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1. Introduction 

The design of structures and vessels for arctic and subarctic waters requires knowledge of 

ice loads and their distribution in space and time. This in turn requires analyses of the 
interaction between the structure and the ice at conditions that are representative of the 

real scale event (displacement rate, confining pressure, deviatoric stress, temperature). 
Medium-scale field investigations have been carried out in the past in an effort to better 
comprehend the failure processes in the ice during these interactions. An example of this 

are a series of indentation tests that have been conducted with iceberg and multiyear ice 
(Frederking et al. 1990, Masterson et al. 1992, 1999). A test set-up is shown in Figure 1. 

Ice SheetIndentor

High Pressure Zone
(Recrystallization and 

Pressure-melting)

Low Pressure
(Brittle Deformation)

Ice IndentorReaction Pads

Actuators
and Servo-valves

Trench in Ice

 

Figure 1: Medium-scale field testing experiments. 

Indentors of various shapes were used. Loads, displacements and temperature are some of 

the parameters that were recorded during these tests. The actuator response typically 
displayed a saw-tooth loading pattern that was explained by the dynamics of the failure 

processes occurring in the ice. Local pressures along the interface between the ice and the 
structure reach relatively high levels (up to 70 MPa, according to Frederking et al. 1990). 
Our analyses of the medium-scale field events produced with either iceberg or multiyear 

ice has outlined non-simultaneous failure modes and the occurrence of high pressure 
zones that effectively control the load applied onto the structure (Jordaan et al. 1999, 

2001)(Fig. 1). Mechanisms of a ductile nature, such as recrystallization, have been shown 
to occur in these zones (Muggeridge and Jordaan 1999). The brittle behaviour and 
spalling accompanying ice failure are closely associated with what is happening inside 

the high pressure zones. An adequate representation of the deformation mechanisms 
occurring in the ice during mechanical testing therefore requires high confinement levels. 

Triaxial testing was done by a number of investigators. Amongst the most interesting 
observations made in some of these studies is an increase followed by a decrease in 
strength of the material with an increase in confinement, particularly at high strain rates 



Compressive Behaviour of Confined Polycrystalline Ice 

______________________________________________________________________________________ 

Barrette and Jordaan Page 6 

(Jones 1978, 1982, Nadreau and Michel 1986, Richter-Menge 1991, Mizuno 1998). A 
decrease followed by an increase of 'compliance' with an increase in confinement was 

also reported in constant load tests (Jones and Chew 1983, Melanson et al. 1999a, 
Barrette and Jordaan 2001). This reversal in trend, if representative of what is taking 

place during a real ice-structure interaction, is significant for two reasons:  

First, it indicates that high-pressure zones may become 'softer' where pressure is highest, 
thereby exerting some control on the failure mode of these zones and the resulting load-

unloading cycles.  

Second, the reason for this reversal was attributed to recrystallization phenomena and the 

pressure melting of ice. Evidence of these mechanisms was provided (Frederking et al. 
1990, Gagnon and Molgaard 1991). If this is the case, what was previously interpreted as 
pristine, undeformed ice at the ice- indentor interface after unloading (so-called 'blue 

zones') may have been strongly deformed - or structurally 'damaged' - ice. Highly 
recrystallized ice is translucent, and no evidence of its deformation would be noticeable 

from video monitoring.  

Another issue that could benefit from further investigation is the effect of loading on the 
temperature of the ice. A rise in temperature is expected upon the application of high 

axial stress. This rise corresponds to a release in thermal energy as a response to loading, 
with the possible contribution of frictional heating as the ice deforms. At high hydrostatic 

levels, which decrease the melting point of ice, this temperature rise may be sufficient to 
bring the ice, at least locally, to its melting point. The latent heat of fusion absorbed from 
the surrounding ice as a result of melting should contribute to a decrease in temperature.  

2. Purpose and Methodology 

The main objectives of the research presented in this report are three-fold: 

• To investigate the effect of hydrostatic pressure on the deformational behaviour of ice 
specimens produced in the laboratory.  

• To investigate the effect of temperature on the deformational behaviour of these 
specimens and provide an estimate of the activation energy for the deformation at 

various confinement levels.  

• To establish a comparative basis between the deformational behaviour of laboratory-
produced ice and naturally formed ice of glacial origin.  

Other themes of interest include: 

• The effect of loading on the thermal behaviour of the ice. 

• The behaviour of the ice up to very large strains and damage analysis. 
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Research on these other themes is on going as of this writing and will be reported 
elsewhere. 

We begin with a section describing some of the basic notions related with triaxial 
deformation, the rheology of ice and the concept of 'temperature'. This is an attempt to 

make the text somewhat self-explanatory in terms of the approach, terminology and 
background relevant to the later sections. A review of the existing literature on the 
triaxial testing of ice is then provided. This is followed by a description of the 

experimental procedures, the results and a discussion. Appendix 1 encloses a detailed 
account of previous investigations. Appendix 2 provides photographs of various features 

related with the test specimens and their internal structure. The data is in Appendix 3. 

3. General Notions and Principles 

3.1. Stress 

Stress is a force normalized over an area. It is a second-order tensor, which means that it 
has two free indices: its magnitude depends on both the orientation of the force and that 

of the surface on which it acts. This is usually represented as follows: 
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The stress conditions that are simulated with ice specimens in the laboratory are those 

corresponding to the equation below (whereby σij = 0) because they are simpler to obtain: 

only the three principal stresses (σ11, σ22 and σ33) need to be controlled.  
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It is also more representative of the stress acting on a free body element when one of its 
reference axes is parallel to the direction in which the load is applied onto the ice (this 

point is illustrated in Figure 2 for a two-dimensional case).  

A uniaxial stress is one in which one principal stress, either σ1 (for a compressive stress) 

or σ3 (for a tensile stress), is non-zero and the other two are equal to zero. Uniaxial testing 
may be done, for instance, to study the mechanical behaviour of the ice near one of its 

free surfaces (location A in Figure 2). A biaxial stress is one in which two of the three 
principal stresses are nonzero and the third one is zero. A triaxial state of stress is one in 

which all three principal stresses are non-zero. This will generally be the case in an ice  
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Figure 2: The stress at a point, represented by a free body 

element, and equivalent stress tensors for two different locations 

along the ice-structure interface. The reference axes to the left 

are at an angle α with the compression direction of the indentor, 

and σij ≠ 0. To the right, the references axes are chosen so that 

one axis is parallel to the compression direction, and σij = 0. 

Near a free surface (location A), only the compressive forces 

from the indentor and their reaction (black arrowheads) will act 

on the ice. Away from the free surfaces (location B), the ice 

exerts a confinement (white arrowheads). 

 

 

Figure 3: Loading regime on an ice specimen. The white and 

black arrows symbolize the confinement and axial compressive 

load, respectively.  
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body, except at locations very near the free surfaces. The reason for this is that, 
elsewhere, the ice exerts a given level of confinement during the deformation, which will 

increase with distance away from the free surfaces (location B in Figure 2). 

The stresses to which ice may be submitted and the deformation that results from it are 

divided into two fundamentally distinct states. The first one involves a change in volume, 
whereby the crystal lattice remains intact but the constituents' atoms and molecules are 
forced either closer together (contraction) or farther apart (dilation). The stress causing 

this condition is referred to as hydrostatic (or isotropic) and leads to a deformation that is 
elastically recoverable. The second state involves a distortion in the crystal lattice and 

ultimately leads to a permanent change in shape due to the break up of atomic bonds. 
This is known as a deviatoric stress. It is the deviatoric component that causes the 
material to fail or yield, either in a brittle fashion, through the formation and propagation 

of cracks, or in a ductile fashion, through recrystallization and other processes.  

The total stress is the summation of the hydrostatic and deviatoric components: 
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where p is the hydrostatic pressure, also called mean stress, and given by: 

 3

)( 332211 σσσ ++
=p  Eq. 4 

This equation is a generalized form for the stress conditions that may exist at a given 

location inside the ice body. As mentioned earlier, we are able to simplify this situation 
by considering an equivalent set of stress conditions with the three mutually 

perpendicular planes along which all σij stresses are zero. Thus, 
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This represents the stress existing inside the ice body when one of the reference axes 

(σ11) is parallel to the direction of relative motion between the ice and the indentor.  

It is possible to obtain a basic reproduction of this stress regime by conducting triaxial 
tests, involving the superposition of a confinement and a uniaxial stress. The equipment 

we used for our investigations allows us an independent control over these two stresses. 
The first one is obtained by compressing the oil in which the ice specimen is immersed. 
The second one is obtained by loading the specimen axially. This is shown schematically 



Compressive Behaviour of Confined Polycrystalline Ice 

______________________________________________________________________________________ 

Barrette and Jordaan Page 10 

in Figure 3. For example, if we were to submit an ice specimen to a 50 MPa confinement 
(white arrows) and a 15 MPa axial compression (black arrows), the stress along the 

compressive axis (σ1) would be equal to the summation of both stresses - corresponding 

to 65 MPa. The stresses along the other two axes (σ2 and σ3) would both be 50 MPa. The 

hydrostatic stress is then 55 MPa. The deviatoric stresses are as 10, -5 and -5 MPa, 

respectively, for σ1, σ2 and σ3. 

3.2. Strain 

Strain is a measure of deformation. In a specimen, it is expressed as a difference between 

the original (L0) and deformed (L) length of a material line (which, for small increments, 
may be represented by dL). The engineering strain is the deformation normalized over 

the original length: 
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The total, or true, strain can be obtained by integration: 
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With increasing deformation, the true strain becomes progressively larger than the 
engineering strain. The use of the true strain is more appropriate when deformation 

exceeds a few percent.  

Strain is also a second-order tensor. The strain tensor can be resolved into an isotropic 
and a deviatoric component: 
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where εH  is the isotropic strain: 

 3

)( 332211 εεε
ε

++
=H  Eq. 9 

3.3. Type of Tests 

Two loading regimes are most commonly used in ice engineering. 
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3.3.1. Creep test  

The word creep is often used to describe time-dependant deformation under any loading 

regime. A more rigorous definition is when a constant stress is applied to a specimen, 
which then undergoes a progressive deformation with time (e.g. Popov 1990). In most 

cases, the area through which the load is transmitted either increases (in compression) or 
decreases (tension) as the specimen deforms, so that the stress is only nominally constant 
under constant load. Because time-dependant deformation mechanisms (related with the 

motion of crystal defects) are thermally-activated, creep tests can only be done at a 
temperature that is close to the melting point of the material, as is the case for most ice 

engineering applications. Creep will occur at lower temperatures but at a time scale that 
is too long to be practical for testing and that may not be relevant to engineering.  

3.3.2. Constant Strain-Rate Test  

In this case, the force applied onto the specimen varies to maintain a constant strain-rate. 
This test is often referred to as a strength test, because it records the stress at which the 

material yields. The relative displacement of the platens is hydraulically-controlled by a 
closed- loop feedback from displacement gages that are attached directly onto the 
specimen. This allows the compliance of the testing system to be excluded from the 

measurements (Sinha 1979a, 1981a,b). With this method, only the deformation at the 
centre of the specimen is considered, leaving out that occurring near the platens, which is 

non uniform due to the boundary conditions. Constant strain rate tests are usually more 
popular in the ice engineering community because they provide numbers on the strength 
of ice and its strain-rate sensitivity. 

3.3.3. This study 

Only creep testing was done as part of this study. The reason was that our investigations 

were originally designed to be an extens ion of an earlier testing program in which 
specimens were submitted to a constant load (Meglis et al. 1999, Melanson et al. 1999a). 
Another reason is the technical challenge related with the use of displacement gages 

attached onto the ice specimens: the la tter were enclosed in a latex jacket to prevent 
penetration of the confinement fluid during deformation. Also, large strains were 

achieved in our tests, leading to a substantial change in specimen morphology and the 
resulting difficulty in maintaining the gages in position. The strain in the specimen could 
therefore only be measured by monitoring the displacement between the platens.  

A correspondence between constant strain rate and constant load tests was established by 
Mellor and Cole (1982, 1983) and Sinha et al. (1995). They have shown that, when 

properly interpreted, creep curves can also provide information on the failure strength. 
The ultimate yield strength in this type of tests is the equivalent to the minimum strain 
rate for a material submitted to a constant stress. This means that if a constant strain rate 

test, done with a strain rate X, results in a strength Y, the same material submitted to a 
constant stress Y should display a minimum strain rate of X (Figure 4).  

The minimum strain rate is a useful index: it allows to monitor the relative ‘compliance’ 
of the material under different loading conditions. The higher the minimum strain rate the  
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Ultimate 
Yield Strength

Minimum 
Strain Rate

Stress

 

Figure 4: Response of ice when it is submitted to 1) a constant 

stress (for which the strain rate is recorded) and 2) a constant 

strain rate (for which the stress is recorded). The minimum strain 

rate in the former is equivalent to the ultimate strength in the 

latter. 

more compliant is the ice. On the basis of the aforementioned correspondence, we would 

expect the ultimate yield strength of the ice to decrease with the same change in loading 
conditions. 

3.4.  Constitutive modeling 

The rheological behaviour of a material is specified by the relationship between dynamic 
(stress) and kinematic (strain) quantities. Constitutive modeling is a mathematical 

expression of this behaviour. The relationship also involves intrinsic (material properties 
such as mass, elastic properties, viscosity,...) and extrinsic (time, temperature, pressure, 
...) parameters. Newton's Second law of Motion F=ma is an example, relating a dynamic 

(force F) and a kinematic (acceleration a) quantity, with an intrinsic material parameter 
(mass m). A more general form of this relationship may be 

 ),,( pp EIKfD =  Eq. 10 

(a) (b) (c)  

Figure 5: A few elements used to visualize the mechanical 

response of a material. a) Spring, b) dashpot, c) block 

maintained in place by friction. 
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where D represents the dynamic quantity (force, stress, stress rate, ...), K represents the 
kinematic quantities (displacement, velocity, strain, strain rate,...), and Ip and Ep are the 

intrinsic and extrinsic parameters, respectively.  

One of the main purposes of experimental work is to provide information on the nature of 

that relationship.  

A classification scheme has been devised in continuum mechanics to represent a number 
of rheological behaviours. This scheme uses conceptual elements, including a spring, a 

dashpot and a body resting on a surface and maintained in place by friction (Figure 5). 

(a)

(b)

(c)  

Figure 6: Three common type of rheological behaviours. 

a) Elastic, b) visco-elastic, c) plastic.  

These are combined in a variety of ways to generate a stress-strain behaviour, also known 
as phenomenological behaviour, that compare with the actual response of the material to 

given loading conditions. The spring on its own reproduces the elastic response; a 
combination of a spring and a dashpot represents visco-elasticity; and a combination of a 

spring and a body in frictional contact with the surface corresponds to plasticity (Figure 
6). 

3.4.1. Elasticity 

Elasticity is a phenomenon that can be linked directly with the structural nature of the 
material: it is the macroscopic expression of the electro-magnetic forces that keep 

individual atoms at an 'equilibrium' distance from each other. This is the reason why 
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elastic deformation is reversible. The magnitude of these forces depend on the length of 
the bond, and how it is defined: in general, covalent bonds are stronger than metallic 

bonds, which are in turn stronger than ionic bonds. Temperature affects the length of the 
bonds and this will be discussed later. Most materials behave elastically under small 

ε

σ

time

timet
1

t
1

(a)

(b)

(c)

 

Figure 7: Rheological behaviours on a strain-time diagram, upon 

the application of a stress. a) elastic, b) visco-elastic, c) plastic.   

loads. Both the deformation and recovery are time- independent (Figure 7). The stress-

strain behaviour is linear and is described by Hooke's law (σ=Eε shown in Figure 8a ). 
This relationship is usually applied to a change in length. The material constant E, also 
called Young's modulus, may be replaced by a shear modulus to describe the elasticity of 
shape, or by a bulk modulus to describe the volume elasticity.  

σ σ σ

ε

E µ µ

ε ε
(a) (b) (c)  

Figure 8: Rheological behaviour corresponding to a) elasticity, 

b) linear visco-elasticity and c) non linear visco-elasticity. Note 

that that stress is plotted against strain rate in (b) and (c).   
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3.4.2. Visco-Elasticity 

Once the elastic limit is reached, visco-elastic materials display a gradual increase in 

strain but at a decreasing strain rate. Stress removal at time t1 leads to the instantaneous 
elastic recovery, followed by a time-dependant or 'delayed' elastic component (Figure 9). 

In terms of the mechanical response to loading, ice is best described as a visco-elastic 
material. The establishment of a physical basis for visco-elasticity is more complex than 
in the case of elasticity. They are tied in not only with the bonding energy but also with 

generation and motion of crystal defects (dislocations, vacancies, diffusion-related 
phenomena, ...) and, depending on the external parameters such as pressure and 

temperature, the formation of microcracks. Mechanisms accounting for this type of 
behaviour must also involve grain boundaries. Indeed, the deformation of single ice 
crystals has been shown to differ significantly from polycrystalline ice. Firstly, the elastic 

response is followed by accelerating instead of decelerating creep1. Secondly, the creep 
of single crystals does not display a delayed elastic component.  

Viscosity may be expressed as  

 µ
σε

n

=&  Eq. 11 

where ε·   is the strain rate, σ is the stress and µ is the viscosity. For linear visco-elastic 
solids (also known as Newtonian), n =1 and the material behaves like a liquid2. For non-
linear visco-elastic solids, n > 1.  

3.4.3. Plasticity 

Plasticity often designates the deformation occurring after the elastic limit is reached (that 
is, when the force applied to the material is high enough to overcome the strength of the 

atomic bonds). The word anelasticity is also used as for that purpose. The ice response to 
loading is thus commonly referred to as plastic in the engineering literature. A more 

rigorous usage of the term plasticity implies a particular behaviour of the strain once the 
elastic limit is exceeded: the strain increases a little more before stabilizing to a constant 

                                                 

1 Accelerating and decelerating creep are discussed later. 

 

2 The notion that a solid substance may flow like a liquid may be better understood by considering the 

Deborah number D. This is the ratio of the time required for a measurable amount of creep over the time 

during which the observation is done and limited to the life expectancy of the observer. If D is small, we 
perceive the material as a liquid. If D is large, it is seen as a solid. In both cases, there is linear relationship 

between ε·  and σ (which is characteristic of what we acknowledge as a liquid on an every  day basis). 
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value. The elastic deformation is recovered upon the removal of the stress, and a 
permanent strain remains, without a delayed elastic component. Plasticity does not 

describe the phenomenological response of ice. The concept of visco-elasticity is 
preferred for this purpose. 

3.5. The Rheology of Ice 

3.5.1. Phenomenology 

Figure 9 is a typical creep response of polycrystalline ice observed during our 

investigations. This behaviour is often represented conceptually by Figure 10. The 
delayed elasticity is simulated by a combination of a dashpot and a spring arranged in 

parallel, referred to as a Kelvin unit. The combination of a dashpot (viscous strain) and a 
spring (elastic strain) arranged in series is known as a Maxwell unit. The entire assembly 
is called a Burgers' model and is the one that is most commonly used to express the creep 

of ice. The total strain εT is therefore  

 PDET εεεε ++=  Eq. 12 

The elastic deformation εE in a standard creep test is a very small portion of the total 
deformation (typically 0.1 to 0.5% strain, depending on loading rate). It is therefore not a 

significant issue in this study, particularly if we focus on very high strains. The delayed 

elastic deformation εD has been attributed to grain boundary sliding (Sinha 1979b, 

1984a). This phenomenon takes place immediately after the elastic strain and is also a 
relatively small part of the total deformation. It induces a decelerating phase in the early 

part of the deformation (A in Figure 9). The permanent strain εP is the deformation that 

results from the generation of microcracks and/or the motion of crystal defects. These 
mechanisms begin as soon as the load is applied but their contribution to the total 

deformation is initially negligible. It becomes more important as the deformation rate 
reaches a minimum (B) and begins to accelerate (C).  

The terms 'primary', 'secondary' and 'tertiary' creep is used consistently in the ice 
literature to designate stages A, B and C in Figure 9. This usage has an historical basis: it 
was borrowed from metallurgical studies, in which metals and alloys undergoing creep 

spend most of their design life span in the secondary stage. This is not the case for ice, 
where the secondary creep is no more than an inflexion point between a decelerating and 
an accelerating phase. This terminology is therefore not retained in the present report.  

3.6. Temperature  

3.6.1. Basic Concept 

Physically, temperature is the amount of kinetic energy, or heat, stored by the individual 
atoms making up a given substance (gas, liquid or solid). This energy corresponds to a 
large extent to the vibration of the atoms about their equilibrium position. The melting 
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Figure 9: Creep response for freshwater, polycrystalline ice at 55 

MPa hydrostatic pressure, 15 MPa axial stress and a 

temperature of -10
o
C. The elastic (εE), delayed elastic(εD) and 

permanent (εP) component of the deformation are best seen upon 

unloading the specimen. A: Decelerating creep, B: Minimum 

creep rate, C: Accelerating creep, C': Run-away behaviour.  
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Figure 10: Behaviour of polycrystalline ice, shown by a 

combination of springs and dash-pots.  

point of a crystalline substance is reached when the amplitude of the vibrations is such 
that it is able to overcome the molecular bonding energy. Substance with weaker bonds 

will have a lower melting point. Absolute zero on the Kelvin temperature scale (-273oC) 
is a theoretical value at which atomic vibrations in all substances cease to exist. At that 
temperature, matter becomes inert and one may envisage air molecules lying on the 

ground, no longer able to surmount gravitational attraction. 

A consequence of the Second Law of Thermodynamics is that energy spontaneously 

tends to flow only from where it is concentrated to where it is diffused. Consequently, it 
spreads out. In some cases, such as the cooling down of a frying pan when it is taken off 
the kitchen stove, this phenomenon will take place instantaneously. But there are other 

cases where it will not because of the existence of molecular bonding. This applies, for 
instance, to any form of fuels. Wood or coal will react with oxygen to form CO2 and 

H2O, which have a lower energy configuration. The difference in energy is dissipated in 
the form of 'heat'. But this reaction will only occur if the energy barrier, called activation 

energy and represented by molecular bonding in the reactants, is overcome. (This can be 

done quite effectively, in the case of a liquid fuel, with a lighted match.) The 
determination of the activation energy will be addressed in this report as it is a useful 

indication of what mechanism controls the deformation of the material. 
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Figure 11: Density variation of ice and water across the phase 

transition. The data is from Bolz and Tuve (1970) and Hobbs 

(1974). 

3.6.2. Physics of ice behaviour near its melting point  

The oxygen atom in a H2O molecule is more electronegative than the hydrogen atom, and 
the resulting H-O bonds have a 39% ionic character (Metcalfe et al. 1974). Consequently, 
the electrons are on average concentrated around the oxygen nucleus. Since the covalent 

bonds of the water molecule do not line up (the angle between the two bonds is about 
105o), it has a polar character. This polarity causes water molecules to be attracted to 

each other, thus defining the weaker hydrogen bond. In the solid phase (ice), H2O 
molecules are arranged in a hexagonal crystal structure.  

Above absolute zero (0oK), the atoms making up the ice structure (or any other 

crystalline substances) vibrate. They do so anharmonically (out of phase), so that an 
increase in temperature induces an increase in volume, and a consequent reduction in 

density (Figure 11). As temperature increases, the bonds are stretched further and begin 
to break, the macroscopic expression of which is referred to as melting. Since the 
hexagonal crystal structure of ice is known to be very open, the water molecules can 

easily fit inside this structure once the bonds are broken. Doing so, they take up less 
space than when they were part of the crystal structure, which accounts for the increase in 

density across the phase change (Figure 11). The density then increases again slightly in 
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the liquid phase to a maximum of 1.0000 g/ml at 4oC, before dropping again. This is 
explained by the occurrence of two competing phenomena: 1) The on-going breaking 

down of the hydrogen bonds allows the water molecules to get closer together; 2) The 
increase in thermal energy overcomes the polar attraction between water molecules 

(Metcalfe et al. 1974). The first mechanism predominates only up to 4oC.  

According to the Clapeyron equation,  

 

( )
Adpdp

L

vvT
dT

f

iwm

m −=
−

=  Eq. 13 

where Tm is the melting temperature of ice in degrees Kelvin, p is pressure, Lf is the latent 
heat of melting per unit mass and vi and vw are the specific volume of ice and water, 

respectively. For ice, A = 0.0743oC / MPa at 0oC and 0.0833 oC / MPa at -10oC. At a 
pressure of 70 MPa, the ice specimen would be expected to melt at about 5.5oC. At a 
temperature of -10oC, melting occurs at 120 MPa. This is a direct consequence of the fact 

that ice expands upon freezing. A close examination of the following equation, derived 
from the one above, will help better understand this phenomenon: 
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−
−

=  Eq. 14 

where ew and ei are the entropy of water and ice, respectively. The denominator of the 

right-hand term will necessarily be positive since entropy, which is the amount of 
disorder, is always higher in the liquid than it is in the solid.  In the hypothetical case 
where the change of phase would not be accompanied by a change in volume, the melting 

point would not be affected by pressure (A = 0). Other materials that contract upon 
melting include Pu, Ge, Si, Bi, Sb and Ga (Poirier 1985). For most materials, however, 

the solid to liquid transition causes an increase in volume. If this phase change occurs 
when the material is at a high pressure, more energy will be required to compensate for 
the additional work exerted on the system by that pressure. This means melting will take 

place at a higher temperature. The opposite holds for ice since it looses volume upon 
melting (Figure 11). 

Another outstanding feature with ice is its comparatively high degree of brittleness even 
when it is near or at its melting point. Most other crystalline substances will behave like 
soft putty near their melting temperature. The reasons for this unusual behaviour is tied in 

with a very low dislocation mobility and a high stability of its lattice structure, the latter 
resulting in a low solid solubility of vacancies and impurities (Barnes et al. 1971). 
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Figure 12: Variation of the melting temperature of ice with 

pressure (Nordell 1990). 

3.6.3. Temperature considerations in triaxial testing 

For the purpose of the following discussion, the system refers to what is enclosed in the 

triaxial cell (the ice specimen and the confining oil). According to the First Law of 

Thermodynamics, the change in the internal energy of this system (∆U) is equal to the 

thermal energy Q transferred to the system minus the work W done by the system on its 
surroundings: 

 WQU −=∆  Eq. 15 

Q is negative when the thermal energy is transferred from the system. Similarly, W is 

negative if the work is done on the system. In the case of ice specimens, the internal 
energy is represented mostly by the thermal energy (the kinetic energy of the atoms) and 
the strain energy (the elastic energy stored in the crystal lattice). Other forms of internal 

energy, such as nuclear energy and chemical energy, can here be neglected. If we assume 
that the system is thermally isolated, or adiabatic, then there is no heat transfer in or out 

of the system (Q = 0). Thus ∆U = -W. This situation roughly approximates our triaxial 
test conditions 1. The work W is represented either by an increase in confinement and/or 

                                                 

1 The triaxial cell we used is made out of steel so it is far from being thermally insulated. But heat transfer 

across the wall of the cell is relatively slow and is therefore neglected for the purpose of this discussion. 
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the application of an axial load. Either way, it is negative, leading to an increase in 
internal energy.  

One question that is of interest concerns the amount of thermal energy absorbed by the 
ice during testing. Only 5 to 10% of the energy applied onto a any given specimen is 

stored in the defect structure (Nemat-Nasser 2000, p. 431). This implies a significant 
departure from isothermal conditions. If heat flow takes place (in the case the 
deformation is not entirely adiabatic), either by conduction through the end platens or the 

confining oil, this will lead to a non-uniform temperature distribution in the deforming 
specimen. This is an issue that has not attracted a lot of attention from the ice engineering 

community. Its relevance lies in the fact that the compressive strength of ice is a function 
of its temperature.  

4. Previous work 

A survey of the open literature reporting triaxial test data on various types of ice was 
carried out as part of our investigations. Fifty papers, published between 1958 and 2001 

inclusively, were retrieved (Barrette 2001). This compilation only considers papers 
enclosing triaxial test data, and leaves out numerical and theoretical treatments. Testing 
under biaxial stress or plane strain conditions (e.g. Frederking 1977, Sinha 1984b, Timco 

and Frederking 1986) was therefore not included. Investigations on the elastic properties 
of ice under confinement were not searched either. The reader is referred to Gagnon et al. 

(1988) for this topic. Moreover, all of the data encountered were obtained from the 
hexagonal polymorph of ice (Ih) with few exceptions (e.g. Kirby et al. 1985, Durham et 
al. 1996). These were also omitted. Finally, only the English literature was surveyed. 

The results of our search is presented in Appendix 1 (the abbreviations used in this 
appendix are explained in Table 1).  

Both artificial and naturally-occurring ice types were investigated. The control on the 
deviator was generally done in two ways. Constant strain rate tests are those for which 
either specimen deformation or the rate of relative displacement between the upper and 

lower platen was kept constant. Constant stress - or creep - tests were also used. The 
stress was usually nominal since few investigators (e.g. Jones 1978, Mizuno 1992, 

Melanson et al. 1999a) reported a correction to compensate for a change in specimen area 
(required especially when large strains are achieved). All confined testing was done with 
a compressive axial stress, with the exception of Rigsby (1958)(shear) and Haynes (1973) 

(tension). In a few cases, a damage mechanics approach, instead of conventional visco-
elasticity, was applied to the behaviour of ice to acknowledge the effect of load history on 

further incremental deformation (e.g. Jordaan and collaborators). Maximum axial stress is 
indicated for constant load tests; the logarithm of strain rate is indicated for constant  
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Table 1: List of abbreviations used in Appendix 1. 

C Columnar-grained 

CR Constant rate 

CS Constant stress 

D Damage 

F Freshwater (non-saline) 

G Granular (isotropic) 

I Iceberg 

L Laboratory-made 

M Monocrystalline 

N Naturally-occurring 

P Polycrystalline 

S Saline 

1Y First year sea ice 

<1Y Multiyear sea ice 

 

strain rate tests. The temperature range of the test series is also indicated, along with the 
salient results. 

Specimen confinement was usually delivered by a hydraulic fluid. In some cases, a 

constant ratio between axial and confinement stresses was maintained throughout the 
deformation. True multiaxial testing with brush-type platens, whereby loading along all 

axes of three-dimensional space is controlled independently, was also conducted. For 
these cases, no maximum confinement is shown in the results of our search. Discussions 
on the use of brush platens and multiaxial testing may be found in Haüsler (1981), 

Schulson et al. (1989), Haüsler et al. (1991) and Melton and Schulson (1998a). Following 
is a summary of these findings. 

4.1. Effects of confining pressure  

There is a general consensus that an increase in hydrostatic (or confinement) pressure 
causes an increase in the strength of freshwater (non saline) ice for constant strain rate 

experiments (Jones 1982, Mizuno 1998, Rist et al. 1988, 1994, Kalifa et al. 1989, 1992, 
Murrell et al. 1991, Nadreau et al. 1991) and a decrease in minimum strain rate for creep 

testing (Golubov et al. 1990, Jones and Chew 1983, Barrette and Jordaan 2001). This 
increase in 'compliance' has been observed at various creep loads and temperatures. It 
was also documented for natural or artificial sea ice (Nawar et al. 1983, Blair 1988, Cox 

and Richter-Menge 1988, Golubov et al. 1990, Sammonds et al. 1998, Rist. and Murrell 
1994) and genuine iceberg ice (Nadreau and Michel 1986, Gagnon and Gammon 1995). 
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For strength tests, an increase in strain rate caused a steeper increase in the maximum 
deviator, following which the strength tend to level off.  

A reversal in this trend was documented in studies that were able to investigate the 
deformational behaviour of ice at levels of hydrostatic or confinement pressures 

extending beyond 30 to 50 MPa. This was shown in constant strain rate tests, where the 
strength (or maximum deviator) reached a peak value between 10 and 50 MPa pressure  
(Durham et al. 1983, Kirby et al. 1985, Nadreau and Michel 1986, Richter-Menge 1991). 

A reversal was also documented with creep tests, whereby the minimum strain rate 
decreased with increasing pressure, then increased with further increase in pressure 

(Jones and Chew 1983, Barrette and Jordaan 2001). Furthermore, Jordaan and 
collaborators (see Jordaan et al. 1999, 2001) devised a formulation for the rate of damage 
in the accelerated zone of the creep curve.  This rate was found to decrease up to 

hydrostatic pressure 30-40 MPa, and increase upon further pressure increase (Melanson 
et al. 1999a). 

This reversal, or 'pressure softening effect', is generally attributed to the fact that, upon 
increasing pressure, the ice gets closer to its melting temperature. Locally, it may undergo 
melting, perhaps at specific locations along grain boundaries where stress cannot be 

readily accommodated by dislocation or diffusion-controlled deformation mechanisms. 
To the authors' knowledge no direct evidence of this phenomenon was presented to date. 

What may be stated is that an increase in pressure is thermodynamically equivalent to an 
increase in temperature. A better approach in the study of temperature effects may be to 
consider the temperature difference with respect to melting point, as opposed to the actual 

temperature at which testing takes place (Rigsby 1958). 

4.2. Temperature and activation energy 

An increase in temperature is known to cause a decrease in strength in constant strain rate 
experiments and an increase in strain rate for constant loading (Mellor and Testa 1969, 
Mellor 1980). This is also observed in specimens under triaxial pressure conditions 

(Durham et al. 1983, Cox and Richter-Menge 1988, Gagnon and Gammon 1995). This 
phenomenon is readily understood if one considers that a higher temperature induces an 

increase in the amount of kinetic energy within the material. Molecular bonding is 
therefore more easily overcome when submitted to addit ional energy in the form of 
mechanical stress.  

The most commonly used formulation for the determination of activation energy follows 
the usual Arrhenius relationship: 

)exp(min
RT

Q−∝ε&   Eq. 16 

where σ  is the axial stress, Q is the activation energy, R is the universal constant, T is the 
absolute temperature, A, n are constants. The parameter k (Boltzmann’s constant) is also 
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used instead of R, depending on which units are used for energy. In some cases, Q is the 
activation enthalpy, and is defined as  

PVEQ +=    Eq. 17 

where E is the activation energy, P is the pressure and V is the activation volume (e.g. 
Jones and Chew 1983, Durham et al. 1983, Mizuno 1992).  

Taking the natural logarithm on both side of the Arrhenius relationship, 

)()ln(
RT

Q
f

−=ε&   Eq. 18 

Q can be determined from a plot relating the logarithm of strain rate and 1/T.  For creep 

tests, the minimum strain rate is considered for this exercise. For constant strain rate test, 
it is done with a formulation that combines the Arrhenius relationship and Glen’s law: 

)exp(min
RT

Q
A n −= σε&   Eq. 19 

where σ is the yield strength of the ice, n is the stress exponent and A is a constant. We 
then have, 

RT

Q
An +−= lnln)ln( εσ &

  Eq. 20  

(see Kirby et al. 1985, for instance). A number of authors have reported an increase in 
activation energy towards the melting point of ice (see Table 3). This change in activation 

energy near melting point was observed only in polycrystalline ice, not single crystals, 
pointing out to role of grain boundaries (see Mellor and Testa 1969). Two mechanisms 

were invoked to explain this increase in activation energy: grain boundary sliding and the 
presence of liquid at triple junctions (Barnes et al. 1971). 
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Table 2: List of abbreviations used in Table 3. 

AE Activation energy 

AT Activation enthalpy 

B Bicrystals 

C Columnar-grained 

CR Constant rate 

CS Constant stress 

D Damage 

F Freshwater (non-saline) 

G Granular (isotropic) 

I Iceberg 

L Laboratory-made 

M Monocrystals 

N Naturally-occurring 

P Polycrystalline 

Pc Confining pressure 

S Saline 

T Temperature 

1Y First year sea ice 

<1Y Multiyear sea ice 
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Table 3: A selection of previous investigations on the activation energy  of ice, arranged in chronological 

order by date of reference.  

 

Investigator(s) 
Ice 
type 

Test 
type 

Pc 

(MPa) 

Max. 
Dev. 

(MPa) 

Log10  strain 
rate  

 (s
-1

) 

T 

(
o
C) 

 

Observations 

Energies (AE, AT) given in kJ/mol 

 

Mellor and Testa 
1969 

L,G,M,
F 

CS 0.1 1.18  -73 to 0 AE : 68.8 for T <-8oC, non linear relationship for T > -8o C 

Barnes et al. 1971 L,G,F CS 0.1   -45 to -2 AE : 79 for T <-8oC, 120 for T > -8o C 

Gold 1973 L,C,F CS 0.1 0.098  -40 to -5 AE: 15.5 kcal mol-1 

Homer and Glen 

1978 
L,G,M,
B, F 

CS 0.1 2  -20 to -4.5 AE: 78 for M; AE: 75 for B 

Durham et al. 

1983, Kirby et al. 
1985 

L,G,F CR up to 350  -6.5 to -2.5 -196 to 
-15 

AT at 50 MPa Pc:  

91 for -5 >T>-30, 61 for -30 >T>-78, 27 for -78 >T>-115C.  

Mae and Azuma 
1989 

M,F  / 
P,F 

 up to 
56(ii) 

 -7 -20 to -5 Activation volume 

Mizuno 1992 L,G,F CS 5 and 
35(ii) 

3  -10 to -0.8 AT is 118 below -6oC at both pressures. At higher temperature, it 
increases to 207 and 240 for 5 and 35 MPa hydrostatic pressure 

respectively. 

Rist and Murrell 
1994 

L,G,F CR up to 46 45 -5 to -2 -45 to -5 AE: 69 

Gagnon and 
Gammon 1995 

I CR up to 14  -4.3 to -1.3 -16 to -1 AE: 101 

(i) Estimated. (ii) Hydrostatic (mean) stress. (iii) Multiaxial, brush-type platens. 
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5. Testing and Results 

A

B

C’

C

 

Figure 13: Point of interests in a typical creep curve. 

5.1.  Rationale 

One of the main objectives of the experimental program carried out at Memorial 

University is to attempt to better define the ice response to loading for pressure and 
temperature conditions existing in a typical ice-structure interaction. We also address 

issues that have not yet been looked into. One is the pressure dependency of activation 
energy. Another, which will be reported elsewhere, is the behaviour of the ice up to large 
strains.  

We consider a typical creep response for ice under a constant load, as shown in Figure 
13. We are investigating three areas: 1) The minimum creep rate (A) is documented 

throughout the existing ice literature. This parameter is therefore used for correlation 
purposes with previous work. As mentioned already, it also provides information on the 
upper yield strength of ice (Mellor and Cole 1982, 1983, Sinha et al. 1995). 2) The 

accelerating creep (B) represents a nearly linear increase in strain rate following the 
minimum strain rate. This zone is currently interpreted to be representative of the 

deformation taking place at the ice-structure interface, where a layer of damaged ice was 
observed in medium-scale indentation field tests (Jordaan et al. 1999). A damage 
formulation has been applied to numerical simulations taking place in this layer. Data 

obtained in the course of this research is used to calibrate the model used for these 
simulations (Melanson et al. 1998). 3) The deformation rate at high strains either levels 

off (C) or indicate failure (C') of the ice specimen. Because of specimen distortion at this 
strain level, the interpretation of these data has to be done with care. This effort is worth 
while as it should lead to a better understanding of cyclic loading and extrusion processes 

taking place during the interaction (Jordaan et al. 1999, Jordaan 2001). 

The present report focuses on the minimum strain rate (point A in Figure 13) and how it 

is affected by hydrostatic pressure up to 70 MPa and in a temperature range 
representative of that existing in nature.  
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5.2. Laboratory Procedures 

A detailed description of the laboratory procedures is provided in PERD/CHC Report 

75-13. An outline of these procedures is now presented. It includes slight variations that 
have been implemented since the above-mentioned report was written.  

5.2.1. Production of ice specimens  

Ice was grown in insulated buckets filled with distilled, de- ionized and de-aerated water 
from a single crystal platelet (or 'seed'). The resulting blocks consisted mostly of 

monocrystalline ice (no grain boundaries) that were cut with a band saw and crushed. The 
fragments obtained with this method were thus all single crystals, which were then sieved 

into two sizes. One between a mesh of 2 and 3.5 mm. The other was made from the 
fraction above 3.5 mm. Seeds from either size were put in a cylindrical mould and water 
was introduced into the mould under vacuum to fill in the voids between the seeds. The 

mould was then allowed to freeze completely leading to granular, bubble-free. In some 
unsuccessful cases, air entrapment occurred and this ice was also kept for testing.  

The cylindrical mould was then cut into four quarters and machined into cylindrical 
specimens with a nominal diameter of 70 mm and a nominal length of 155 mm. These 
were stored at a temperature of -25oC for a time interval usually not exceeding a few 

weeks before testing.  

The iceberg ice was purchased from a local iceberg harvester, who quarried it from a 

iceberg that was grounded near the north-eastern coast of Newfoundland in the summer 
of 2000.  

5.2.2. Density and grain size 

The density of 49 ice specimens is indicated in Table 4. The weight was obtained with a 
high-precision scale and the volume was derived from the dimension of the specimens 

after machining. The grain size of the laboratory-made ice was determined from the 
examination of several thin sections. The longest dimension of the ten largest grains in a 
given section was averaged, giving values of 9.8 and 10 mm, respectively, for the ice 

grown from normal and coarse grain seeds. The average grain area was also obtained 
from these sections, with values of 12.3 and 16.6 mm2, respectively, for the ice made 

from normal and coarse seeds. The grain size of the iceberg ice has not been looked at in 
detail. In general, it varied somewhat and was significantly larger than the laboratory ice.  

Table 4: Density of ice specimens, in g/ml (accuracy: 0.002 

g/ml).  

Ice Type # of specimens Aver. density S.D.

Normal 11 0.912 0.002

Coarse 11 0.913 0.002

Bubbly 10 0.909 0.004

Iceberg 17 0.895 0.011  
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Additional information on grain size and shape for both laboratory and iceberg ice is 
available in Appendix 2. 

5.2.3. Testing 

Testing in compression under a confining load was conducted in the thermal laboratory 

of the Engineering Faculty at Memorial University. The parameters recorded included 
platen displacement, axial load, confining pressure and temperature. A Materials Testing 
Systems (MTS) test frame was fitted with a Structural Behaviour Engineering 

Laboratories Model 10 Triaxial Cell. The MTS system consisted of two servo-controlled 
hydraulic rams tha t applied axial load and confining pressure independently. The rams 

were controlled using MTS Test Star II software, operated on a 486 microprocessor-
based computer with an OS/2 platform. The computer and software also performed data 
acquisition for each test.  

A specimen was mounted on hardened steel end platens of the same diameter as the 
specimen and the assembly was then enclosed in a latex jacket to keep the confining 

medium (silicone oil) from penetrating the ice. The specimen assembly was then placed 
inside the triaxial cell, which was then closed and filled with silicone oil. The cold room 
was set to a target temperature, which was monitored using RTD sensors located within 

the confining vessel. The pressure was therefore raised in steps to the targe t level, so that 
adiabatic heating of the oil due to pressurization would not increase by more than 2oC. 

Inclusion of temperature probes within the specimen showed that the ice needed an 
additional two hours, once the target pressure was achieved, to equilibrate to the 
temperature of the oil. 

The specified creep load, ranging between 56 and 59KN (depending on specimen 
diameter), was applied within 0.1 second.  It remained at that level until the axial 

deformation reached 35 to 44% true strain. In some cases, specimens failed without 
yielding any creep data. This usually occurred with specimens machined from iceberg 
ice. At the end of each test the axial load was quickly removed and the confining pressure 

was released gradually. The specimen was removed from the cell immediately after 
testing.  

5.3. Results 

5.3.1. Overview of testing 

Testing took place over a period of two years (between August 1999 and June 2001). A 

total of 55 successful tests have been done: 37 with laboratory-produced ice and 18 with 
iceberg ice. Hydrostatic pressures ranged from 10 to 70 MPa. Temperatures ranged 

between -26 to -6oC. Deviatoric (axial) stress was set at 15 MPa at the beginning of all 
tests but decreased substantially upon increase in surface area at large strains. No other 
deviatoric stresses were used, which allowed us to focus on the effects of pressure and 

temperature while limiting the scope of the research to a manageable size. 
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Figure 14: Plots of natural logarithm of minimum strain rate as a 

function of 1/T (deg. K) for five levels of hydrostatic pressure. 

The plot at the lower right is the variation of activation energy, 

determined from the linear regression on the five plots, with 

respect to the hydrostatic pressure. Square symbols are 

laboratory-made ice (black: normal seed, blue: coarse seed, 

green: air entrapment in specimen); Red triangles are tests with 

iceberg ice. Black lines are linear regression on results from tests 

with laboratory ice; red lines are a standard deviation above and 

below this regression. 
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Figure 15: Plot of  minimum strain rate as a function of 

hydrostatic pressure for all tests. The data is corrected for a 

temperature of -10
o
C with the linear regressions in Figure 14. 

The data from other studies (Jones 1982, Durham et al. 1983, 

Kalifa et al. 1989, Rist and Murrell 1994 and Mizuno 1998) were 

obtained from constant strain rate tests (see text).  

5.3.2. Minimum strain rate and activation energy 

Plots of the natural logarithm of the minimum strain rate as a function of 1/T (oK-1) are 
shown in Figure 14. Tests on both laboratory ice and iceberg ice are shown. An increase 

in temperature (towards the left on the x-axis) results in an increase in strain rate in all 
plots. No significant differences is seen between the three categories of laboratory ice (a 

larger number of tests would be required to verify this statement). The tests done with 
iceberg ice tend to have a higher minimum strain rate at a given temperature.  

The activation energy was derived at each confinement level. This is shown in the lower 

right diagram of Figure 14. It shows a slight decrease in value at mid-range, followed by 
a drastic increase at the higher pressures. The results of all tests were corrected with the 
Arrhenius formulation for a temperature of –10oC, and are plotted in Figure 15. The 

strain rate appears to decrease slightly with increasing pressure and increases drastically 
upward of about 50 MPa. Test results for iceberg ice are also shown in Figure 16, and 

plotted together with the test results with laboratory ice in Figure 17. Overall, the 
minimum strain rate for iceberg ice is higher than that for laboratory ice.  

The creep response of ice with a stress of 15 MPa was not found elsewhere in the open 

literature. Hence, a comparison between our test results and that of others was done with  
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Figure 16: Plot of  minimum strain rate as a function of 

hydrostatic pressure for all tests. The data is corrected for a 

temperature of -10
o
C with the linear regressions in Figure 14. 

The data from Gagnon and Gammon were obtained from 

constant strain rate tests (see text). 

the information available on constant strain rate tests. Constant strain rate used for tests in 
other studies leading to an ultimate strength ranging between 14 and 16 MPa were 

gathered and plotted on Figure 15 and Figure 16. Most were done at the lower levels of 
hydrostatic stress. A reasonable agreement with our data is obtained. Figure 18 shows a 
similar trend for the accelerated creep (this data is part of an on-going damage analysis). 
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Figure 17:A combination of the plots shown in Figure 15 and 

Figure 16. Circles: Laboratory ice; Triangles: Iceberg ice. 
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Figure 18: First slope(Phi) of accelerated creep (segment B in 

Figure 13) as a function of hydrostatic pressure. This also shows 

a trend similar to that found in Figure 17. 
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6. Summary 

The following observations can be made from the results reported herein.  

• Laboratory-made ice displays a slight decrease in minimum strain rate up to mid 
pressure levels but becomes significantly higher at high pressures, where it is 

characterized by a larger scatter. A similar trend was shown in other studies but it is 
here better defined for a pressure range believed to be representative of field 

conditions. 

• The activation energy displays a small increase up to mid pressure range and 

increases substantially at the highest levels of hydrostatic pressure. The values for 
activation energy is in agreement with that documented in other studies. This trend in 
the values of the activation energy has not been documented elsewhere. 

• Iceberg ice displays a larger scatter than laboratory-made ice and is generally weaker. 
It appears to have the same pressure and temperature dependency.  

7. Implications for ice-structure interactions 

These results reveal that the shearing resistance of ice is substantially lower at hydrostatic 

pressures exceeding 40 to 50 MPa. The radical increase in activation energy concurrent 
with the mechanical weakening of the ice points out to deformation mechanisms of a very 
different nature than those operating at lower levels of hydrostatic pressure. An increase 

in activation energy is also documented in ice towards its melting point at atmospheric 
pressure (Mellor and Testa 1969, Barnes et al. 1971, Mizuno 1992). This is attributed to 

the presence of liquid at grain boundaries. Similarly, when ice approaches its pressure 
melting point, melting is expected to occur along grain-boundaries, possibly at the 
junction of grains that are not favorably oriented for crystal slip. Recrystallization is 

another mechanism that is observed in ice deformed at higher levels of hydrostatic 
pressure (Meglis et al. 1999). This mechanism takes over the generation of 

microfractures, which predominates at the lower pressures.  

The complex stress state existing in a floating ice feature, such as an iceberg, when it 
collides with an engineered structure involves a substantial degree of confinement and the 

development of high pressure zones (Jordaan et al. 1999, Jordaan 2001). These zones 
generate stresses up to 70 MPa (Frederking et al. 1990) – thus enabling the ice to 

puncture the hull of a ship. They are randomly distributed in space and are associated 
with a cyclical pattern of loading caused by repeated collapse within the zones. The work 
described in this report may indicate that the collapse of these zones is accompanied, and 

perhaps even controlled, by failure of the ice in the centre of the zone - where the 
hydrostatic pressure is highest.  

The higher scatter of the data obtained from iceberg ice is expected, considering the 
inhomogeneous nature of this material. The use of good quality laboratory-produced ice 
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specimens may serve as an upper bound. 

8. Future work 

The use of minimum strain rate as a means of monitoring the relative compliance of the 
material provides an indication of its behaviour at a low level of strain. It may not be as 

relevant when trying to describe the deformation of the ice along the interface with an 
indentor, where it is believed to have undergone a significant amount of damage (Jordaan 
et al. 1999, Jordaan 2001). A better approach for this purpose is to address the 

deformation of ice at higher levels of strains (exceeding a few percent) and rely on state 
variables that retain a memory of previous deformation increments. This research is 

currently on-going. It will take into account the results of the testing programme 
described herein and will implement FEM algorithms to model numerically the 
deformational behaviour of ice under various loading conditions. It will follow-up on the 

work documented by Xiao and Jordaan (1996) and Jordaan et al. (1999). A new 
formulation will also be devised, that will take into account the effect of temperature and 

deviatoric stresses on the damage parameters. 
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Appendix 1 

 

Previous investigations on the triaxial testing of ice, arranged in 
chronological order by date of reference 
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Investigator(s) 

Ice 

type 

 

Test 

Max. Pc 

(MPa) 

Max. 

Dev. 

(MPa) 

Log10  strain 

rate  (s
-1

) 

Temp. 

(
o
C) 

 

Observations 

Rigsby 1958 L,M,F CS 31 0.26  -20 to -1 A higher temperature leads to higher shear strain rate. The 

latter is independent of hydrostatic pressure for a given 

difference between ice temperature and melting point. 

Goughnour 

and 
Andersland 

1968 

L,P,F CR 0.7  -3.9, -3.6 -12, -4 Strength increases with pressure at high strain rates, but 

varies little at the lower rate. Effect of load history 
investigated. 

Haefeli et al. 

1968 

L,P,F CS 30 0.08  -8.1 to 

-5.9 

Higher confinement leads to higher creep rate of granular ice 

for a given ice temperature. This rate decreases again upon 

decrease in temperature equivalent to depression of pressure 
melting point. 

Haynes 1973 L,G,F  0.2  -5 -7 Tensile strength tests. Axial stress delivered by confinement 
medium. Various confinement/axial stress ratios used. Yield 

stress decreases with increase in ratio.   

Simonson et 

al. 1975 

L,P CR 200(ii)  -4 to 0 -10 Increase in strength with increasing strain rate. Decrease in 

strength with increase in hydrostatic pressure. Increase of 

pressure alone (no deviator) induces reduction in porosity, 
decrease in Young's modulus and melting  of ice at 100 MPa. 

Jones 1978, 
1982 

L,G,F CR 85  -5.9 to 

-1.9 

-12 Strength increases up to 25-30 MPa confinement but 
decreases slightly with further increase in confinement. This 

trend is more evident for higher strain rates. Stress exponent 

higher for unconfined than for confined. Confinement induces 
ductile (as opposed to brittle) deformation. 

Panov and 
Fokeev 1981 

L,P,S / 
N,S 

 12(i) 20  -23 to -
1.9 

Strength increases with confinement. Confinement is a ratio 
of axial loading. 
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Haüsler 1981 L,C,S CR (iii)  -3.7 -10 Strength vs stress ratios, and  projection of a failure surface. 

Jones and 

Chew 1983 

L,G,F CS 60 0.47  -10 Minimum creep rate is lowest at 15 MPa confinement then 

increases upon further increase in confinement. Activation 
volume discussed. 

Durham et al. 
1983 

L,G,F CR 350  -5.5 to 
-3.5 

-196 to 
-15 

Mapped brittle-ductile transition. Strength of granular ice 
increases with confinement at both end of temperature scales 

to confinements of 50 MPa.  It then levels (for brittle 

behaviour) or drops (ductile behaviour) at higher 
confinements. Low temperature causes strength to increase. 

Enthalpy variation with temperature. 

Nawwar et al. 

1983 

L,C,S CR 2.8  -5.3 to -

1.2 

-2 to -20 Linear dependency of strength on confining pressure above 

1MPa. At a confinement of 2.8 MPa the strength is about 2.3 

times the uniaxial strength.  

Kirby et al. 

1985 

L,G,F CR 50  -6.5 to -

2.5 

-120 to -

5 

Identification of three flow regimes at different temperature 

intervals. Variation in activation energy discussed. 

Nadreau and 

Michel 
1986a,b 

L,G,F 

/ 
L,G,S 

/  I 

CR, 

CS 

70 not 

provid
ed 

-6 to -4 -20,-10, 

-5, -3 

Glen's exponent n decreases with increase in confinement. 

Increase of maximum shear stress up to 15-20 MPa 
confinement followed by decrease at higher confinement.  

Blair 1988 1Y CR 50  -2 to 3.3 -20 to -8 Axial strain as a function of hydrostatic pressure. Strength 

increases with mean stress up to 7.5 MPa and levels off at a 

higher confinement. Decrease in strength from 10-2s-1 to 
0.5 s-1and levelling off at higher strain rate.  

Rist et al. 1988 L,G,F CR 30  -4, -3, -2 -20 Variation of failure mode with confinement. Strength 
increases with confinement for all strain rates.  

Beeman et al. 
1988 

L,G,F CR 250  -3.8, -2.7, 
-1.7 

-196, -
183, 

-158 

Investigations of friction on 45 deg. saw cuts surfaces. 
µ = 0.55 and 0.20 below and above 10 MPa, respectively, of 

confining pressure. Independent of temperature and average 

sliding velocity. 
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sliding velocity. 

Sammonds and 

Murrell 1989, 
Sammonds et 

al. 1989 

 >1Y CR 30  -6 to -2 -40, -20, 

-10 

Modes of failure described. Comparison of data with failure 

surfaces. Pressure dependence of  fracture strength only for 
lowest temperature. 

Cox and 

Richter-Menge 

1988 

>1Y CR 20(i)  -5, -3 -20, -5 Constant ratio between radial and axial stress. Classification 

of stress-strain curves. Strength increases with increase in 

confinement and strain rate, and decreasing temperature.  

Kalifa et al. 

1989 

L,G,F CR 10  -4.6 to -3 -10 Confinement increases the deviatoric stress level and the 

strain when the first crack is observed. The cracks tend to 
form parallel to the largest stress deviator. Intra- vs 

intercrystalline cracks investigated. 

Stone et al. 

1989 

L,G,F CR,D 5  -4.3, -4, -3 -10 Damage, defined as change in apparent elastic moduli, is 

increased by confinement. Flow stress decreases and 

stabilises with repeated loading.  

Mae and 

Azuma 1989 

M,F  / 

P,F 

 56(ii)  -7 -20 to -5 Stress relaxation tests on crystals. Activation volume. Effect 

of hydrostatic pressure on flow law of polycrystalline ice. 
Hydrostatic stress hardens crystals but softens polycrystals. 

Golubov et al. 
1990 

L,P,S CS 7(ii) 2.4  -5 Both strength (but not CR) and creep tests reported. Strength 
increases by a factor of 2.5 from lowest to highest hydrostatic 

pressure. Increase in creep rate with decrease in pressure. 

Volume strains discussed. Visco-elastic theory presented.   

Richter-Menge 

1991 

1Y CR 20(i)  -5, -3 -10 Constant ratio between radial and axial stress. Stress exponent 

not affected by confinement. Strength, strain at failure and 
initial tangent modulus increase with confinement for all 

orientation of columnar grained specimens. Classification of 

stress-strain curves. 

Nadreau et al. 

1991 

L,C,F CR 2.85  -5.5 to 

-1.4 

-20, -10, 

-2 

Specimens cut parallel, perpendicular and at an angle with the 

columnar structure. Strength increases with confinement and 
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1991 -1.4 -2 columnar structure. Strength increases with confinement and 
strain rate. Tear drop failure envelope discussed.  

Schulson et al. 
1991 

L,G,F CR (iii)  -3 -40 Fracture stress increases with confinement ratio. Brittle 
mechanisms discussed and cracking mechanism presented. 

Murrell et al. 
1991 

L,G,F 
/ >1Y 

CR 30  -5 to -2 -40, -20, 
-10 

Brittle and ductile failure described, through specimen yield 
mode and acoustic emission. Increase in strength with 

confining pressure (up to 10-15 MPa) is more significant at 

higher strain rate. 

Mizuno 1992 L,G,F CS 35 3  -10 to -

0.8 

Accelerating creep, grain growth and preferred crystal 

orientation followed by strain rate reduction and grain 
refinement. Interpretation of minimum creep rate in terms of 

homologous temperature. Activation enthalpy is higher above 

-6oC and for higher pressure. 

Kalifa et al. 

1992 

L,G,F CR,D 10  -5.2 to -

2.3 

-10 Crack density decreases and peak stress and corresponding 

strain increase with confinement. At higher strain rates, the 
strength of ice decreased with increase in grain size. Relative 

contribution of elastic strain to total strain is reduced at higher 

confinement assuming damage does not affect elastic 
modulus. 

Rist and 
Murrell 1994 

L,G,F CR 46  -5 to -2 -40 to -5 Cracking activity mapped as a function of confinement and 
strain rate. At high strain rate, strength increases up to 10 

MPa confinement, above which it becomes pressure-

independent. At low strain rate, it is mostly pressure 
independent. Failure modes, activation energy and friction. 

Rist et al. 1994 L,G,F CR,D 30  -4, -2 -20 Shear fracture strength weakly dependant on confinement. 
Crack sliding not observed. No effect of damage on fracture 

strength. Pressure prevents cracking and reduce post-failure 

drop, despite 4oC decrease in pressure-melting point. 

Gagnon and 

Gammon 1995 

I CR 14  -4.3 to -

1.3 

-16 to -1 Variation of failure mode mapped with pressure-strain rate. 

Strength increases with decreasing temperature, increasing 
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Gammon 1995 1.3 Strength increases with decreasing temperature, increasing 
strain rate up to 5x10-3 s-1, and increase in confinement at 

lower temperatures. Friction and activation energy discussed.   

Weiss and 

Schulson 1995 

L,G,F CR (iii)  -3 -40, -20, 

-10 

Brittle to 'pseudo'-ductile failure of granular ice ice under 

various loading configurations. At low confinement, failure 

stress increases with confinement. Role of boundary 
conditions in ice failure at high confinement. Failure stress 

related to the boundary conditions.  

Cole 1996 L,M,F CS 19 0.33  -10 Small variations of steady-state strain rate with axial load and 

pressure. 

Rist 1997 L, M / 

L,G 

CR 20  -3, -2 -20, -10 Elastic-brittle failure mode of crystals with different 

orientations and polycrystals. Correspondence of shear and 

normal stresses. Frictional sliding along yield surfaces 
investigated. 

Gratz and 
Schulson 1997 

L,C,S CR (iii)  -2.2 -10 Brittle failure of columnar grained ice under various loading 
configurations. Three regimes of behaviour described. High 

sensitivity of strength to confining stress.  Frictional cracking 

mechanisms. 

Stone et al. 

1997 

L,G,F CS,  

CR, 
D 

20 7.65 -4 -10 Confinement suppresses cracking in favour of 

recrystallisation and void formation. Creep enhancement due 
to damage more important when damage done under triaxial 

conditions. Pressure reduction leads to increase in 

deformation.  

Melton and 

Schulson 
1995, 1997, 

1998a,b 

L,C,S CR (iii)  -4.4 -10 Ductile failure of columnar grained ice under various loading 

configurations. Strength independent of along-column 
confinement under small across column confinement but 

increases with along  column stress at high across column 

confinement. 

Mizuno 1998 L,G,C,

F 

CR 50  -3.5 to -

1.3 

-11 Peak in strength at mid-confinement for high strain rate. This 

peak increases with strain rate and grain size. Internal 
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F 1.3 peak increases with strain rate and grain size. Internal 
structure discussed. 

Sammonds et 
al. 1998 

>1Y CR 30  -6.3 to -2 -40 to -3 Failure modes. Pressure dependency of failure modes across 
brittle-ductile transition. Frictional sliding investigated.  

Shear fracture weakly pressure dependant at -20oC and above, 

stronger dependency at -40oC up to 14 MPa confinement. 
Fracture toughness investigated. 

Melanson et al. 
1999a 

L,G,F CS, 
D 

60 24  -10 High strains achieved to investigate tertiary creep behaviour. 
Deformation described by a damage parameter whose rate 

decreases at mid pressure range and increases again at higher 

pressure.  Constitutive model presented. 

Schulson and 

Gratz 1999 

L,C,F CR (iii)  -2.2 -10 Brittle failure of columnar grained ice studied with various 

loading configurations. Similar mechanisms to those observed 
in saline ice at same conditions (Gratz and Schulson 

1997).'Splay' cracking mechanism described. 

Melanson et al. 

1999b 

L,G,F CR 20  -4, -2 -10 Higher peak stress at high strain rate. Reduction of grain size 

observed between strain at failure and 3-5% strain, stabilises 

upon further deformation.  

Meglis et al. 

1999 

L,G,F CS,D 60 25  -10 to -8 Stress exponent independent of confinement  and strain level. 

Viscosity decreases with strain up to 44%. Microcracking and 
dynamic recrystallization predominate at low and high 

confinement, respectively. Characterisation of microstructure 

with strain and confinement. 

Barrette and  

Jordaan 2001 

L,C,F CS 70 30  -10 Viscoelastic compliance highest at low and high pressure 

ranges, with a minimum in between. The morphology of 
shear fractures at low and high confinement is compared.  

(i) Estimated. (ii) Hydrostatic (mean) stress. (iii) Multiaxial, brush-type platens
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Appendix 2 

 

Photography of ice specimens and internal structure 
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a.

c.b.

 

Figure 19: Thin sections of laboratory-grown ice. a) Cross section of a 

cylindrical specimen viewed under crossed-polarized light. The section 

is 70 mm in diameter. The dashed line separates the ice in the specimen 

from the ice used to weld the section onto the underlying glass plate. 

b) Another example at larger scale and under the same light conditions 

(scale in mm). c) Same as in (b), but with the addition of side 

(reflected) light, showing few internal defects such as air entrapment in 

the form of bubbles, fractures, etc..   
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Figure 20: Thin sections of undeformed iceberg ice viewed under 

cross-polarized light (left) and with the addition of side (reflected) light 

(right)(scale in mm). Note the abundance of sub-millimetre size air 

inclusions and various sets of linear (planar in three dimensions) 

features. The crystals display a wide range in size (unlike in 

laboratory-grown  ice – compare with Figure 19) and serrated 

boundaries. 
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Figure 21: Ice specimens made from laboratory-produced ice. Initial 

size for all specimens (both this ice and iceberg ice) was 155 mm in 

length and 70 mm in diameter (the pencil is for scale). Left, 

undeformed; right, deformed to 33% true strain at 50 MPa confinement 

and –10
o
C. Note the final barrel-shape configuration. 
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10 mm
 

Figure 22: Thin section of deformed specimen shown in Figure 21 

(part thereof). The dashed line separates the ice in the specimen from 

the ice used to weld the section onto the underlying glass plate. The 

internal structure is characterized by a strong recrysallization texture. 

The nature of the corrugations at the specimen’s surface is displayed.  
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20 mm

 

Figure 23: Ice specimens made from iceberg ice. Left, undeformed; 

right, deformed to 27% true strain at 7 MPa confinement (-10
o
C). Note 

the ‘flaw’ pattern in the undeformed specimen and the inhomogeneous 

nature of the deformation. The chalky white colour is indicative of 

widespread microcracking. Unlike the example shown in Figure 27, 

these flaws did not cause the ice to rupture. 
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20 mm

 

Figure 24: Thin section of the specimen shown inFigure 23. Left: 

Transmitted light only; right, side (reflected) light only of the central 

portion, showing intense cracking pattern. Grain refinement occurs in 

a ‘band’ located in the centre of the specimen, dipping about 45 deg. to 

the right from the horizontal (this feature may also be observed in the 

specimen).   
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a.

b. c.
 

Figure 25: (a) Specimen of iceberg ice deformed to 31% true strain at 

a confinement of 50 MPa, -10 
o
C.. (b) Thin section of whole specimen 

showing grain refinement along planar zones. (c) Enlarged view of (b) 

with side (reflected) light, showing the nature of the grain refinement. 

It consists of new crystals but where fracturing is also present. Scale in 

mm.  
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Figure 26: Ice specimen from laboratory-produced ice tested at high 

confinement. The pencil can be seen through the ice, a feature that is 

characteristic of strongly recrystallized ice that displays very little 

microcracking. The lighter zone near the upper surface is caused by the 

presence of air entrapment in the specimen before deformation.  
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Figure 27: Example of an unsuccessful test. A planar ‘flaw’ near the 

top end of the specimen (left) was unable to withstand the axial load on 

the specimen, leading to immediate collapse. The minimum strain rate 

was not attained and no data resulted from this test. Pencil and finger 

for scale. 
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Appendix 3 
 

Data Tables  
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LABORATORY ICE 

 

test # 

 

Conf. 
(MPa) 

 

Axial stress 

(MPa) 

 

Pressure 
(MPa) 

 

Temperature 

(oC) 

Non-Corrected 

Minimum 
Strain rate 

ln(sec-1) 

Corrected 
Minimum 

Strain rate(*) 

ln(sec-1) 
i010531 30 15 35 -10.8 -7.15 -7.10 

i010528 65 15 70 -9.5 -5.85 -5.80 

i010525 65 15 70 -18.0 -8.30 -8.25 

i010524 60 15 65 -16.8 -8.10 -8.10 

i010523 60 15 65 -11.8 -8.20 -8.15 

i010510 50 15 55 -9.6 -6.95 -6.90 

i010509 30 15 35 -11.4 -7.30 -7.24 

i010425 30 15 35 -21.4 -8.80 -8.38 

i010307 60 15 65 -20.3 -8.85 -8.80 

i010306 10 15 15 -9.7 -7.32 -7.30 

i010305 10 15 15 -26.7 -9.40 -9.35 

i010303 65 15 70 -25.0 -9.50 -9.45 

i010302 60 15 65 -25.3 -9.45 -9.40 

i010229 50 15 55 -20.6 -8.65 -8.60 

i010227 50 15 55 -16.6 -8.40 -8.25 

i010226 50 15 55 -11.6 -7.70 -7.68 

i010223 10 15 15 -6.7 -6.57 -6.54 

i010222 60 15 65 -15.3 -8.04 -8.00 

i010221 65 15 70 -24.0 -8.50 -8.45 

i010220 60 15 65 -24.3 -8.90 -8.80 

i010219 60 15 65 -18.3 -9.14 -9.10 

i010215 65 15 70 -20.0 -8.94 -8.90 

i010113 65 15 70 -8.5 -5.40 -5.35 

i001031 65 15 70 -14.0 -7.75 -7.65 

i001026 65 15 70 -9.3 -5.20 -5.15 

i000908 10 15 15 -20.7 -8.52 -8.50 

i000906 10 15 15 -10.7 -7.30 -7.35 

i000630 60 15 65 -9.3 -5.70 -5.40 

i000623 50 15 55 -24.6 -9.35 -9.15 

i000621 30 15 35 -24.4 -9.65 -9.60 

i000619 10 15 15 -15.7 -7.90 -8.00 
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i000616 10 15 15 -5.5 -6.01 -5.90 

i000614 30 15 35 -15.4 -8.85 -8.80 

i000612 50 15 55 -4.6 -6.10 -6.10 

i000609 30 15 35 -5.4 -6.80 -6.65 

i000313 50 15 55 -13.6 -8.39 -8.35 

i000308 50 15 55 -10.6 -8.55 -8.45 

 

ICEBERG  ICE 

 

test # 
 

Conf. 
(MPa) 

 
Axial stress 

(MPa) 

 

Pressure 

(MPa) 

 
Temperature 

(oC) 

Non-Corrected 
Minimum 

Strain rate 

ln(sec-1) 

Corrected 
Minimum 

Strain rate(*) 

ln(sec-1) 
i010623 65 15 70 -25.0 -7.90 -7.80 

i010622 50 15 55 -25.0 -7.40 -7.20 

i010621 10 15 15 -25.0 -8.60 -8.35 

i010620 60 15 65 -20.0 -8.30 -8.20 

i010616 50 15 55 -20.0 -7.10 -7.00 

i010615 65 15 70 -20.0 -6.90 -6.80 

i010614 30 15 35 -26.0 -7.40 -7.30 

i010613 10 15 15 -16.0 -6.70 -6.85 

i010612 60 15 65 -15.5 -7.30 -7.20 

i010608 30 15 35 -19 -6.65 -6.60 

i010507 50 15 55 -14.6 -7.20 -7.30 

i010501 10 15 15 -6.2 -5.76 -5.75 

i010427 65 15 70 -14.0 -7.05 -7.00 

i010426 10 15 15 -10.7 -5.18 -5.16 

i010420 60 15 65 -11.3 -6.41 -6.40 

i010216 65 15 70 -10.0 -5.06 -5.03 

i010213 30 15 35 -10.6 -7.10 -7.00 

i000501 50 15 55 -8.6 -6.40 -6.25 
(*) The correction was to remove the effect of ‘barelling’ in the specimen (keeping in mind that the tests were 
done under constant load, not constant stress). This correction is approximate and was done by assuming a 

constant volume for a widening, but straight-sided, cylinder and determining the increase in diameter for each 
increment of axial strain. The effective stress was then obtained by dividing the load applied to the specimen by 
this new area. The minimum strain rate was then increased correspondingly using Glen’s law and a stress exponent 

of 4. This resulted in the rate shown in this column. The correction is minimal, however, and could probably be 

ignored for the small amount of strain (about 1%) required to reach the minimum strain rate. 
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