Synthesis of New Building Blocks: Toward the Analogs of Peptide Nucleic Acids (PNAs)
Dallaire, Carol; Arya, Prabhat

Publisher's version / la version de l'éditeur:

Tetrahedron Letters, 39, 29, pp. 5129-5132

Web page / page Web

http://dx.doi.org/10.1016/S0040-4039(98)01007-7
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc\&an=12340938\&lang=en
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc\&an=12340938\&lang=fr

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/isp/nparc cp.jsp?lang=en READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc cp.jsp?lang=fr LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Contact us / Contactez nous: nparc.cisti@nrc-cnrc.gc.ca.

TETRAHEDRON
 LETTERS

Pergamon

SYNTHESIS OF NEW BUILDING BLOCKS: TOWARDS THE ANALOGS OF PEPTIDE NUCLEIC ACIDS (PNAs) ${ }^{1 \mathrm{a}}$

Carol Dallaire and Prabhat Arya ${ }^{\text {lb }}$
Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, KIA OR6, Canada

Received 16 April 1998; revised 8 May 1998; accepted 11 May 1998

Abstract

To obtain new analogs of peptide nucleic acids (PNAs), synthesis of the building block 14 has been achieved. Building block 14 has been derived from the coupling of the isothiocyanate derivative, 12 with 13. Isothiocyanate derivative 12 was obtained from S-aspartic acid derivative $\mathbf{5}$ in a number of steps. © 1998 Elsevier Science Ltd. All rights reserved.

During the past several years, peptide nucleic acids (PNAs, Figure 1, 1) have appeared to be useful mimics of DNA with promising applications in diagnostics and in the pharmaceutical area (e.g. antisense-antigene therapeutic agents). ${ }^{2}$ Unlike DNA/RNA, PNA is an achiral, neutral molecule in which nucleobases are attached to the achiral backbone derived from N -(2-aminoethyl)glycine derivative (2). The synthesis of PNA could be easily achieved through peptide chemistry by using a building block methodology on solid phase. ${ }^{3}$ PNA has shown to exhibit excellent hybridization and sequence specific properties to single-stranded (ss) DNA and RNA. It is also known to form stronger triplexes with double-stranded (ds) DNA. The stroug binding of PNA with ssDNA, dsDNA and RNA has been attributed to its neutral character and to the flexible nature of the polyamide backbone, in combination with the rigidity of the amide bond in the backbone. Various studies on the flexibility of PNA. have indicated that the N -(2-aminoethyl)glycine backbone provides optimal bindin! capabilities. ${ }^{2}$. ${ }^{4}$ However, very little has been studied to explore the importance of the rigidity of an amide bond within a backbone on binding properties of PNA. 2,4b-d

Despite having several advantages, i.e. enzymatic stability, stronger and sequence-specific binding to ssDNA, dsDNA and RNA, ease of synthesis using solid phase methodology, its limited solubility at physiological $p \mathrm{H}$, and passive transportation across the cell membrane are the two major limitations that are associated with PNA. 2.5 Moreover, hybridization of PNA with a ssDNA to form a PNA/ssDNA/PNA triplet (antigene strategy) at physiological salt concentration is not efficient. The formation of stable PNA/ssDNA/PNA triplex occurs only at low salt concentrations and is restricted to PNAs having a high pyrimidine content. ${ }^{6}$

To overcome the problems that are associated with PNA, the objective of our research is to incorporate modifications into the polyamide backbone of PNAs and explore its effects on the binding properties with DNA/RNA and on the transportation across the cell membranes. Our goal is to enhance the rigidity of the polyamide backbone by the incorporation of thiourea or guanidinium functional group (for PNA analogs, see Figure 1, 3). Synthesis of PNA analogs, 3, could be achieved using a building block 2 (required for the synthesis of PNA) and 4 on a solid phase. Using this approach, it would be possible to systematically control the rigidity of the polyamide backbone. Moreover, transformation of the thiourea to a guanidinium salt could easily be obtained within the backbone. Such a transformation would allow an enhancement in the solubility of the PNA analog at the physiological pH due to the incorporation of a positive charge into the backbone. Applications of cationic DNA analogs for stronger bindings with RNA or DNA are just appearing in the literature and a positively charged analog of PNA could open new opportunities in the area of antisense/antigene technology. ${ }^{7}$

Herein, we describe our approach for the synthesis of building blocks $\mathbf{1 2}$ and $\mathbf{1 4}$ (pyrimidine derivative as a base) required for the solid phase synthesis of PNA analogs. Building block 12 was obtained from a S-aspartic acid derivative, 5, in the following steps. β-Amino alcohol 6 (Scheme 1) was derived from N -(butyloxycarbonyl)-S-aspartic acid mono-t-butyl ester (5) by the NaBH_{4} reduction of the mixed anhydride (iso-

h-1 64%

9

Scheme 1: (a) 1.1 eq iso- $\mathrm{BuOCOCl}, \mathrm{NMM}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; (b) $3 \mathrm{eq} \mathrm{NaBH}_{4}, 0^{\circ} \mathrm{C} \mathrm{MeOH}$; (c) TsCl , Pyr , rt; (d) 2.5 eq $\mathrm{NaCN}, \mathrm{DMSO}, 80^{\circ} \mathrm{C}$; (e) $2 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH}$, rt; (f) 1.1 eq iso- BuOCOCl , NMM, DME, $-15^{\circ} \mathrm{C}$; (g) $3 \mathrm{eq} \mathrm{NaBH}_{4}, \mathrm{H}_{2} \mathrm{O},-15$ ${ }^{\circ} \mathrm{C}$; (h) TBDMSCl, imidazole, rt; (i) $0.4 \mathrm{eq} \mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 10 \mathrm{eq} \mathrm{NaBH}_{4},-15^{\circ} \mathrm{C}$; (j) $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$, Dioxane, 1.2 eq CBzCl ; (k) $1.2 \mathrm{eq} \mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}$, rt; (1) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}$, THF, rt; (m) 3 eq Thymine. $3 \mathrm{eq} \mathrm{K}_{2} \mathrm{CO}_{3}$, Bu4NI (cat), DMF, $80^{\circ} \mathrm{C}$; (n) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$; (o) 1.2 eq $\mathrm{FmocCl}, 10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$.

Scheme 2: (a) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (b) DIPC, THF, $\mathrm{CS}_{2}, 0^{\circ} \mathrm{C}$; (c) $\mathrm{CH}_{2} \mathrm{Cl} 2, \mathrm{DMF}, 40^{\circ} \mathrm{C}$.
$\mathrm{BuOCOCl}, \mathrm{N}$-methylmorpholine inTHF) in 90% yield. ${ }^{8}$ Alcohol derivative 6 was converted to the corresponding nitrile 7 in two steps (80% yield): (i) tosyl chloride (pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and (ii) NaCN , DMSO at $80^{\circ} \mathrm{C} .9^{9}$ Mild hydrolysis (2 M NaOH , methanol) of 7 , followed by the NaBH_{4} reduction of the mixed anhydride yielded 8 in 82% yield. Compound $\mathbf{8}$ was converted to 9 in the sequential order: (i) protection of the primary hydroxyl group (TBDMSCl, imidazole, rt); (ii) reduction of the nitrile group $\left(\mathrm{NaBH} 4, \mathrm{CoCl}_{2} \cdot \mathrm{H}_{2} 0, \mathrm{MeOH}\right) ;{ }^{10}$ (iii) protection of the amino group ($\mathrm{CBzCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, Dioxane); (iv) deprotection of the hydroxyl group, and finally, (v) conversion of the primary hydroxyl group to the bromo derivative $\left(\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}, \mathrm{rt}\right)$. Using alkylation reaction conditions as described by Taddei, ${ }^{4 \mathrm{c}}$ nucleophilic substitution of a nucleobase (i.e., thymine) gave the desired compound 10a (60% yield) and a side product, $\mathbf{1 0 b}$ (32% yield). The required building block, 11 was obtained from 10a in two steps: (i) conversion of NHCBz to $\mathrm{NH}_{2}\left(\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}\right)$, and (ii) the protection of NH_{2} to NHFmoc ($\mathrm{FmocCl}, 10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$). The thiourea dinucleotide building block 14 was obtained from the isothiocyanate derivative of $\mathbf{1 1}$ through several steps. The butyloxycarbamate protective group of $\mathbf{1 1}$ was removed by the treatment with $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was reacted with CS_{2}, DIPC/THF that afforded the isothiocyanate derivative 12 (Scheme 2). ${ }^{11}$ The thiourea dinucleotide methyl ester building block, 14 was obtained in 39%. isolated yield (purified by RP-HPLC) from the coupling of isothiocyanate derivative $\mathbf{1 2}$ with the PNA thymine monomer $13\left(40^{\circ} \mathrm{C}\right) .{ }^{12}$ In a similar manner, the isothiocyanate 12 could also be coupled with other PNA monomers having different pyrimidine and purine bases to obtain new building blocks for the synthesis of PNA analogs.

To summarize, a successful synthesis of the methyl ester of building block $\mathbf{1 4}$, required for the solid phase metholodology to obtain PNA anlogs, has been achieved. Further, incorporation of the building block $\mathbf{1 4}$ for various derivatives of modified PNAs to explore their properties are currently under investigation.

References and notes:

1. (a) NRCC publication no. 40869 . (b) For information, contact PA: prabhat.arya@nrc.ca; (613) 9937014 (Tel), 9520068 (Fax).
2. (a) Nielsen, P. E.; Haaima, G. Chem. Soc. Rev., 1997, 73 and references therein. (b) Dueholm, K. L.; Nielsen, P. E. New J. Chem., 1997, 21, 19 and references therein. (c) Nielsen, P. E. In Perspectives in Drug Discovery and Design; ESCOM Science Publishers, 1995, Vol 4, 76-84. (d) Nielson, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Anti-Cancer Drug Design, 1993, 8, 53. (e) Egholm, M.; Buchardt, O.; Christensen, L.; Beherns, C.; Frier, S. M.; Driver, D. A.; Berg, R. H.; Kim, S. K.; Nordén. B.; Nielsen, P. E. Nature, 1993, 365, 566. (f) Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Science 1991, $254,1497$.
3. Duehoim, K. L.; Egholm, M.; Behrens, C.; Christensen, L.; Hansen, H. F.; Vulpius, T.; Petersen, K. H.; Berg, R. H.; Nielsen. P. E.; Buchardt, O. J. Org. Chem., 1994, 59, 5767.
4. (a) Hyrup, B.; Egholm, M.; Nielsen, P. E.; Wittung, P.; Nordén, B.; Buchardt, O. J. Am. Chem. Soc. 1994, 116, 7964. (b) Kosynkina, L.; Wang, W.; Liang, T. C. Tetrahedron Lett. 1994, 35, 5173. (c) Lenzi, A.: Reginato, G.; Taddei, M. Tetrahedron Lett. 1995, 36, 1713. (d) Lenzi, A.; Reginato, G.; Taddei, M.; Trifilieff, E. Tetrahedron Lett. 1995, 36, 1717.
5. (a) Demidov, V.; Frank-Kamenetskii, M. D.; Egholm, M.; Buchardı, O.; Nielsen, P. E. Nucleic Acid Res 1993, 2I, 2103. (b) Hanvey, J. C.; Peffer, N. J.; Bisi, J. E.; Thomson, S. A.; Cadilla, R.; Josey, J. A.; Ricca, D. J.; Hassman, C. F.; Bonham, M. A.; Au, K. G.; Carter, S. G.; Bruckenstein, D. A.; Boyd, A. L.; Noble, S. A.; Babiss, L. E. Science 1992, 258, 1481.
6. (a) Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Nucleic Acids Res 1993, 21, 197. (b) Pardridge, W. M.; Boado, R. J.; Kang, Y.-S. Proc. Natl. Acad. Sci. USA 1995, 92, 5592. (c) Tomac, S.; Sarkar, M.; Ratilainen, T.; Wittung, P.; Nielsen, P. E.;

Nordén, B.; Gräslund, A. J. Am. Chem. Soc. 1996, 1/8, 5544
7. Dempcy, R. O.; Browne, K. A.; Bruice, T. C. J. Am. Chem. Soc. 1995, 1/7, 6140.
8. Rodriguez, M.; Llinares, M.: Doulut, S.; Heitz, A.; Martinez, J. Tetrahedron Lett. 1991, 32, 923.
9. Kaseda, T.; Kikuchi, T.; Kibayashi, C. Tetrahedron Lett. 1989, 30, 4539.
10. Satoh, T.; Suzuki, S. Tetrahedron Lett. 1969, 4555.
11. Henichart, J. P.: Bernier, J. L.; Houssin, R. Synthesis 1980, 311
12. All the new compounds were well characterized by MS, ${ }^{1} \mathrm{H} N M R,{ }^{13} \mathrm{C}$ NMR and $[\alpha]_{\mathrm{D}}$. Compound 9: $\mathrm{R}_{f}=0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{AcOEt}, 9 / 1) ;[\alpha] \mathrm{D}=+2.5\left(\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr} 200 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.34(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 5.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCBz}), 5.09(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.45 (brd, $\mathrm{IH}, \mathrm{NHBoc}$), $3.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 3.5-3.3(\mathrm{~m}, 1 \mathrm{H}), 3.4\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.0(\mathrm{~m}, 1 \mathrm{H}), 2.1-1.9(\mathrm{~m}, 2 \mathrm{H}), 1.9-1.7$ $(\mathrm{m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) ;{ }^{13} \mathrm{C} \mathrm{nmr} 50 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 156.4,156.0,136.5,128.4,127.9,79.6,66.4,44.1,38.5,37.4,35.5$, 29.3, 28.2; MS ($\mathrm{Fab}+, \mathrm{LiCl}$) m / z reported for $\mathrm{Br}^{79}(\%): 421.0\left(100, \mathrm{MLi}^{+}\right), 365(37), 315\left(23, \mathrm{M}^{+}-\mathrm{Boc}\right), 285(27)$; EPMS m / z reported for $\mathrm{Br}^{79}: \mathrm{MH}^{+}=415.1$. Compound 10a: $\mathrm{R}_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 4/1); m.p.: 76-77 ${ }^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}=+19\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} n \mathrm{nmr} 200 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 8.7$ (br s, $1 \mathrm{H}, \mathrm{NH}$ thymine) $, 7.35(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 7.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ thymine), 5.47 (brt, $1 \mathrm{H}, \mathrm{NHCBz}$), $5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.64(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J} 9.6 \mathrm{~Hz}, \mathrm{NHBoc}), 3.9(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.3(\mathrm{~m}, 3 \mathrm{H}), 3.0(\mathrm{~m}, 1 \mathrm{H}), 1.9(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 1.9-\mathrm{l} .6(\mathrm{~m}$, $2 \mathrm{H}), 1.6-1.4(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) ;{ }^{13} \mathrm{C} \mathrm{nmr} 50 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 164.6,156.4,156.1,15 \mathrm{I} .1,140.9,136.5,128.3,127.9$, $127.8,125.1,110.5,79.6,66.4,46.2,45.8,37.3,35.9,34.1,28.2,12.2 ; \mathrm{MS}(\mathrm{Fab}+) \mathrm{m} / \mathrm{z}(\%): 461\left(11, \mathrm{MH}^{+}\right), 405\left(9, \mathrm{M}^{+}-t-\mathrm{Bu}\right)$, 362 (23), 361 (100); HRMS (Fab+, LiCl), MLi^{+}observed: 467.2483, mass calc.: 467.2483. Compound $\mathbf{1 0 b}: \mathrm{R}_{f}=0.59\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $4 / 1) ;[\alpha]_{\mathrm{D}}=+20.0\left(\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ nmr $200 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.36(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Ph}), 7.0(\mathrm{~s}, \mathrm{IH}, \mathrm{CH}$ thymine $), 5.7$ and $5.5(2 \mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{NHCBz}), 5.1\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 4.65(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, 2 \mathrm{NHBoc}), 4.0(\mathrm{brt}, 2 \mathrm{H}, 2 \mathrm{~N}-\mathrm{CH}), 3.9-3.3(3 \mathrm{~m}, 6 \mathrm{H}), 3.0(\mathrm{~m}$, $2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 1.9-1.4(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{t}-\mathrm{Bu}) ;{ }^{13} \mathrm{C} \mathrm{nmr} 50 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 163.7$, $156.5,156.2,151.4$. $139.0,136.7,128.5,128.1,128.0,109.9,79.8,79.4,66.6,66.5,47.5,46.2,46.0,38.5,37.4,36.2,35.9,34.2,33.3,28.3,13.0$; MS (Fab+) m/z (\%): 794.3 (17, M^{+}), 694.7 ($100, \mathrm{MH}^{+}$- Boc), 638.7 (50), 594.7 (13), 530.7 (7). Compound $11: \mathrm{R}_{f}=0.33$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.3 / 1\right) ; \mathrm{Rf}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ toluene/ acetone, $\left.5 / 2 / 3\right) ;$ m.p.: $101-102^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}=+18\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $600 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 8.32(\mathrm{~s}, \mathrm{HH}, \mathrm{NH}$ thymine $), 7.77(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J} 7.3 \mathrm{~Hz}, 2 \mathrm{CH}), 7.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J} 7.3 \mathrm{~Hz}, 2 \mathrm{CH}), 7.40(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $7.3 \mathrm{~Hz}, 2 \mathrm{CH}$), 7.31 (t, $2 \mathrm{H}, \mathrm{J} 7.3 \mathrm{~Hz}, 2 \mathrm{CH}$), 7.01 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ thymine), 5.44 (br s, 1H, NHFmoc), 4.58 (br d, $1 \mathrm{H}, \mathrm{NHBoc}$), 4.37 (d-d, $2 \mathrm{H}, \mathrm{J} 14$ and $6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), $4.22\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J} 6.8 \mathrm{~Hz}, \mathrm{CH}\right.$ furenyl), 3.91 and $3.59\left(2 \mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{N}\right.$ thymine), 3.68 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{HC}$ NBoc), 3.45 and 3.05 ($2 \mathrm{brs}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}$-NHFmoc), $1.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 1.90$ and $1.75\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75$ and $1.51(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2)$, $1.46(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) ;{ }^{13} \mathrm{C} \mathrm{nmr} 150 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 164.0,156.8,156.2,150.7,144.0,141.0,141.3,140.8,127.7,127.1,125.1$, $120.0,110.8,80.0,66.8,47.3,46.3,46.0,37.5,36.2,34.5,28.4,12.3 ; \mathrm{MS}(\mathrm{Fab}+) \mathrm{m} / \mathrm{z}, \%: 549.2\left(9, \mathrm{MH}^{+}\right), 492.3(8) .449 .2$ (100); HRMS (Fab+), MH^{+}observed: 549.2717, mass calc.: 549.2713. Compound $14: \mathrm{Rf}_{f}=0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9 / \mathrm{I}\right)$; m.p. (white powder): $125-7^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}=+65\left(\mathrm{c}=0.77, \mathrm{CHCl}_{3}\right)$; HPLC prep. (NovaPak $\mathrm{Cl} 825 \times 300 \mathrm{~mm}$, flow $20.0 \mathrm{~mL} / \mathrm{min}$), 40% acetonitrile for 10 min then 100%, $\mathrm{t}=11.0$ to $13.3 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{nmr} 600 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.3$ and $10.7(2 \mathrm{br} \mathrm{s}, 2 \mathrm{H}, 2 \mathrm{NH}$ thymine), $7.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J} 7.2 \mathrm{~Hz}, 2 \mathrm{CH}), 7.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J} 7.2 \mathrm{~Hz}, 2 \mathrm{CH}), 7.38(\mathrm{t}, 2 \mathrm{H}, \mathrm{J} 7.2 \mathrm{~Hz}, 2 \mathrm{CH}), 7.31(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 7.25-7.1(\mathrm{~m}, 2 \mathrm{H}, 2$ $\mathrm{HN}-\mathrm{C}=\mathrm{S}$) , 7.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ thymine), $7.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ thymine), 6.1 (br s, $1 \mathrm{H}, \mathrm{NHFmoc}$), 4.75 ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{HC}-\mathrm{NC}=\mathrm{S}$), $4.5-4.25(\mathrm{~m}$, $3 \mathrm{H}, 3 \mathrm{HC}-\mathrm{N}), 4.2\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J} 7.1 \mathrm{~Hz}, \mathrm{CH}\right.$ furenyl), $4.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 3.95-3.55(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H} 2 \mathrm{C}-\mathrm{N}), 3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{N}\right.$ thymine), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.4$ and $2.95\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{NFmoc}\right), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75(\mathrm{~m}$, $2 \mathrm{H}), 1.5(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr} 150 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 183.2,169.4,167.3,165.1,164.9,156.5,152.2,151.8,144.14,144.07$. $141.8,141.5,141.3,127.8,127.7,127.1,120.0,111.2,110.4,66.7,53.0,52.6,50.9,48.9,48.0,47.3,42.7,36.9,36.8,33.8$. 12.3, 12.1; MS (Fab+) m/z: $789.4\left(\mathrm{MH}^{+}\right)$.

