the White
River in Vermont. In this case, the pier width was
circular with a 1.22 m diameter with a 15° inclination.
The river ice during the break-up run was about 0.25

to 0.45 m thick, with floe sizes ranging up to 5 m. The
ice was in a single layer (i.e. no rafting) and of high
concentration (0.75 to 0.95 coverage). Zabilansky
reported maximum loads of 0.12 MN, with typical peak
loads on the order of 0.04 to 0.06 MN.

The peak loads reported by Sodhi et al. (1983) and
Zabilansky (1996) of 0.12 MN is in very good
agreement with the loads predicted using the present
model (see Figure 2 for a comparison with the base
case). A good correlation between the present model
and the reported peak measurements in full-scale
tests was found using a cohesion of 50 kPa and a
friction angle of 45°. It should be noted that the
comparison in this case is directed towards the peak
load measured during the field experiments. The time-
series behaviour of the loading events is quite different
for the two situations. In the numerical model, the load
monotonically rises to a plateau value representing the
peak value for the load. In the field measurements, the
load variation is much more dynamic, as it represents
numerous individual impact events. The numerical
model essentially integrates the individual impacts to
represent a continuum approach.

The conventional approach for predicting ice loads
during dynamic loading events is to use a modified
Korzhavin equation (Korzhavin 1971). The force (F) on
the pier is given by

[5.1] ohDImF σ=

where m is a shape factor (=0.9 for a circular pier), I is
the indentation factor, D is the pier width, h is the ice
thickness and σo is the nominal strength value. The
original Korzhavin equation also includes a contact
factor, but for impact loading, this coefficient is
combined with the Indentation factor.  Afanasev
(1973) has given the combined Indentation coefficient
as

[5.2] 5.0)1/5( += DhI

for aspect ratios (D/h) less than 6. Sodhi et al. (1983)
measured the compressive strength of the ice and
report values in the range of 1.6 to 2.7 MPa. Assuming
this strength range is appropriate for the White River
ice, and using suitable values for pier width and
maximum ice thickness, the calculated force on the
White River pier is on the order of 1.5 to 2 MN. This
load level is significantly higher than the measured
peak value of 0.12 MN reported by Zabilansky (1996).
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6. CONCLUSION

Ice forces on bridge piers were examined using a
numerical model based on a PIC scheme for ice
advection and a viscous plastic rheology. The model
was modified from other versions used for ice
forecasting and pack ice interaction with offshore
structures. The main modification concerns the
introduction of a cohesive Mohr Coulomb yield
criterion. The simulations addressed a case of
rectangular pier with circular front, and ice conditions
that correspond to a well-documented program of field
measurements. Those conditions were also chosen
because they fall within the range commonly
encountered.

The numerical simulations indicate that the model
captures the main expected features of ice
deformation. For example, the resulting distributions of
stress, ice concentration and velocities follow the
expected trends. The predicted force on the pier was
also in agreement with available measurements.

A parametric study showed that cohesion of the ice
cover has a significant effect on the predicted force.
The angle of internal friction had a smaller effect.
Tests with different ice velocity showed that velocity
has a negligible effect on the force. Slenderness of the
pier, which caused only a narrow zone of ice to
decelerate, may explain this somewhat unexpected
conclusion. It should not be extrapolated, however, for
wide structures.
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