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ABSTRACT.  A computational study of soot formation in an undilute axisymmetric laminar 
ethylene-air coflow jet diffusion flame at atmospheric pressure was conducted using a detailed gas-
phase reaction mechanism and complex thermal and transport properties. A simple two-equation 
soot model was employed to predict soot formation, growth, and oxidation with interactions 
between the soot chemistry and the gas-hase chemistry taken into account. Both the optically thin 
model and the discrete-ordinates method coupled with a statistical narrow-band correlated-k based 
wide band model for radiative properties of CO, CO2, H2O, and soot were employed in the 
calculation of radiation heat transfer to evaluate the adequacy of using the optically thin model. 
Several calculations were performed with and without radiative transfer of radiating gases and/or 
soot to investigate their respective effects on the computed soot field and flame structure. Radiative 
heat transfer by both radiating gases and soot were found to be important in this relatively heavily 
sooting flame studied. Results of the optically thin radiation model are in good agreement with 
those obtained using the wide band model except for the flame temperature near the flame tip. 

 
 

INTRODUCTION 

 
Soot formed in the fuel rich regions of hydrocarbon diffusion flames plays an important role in 
flame radiation and fire spread through the mechanism of radiation heat transfer. It is therefore of 
great importance to develop modeling capabilities to accurately predict soot formation in flames in 
order to effectively control soot in practical applications. Despite the significant progress made 
towards the understanding of the mechanisms of soot inception, growth and oxidation in the last 
three to four decades, these processes have not been fully understood. Consequently no universal 
soot model exists that is equally applicable for different fuels and for different operating conditions. 
The detailed soot models developed by Frenklach and co-workers [1-3] consider some 600 
elementary reactions and 200 species and such models are currently not feasible to be implemented 
into a multidimensional flame code to predict soot formation. Various semi-empirical soot models 
have been developed, improved and used extensively in laminar flame [4-15] and turbulent flame 
[16-19] calculations with some success. 
 

Detailed calculations of generic multidimensional laminar diffusion flames are beyond currently 
available capabilities due to limited computer resources. On the other hand, numerical calculations 
in one-dimensional counterflow flames, though simple and relatively easy to compute, are not 
adequate or even impossible to validate some important aspects of soot models such as the visible 
flame height, coupling of radiation and soot concentration, and the effect of a multidimensional 
flow field. The strong coupling between soot and radiation should be studied in multidimensional 
flames since radiation is inherently a multidimensional phenomenon. The two-dimensional 



 

 

axisymmetric coflow laminar jet diffusion flame is an ideal configuration to study these processes 
since it is simple enough to allow numerical calculations using detailed gas-phase chemistry and 
complex transport and thermal properties. Therefore, considerable research efforts have been 
undertaken to model soot formation in axisymmetric coflow jet diffusion laminar flames using 
simplified soot formation models. 
 
Accurate calculations of soot formation in multidimensional flames are very challenging since each 
of the physical and chemical process involved needs to be correctly modeled. The phenomena 
associated with soot formation and oxidation include fluid dynamics, complex transport and thermal 
properties of species, finite rate chemistry of gaseous reactions, finite rate chemistry of soot 
processes, and non-grey radiation heat transfer by soot and gaseous species. While the importance 
of the coupling of radiation and soot kinetics in sooting flames has been recognized and 
demonstrated in the studies mentioned above, these studies either employed detailed gas-phase 
chemistry but the simple optically thin model for radiation [10,13,14,15] or very crude gas-phase 
chemistry and a more sophisticated treatment for radiation [8,12]. Modeling of soot formation in a 
coflow laminar diffusion flame using both a detailed gas-phase chemistry and a non-grey radiation 
model has not been reported, perhaps due to the complexity of the problem. Although it is true that 
gas radiation is dominant over soot radiation in lightly sooting flames [12] and the opposite may be 
true for heavily sooting flame, the relative importance of gas radiation and soot radiation in a 
moderately sooting flame has not been investigated. In addition, the use of the optically thin model 
in modeling such a flame has not been quantitatively evaluated. 

 
In the present study, numerical calculations of soot formation in an axisymmetric coflow laminar 
diffusion ethylene-air flame at atmospheric pressure were conducted using a modified version of the 
two-equation soot model of Leung et al. [5] to predict soot formation, growth and oxidation. This 
moderately sooting diffusion flame was chosen for the reason that radiation heat transfer by both 
radiating gases and soot could be important. Computationally we employed the primitive variable 
method in which the fully elliptic governing equations for conservation of mass, momentum, 
energy, gaseous species and soot mass fraction and number density were solved with detailed gas-
phase chemistry and complex thermal and transport properties. The effects of soot inception, 
growth and oxidation on gas-phase chemistry were accounted for. Radiation heat transfer was 
calculated using both the optically thin model and the discrete-ordinates method coupled with a 
statistical narrow-band correlated-K (SNBCK) based wide band model for radiative properties of 
CO, CO2, H2O and soot. The objectives of this study are (1) to provide a quantitative evaluation of 
the optically thin model, and (2) to quantify the relative importance of gas radiation and soot 
radiation.   
 

MODEL FORMULATION AND NUMERICAL METHOD 

 
Governing equations 

 
The governing equations of mass, momentum, energy and species in axisymmetric cylindrical 
coordinates (r, z) given in Ref.[20] were solved in the present study. The gravitational term is 
included in the momentum equation. Correction velocities are used to ensure that the mass fractions 
sum to unity. The thermophoretic velocities of soot are included in the calculation of the correction 
velocities.  
 
Soot Model 

 
A modified version of the semi-empirical two-equation formulation of soot kinetics [5] was used to 
model soot nucleation, growth and oxidation. The transport equations for the soot mass fraction and 
number density are given as 



 

 

 ( ) ( ), ,

1s s
T r s T z s m

Y Y
v u r V Y V Y S

r z r r z
ρ ρ ρ ρ∂ ∂ ∂ ∂+ = − − +∂ ∂ ∂ ∂    (1) 

                         ( ) ( ), ,

1
T r T z N

N N
v u r V N V N S

r z r r z
ρ ρ ρ ρ∂ ∂ ∂ ∂+ = − − +∂ ∂ ∂ ∂                (2) 

where Ys is the soot mass fraction and N is the soot number density defined as the particle number 
per unit mass of mixture. Quantities VT,r and VT,z are the thermophoretic velocities of soot in r and z 
directions, respectively, and are calculated as  
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The source term Sm in Eq.(1) accounts for the effects of soot nucleation, surface growth and 
oxidation. The simplified soot nucleation and growth mechanisms proposed by Leung et al. [5] 
were followed which assume that acetylene is the only soot nucleation and growth species. The 
rates of nucleation and growth are given as  

 1 1 2 2( )[ ]R k T C H= , [kmol/m3/s]                   (4) 
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where f(As) denotes the functional dependence of soot surface growth on soot surface area per unit 
volume and [C2H2] is the mole concentration of acetylene. Following Leung et al. [5], we assume 
that the functional dependence is a square root relation, i.e. f(As) = As

0.5
. The soot surface area per 

unit volume is calculated as As=π(6/π)
2/3ρC(S)

−2/3
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2/3
 ρN

1/3 with the density of soot  ρC(S) taken to be 
1900 kg/m3. The nucleation and growth rates used in the present calculations are: k1 = 1000exp(-
16103/T) [1/s] and k2 = 1750exp(-10064/T) [m0.5/s]. These rate constants are different from those 
used by Leung et al. [5] and Fairweather et al. [16] for the reason given below. 
 
Neoh et al. [21] have investigated soot oxidation process in flames and found that the oxidation of 
soot by both O2 and OH is important and the relative importance of O2 and OH depend on the local 
equivalence ratio. The O radical also contributes to soot oxidation in some regions [22]. Therefore 
soot oxidation by all these three oxidative agents was taken into account in the present study. Soot 
oxidation was assumed to proceed through the following reactions 

O2 + 0.5C(S) → CO 
OH + C(S) → CO + H 
O + C(S) → CO 

The reaction rates per unit surface area of these three reactions (kg m-2 s-1) are given as 

2

2

2

3 120 (1 ) ,
1

A O

B O

Z O

k X
R k X

k X

χ χ  = + − +  
     

2

1

1 T

B O

k

k X
χ

−  = +   
                               (6) 

1/ 2
4 4 ( )OH OHR k T T Xϕ −=                (7) 

1/ 2
5 5 ( )O OR k T T Xϕ −=                            (8) 

where XOH and XO denote the mole fractions of OH and O, and ĳOH and ĳO are the collision 
efficiencies for OH and O attacking on soot particles. The rate of soot oxidation by O2 was based on 
the Nagle-Strickland-Constable model [23] with rate constants for R3 and R4 taken from Ref. [9]. 
The constant collision efficiency of 0.2 was assumed for both OH and O. The rate constants for R5 
were taken from Ref. [22].  
 
The source term SN in Eq.(2) represents the production and destruction of the number density of 
soot particles due to nucleation and agglomeration and is written as [5] 
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where NA is Avogadro’s number (6.022 x 1026 particles/kmol), ț is the Boltzman constant (1.38x10-

23 J/K), Cmin is the number of carbon atoms in the incipient carbon particle (700, which gives a soot 
inception particle diameter of about 2.4 nm), and Ca is the agglomeration rate constant. The typical 



 

 

values of Ca used in the literature are 3 [11,16] and 9 [5,19]. Almost all the present soot models 
assume that the soot number density decreases as a result of particle agglomeration into spherical 
aggregates. The only exception is perhaps the study of Ezekoye and Zhang [11] who investigated 
the effect of particle agglomeration by setting Ca to zero, i.e. to neglect particle agglomeration. It 
has been established experimentally that soot aggregates consist of more or less identical primary 
soot particles and the primary soot particle number density remains almost constant in the growth 
region [24]. In other words, primary soot particle coalescence (collisional growth to form spherical 
clusters) is not important and can be neglected. These experimental findings suggest that it is more 
realistic to neglect the destruction term of the soot number density by setting Ca to zero.  
 
The density of the mixture (including soot) was calculated using the following state equation  
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where pa is the ambient pressure (1 atm in this study), Ru the universal gas constant, and KK the 
number of gas-phase species considered. 
 
Radiation model 

 
In the present study the radiation source term in the energy equation was obtained using the 
discrete-ordinates method in axisymmetric cylindrical geometry described by Truelove [25]. The T3 
quadrature [26,27] was used for the angular discretisation. Spatial discretisation of the transfer 
equation was achieved using the finite volume method along with the central difference scheme. 

 
The statistical narrow-band correlated-K (SNBCK) based wide band model developed by Liu et al. 
[28,29] was employed to obtain the absorption coefficients of the combustion products containing 
CO, CO2 and H2O at each wide band. The spectral absorption coefficient of soot was assumed to be 
5.5fv/λ with fv being the soot volume fraction and λ the wavelength. The wide bands considered in 
the calculations were formed by lumping 10 successive uniform narrowbands of 25 cm-1, giving a 
bandwidth of 250 cm-1 for each wide band. The blackbody intensity at each wide band was 
evaluated at the band centre. The SNB parameters for CO, CO2 and H2O were those compiled by 
Soufiani and Taine [30] based on line-by-line calculations. At overlapping bands, the approximate 
treatment based on the optically thin limit developed by Liu et al. [31] was employed. To further 
speed up the calculations without losing accuracy, the 4-point Gaussian-Legendre quadrature was 
used to invert the cumulative distribution function to obtain the absorption coefficients based on the 
findings of Liu et al. [32]. The radiation source term was calculated by summing up contributions of 
all the 36 wide bands (from 150 cm-1 to 9150 cm-1) considered in the calculations.  

 

To evaluate the results of the optically thin model using those of the wide band model discussed 
above, numerical calculations were also conducted using the optically thin radiation model. Under 
the optically thin approximation, the radiation source term is calculated as 

                                      5 44r v pq Cf T k Tσ= − −                                                          (11) 

where C is a constant (3.337×10-10 which gives a power density in watts/cm3) calculated based on 
the spectral absorption coefficient of soot, σ the Stefan-Boltzmann constant and kp the Planck mean 
absorption coefficient of the gas mixture including contributions from CO, CO2 and H2O. The 
Planck mean absorption coefficients of these three species used in this work were calculated based 
on the SNB model given in Ref. [33].  
 

Numerical method 

 
The transport equations for mass, momentum, energy, gas-phase species, soot mass fraction, soot 
number density, and radiation intensity are closed with the equation of state and appropriate 



 

 

boundary conditions on each side of the computational domain. Diffusion terms in the conservation 
equations are discretized by the central difference scheme and convective terms are discretized by 
the upwind difference scheme. The SIMPLE numerical algorithm [34] was used to treat the 
pressure and velocity coupling. Governing equations of momentum, energy, soot mass fraction and 
number density were solved using the tridiagonal-matrix algorithm. Governing equations of the gas-
species were solved in a fully coupled fashion at every grid using a direct solver to speed up the 
convergence process [35].  

 
The gas-phase reaction mechanism used was basically GRI-Mech 3.0 [36]. The only modification is 
the removal of all the reactions and species related to NOX formation. The revised reaction scheme 
consists of 36 species and 219 reactions. All the thermal and transport properties are obtained by 
using the database of GRI-Mech 3.0 and the CHEMKIN codes. 
 

RESULTS AND DISCUSSIONS 

 
The laminar axisymmetric coflow C2H4-air diffusion flame at atmospheric pressure calculated in 
this study had been previously investigated experimentally in our laboratory [37,38]. The flame was 
generated with a burner in which pure ethylene flows through an uncooled 10.9 mm inner diameter 
vertical steel tube and the air flows from the annular region between the fuel tube and a 100 mm 
inner diameter concentric tube. The wall thickness of the fuel tube is 0.95 mm. The volume flow 
rates of the fuel and the air are 194 ml/min and 284 l/min, respectively. Both fuel and air are 
delivered at room temperature (294 K).  

 
The experimental results of Gülder et al. [38] show that the outer surface temperature of the fuel 
pipe was about 100 K higher than the room temperature due to flame heating, which imply that the 
fuel and air are heated to a temperature higher than 294 K due to heat conduction from the fuel 
pipe. Such a preheating effect was not considered. The computational grids and boundary 
conditions used in the calculations are shown in Fig.1. Non-uniform grids were used in both r and z 
directions to provide greater resolution in the large gradient regions without an excessive increase 
in the computing time. Very fine grids were placed between 0 and 1.2 cm in r direction. The 
computational domain consists of 102×60 cells. A parabolic laminar pipe flow velocity profile was 
assigned to the inlet velocity of the fuel stream. For the air stream, a boundary layer velocity profile 
was assumed inside the boundary layer (formed along the outer surface of the fuel pipe) and the 
uniform velocity was prescribed outside it. Unless otherwise stated, the SNBCK based wide band 
model was used to obtain the results presented below. The convergence criterion used in the 
calculations is that relative change of the peak soot volume fraction is less than 1×10-5. 

 
Figure 2 shows the measured [38] (using the CARS technique) and the predicted fields of 
temperature with various treatments of radiation heat transfer. The corresponding distributions of 
soot volume fraction are compared in Fig.3 with the maximum soot volume fraction indicated in 
each case. The experimental soot volume fractions were obtained using the laser extinction/Abel 
inversion technique. The predicted temperature field with both gas and soot radiation accounted for, 
Fig.2(b), is in qualitative agreement with the measured one. However, the predicted peak flame 
temperature (2015 K) and temperatures in the centerline region are more than 100 K lower than the 
measured values. In addition, the calculated maximum temperature annulus is thinner than the 
experimental one. The causes of these discrepancies may be attributed to (i) the effect of fuel 
preheating as mentioned above and (ii) use of the simplified soot model. The peak temperature 
predicted using the optically thin model, Fig.2(c), is only about 5 K lower than that of the band 
model. The centerline region temperatures are also underpredicted mainly due to neglect of 
radiation absorption by CO2 and to a lesser degree by CO, especially in CO burnout regions right 
above the flame tip (around and above z = 6 cm) where the concentration of CO2 is very high. The 



 

 

optically thin model underpredicts the temperature in these regions by more than 50 K compared to 
the band model results.  

 
When radiation by gases is neglected, Fig.2(d), the predicted temperature levels are in reasonably 
good agreement with those in Fig.2(b). However the peak flame temperature is now about 30 K 
higher and the temperatures in the upper central regions above z = 3 cm are also significantly higher 
by about 80 K, indicating that radiation by gases is also important and should be accounted for in 
the flame investigated. The hot spot at the centerline region at about z = 6.4 cm is a direct 
consequence of CO to CO2 conversion and the neglect of heat loss by CO2 radiation. The increased 
peak flame temperature at the lower annular region is attributed to the neglect of radiation heat loss 
by H2O whose concentration distributions correlate very well with temperature distributions. 

 
Comparison of results shown in Figs.2(d), 2(e) and 2(f) suggests that soot radiation is more 
important than gas radiation in this flame since it has a greater impact on the predicted temperature 
distributions. Neglect of soot radiation results in significantly higher temperatures at upper portion 
of the flame above z = 2 cm. If radiation by both the gases and soot is neglected, Fig.2(f), the peak 
flame temperature is about 123 K higher and temperatures in the upper centerline region are about 
400 K higher than those in Fig.2(b).  
 
The predicted distributions of soot volume fraction, Fig.3(b), are in qualitative agreement with the 
measurement, Fig.3(a). The peak values are in very good agreement. The major discrepancies 
between the prediction and the measurement are: (i) the predicted high-concentration soot annulus 
is thicker than the measured one, (ii) the predicted soot concentrations in the centerline region are 
much lower than the experiment and do not converge as in the experiment, and (iii) the predicted 
visible flame height is lower, which is believed to be the consequence of (ii). Use of the optically 
thin model, Fig.3(c), leads to a lower peak soot volume fraction and a slightly higher visible flame 
height. Neglect of gas radiation only, Fig.3(d), results in a much higher peak soot volume fraction 
and a slightly lower flame height. While neglect of soot radiation only, Fig.3(e), does not 
significantly affect the peak soot volume fraction. However, the visible flame height is greatly 
reduced. If radiation by both gas and soot is neglected, Fig.3(f), the visible flame height is further 
reduced and the peak soot volume fraction is higher compared to those in Figs.3(b) and 3(e). 
 
Results shown in Fig.3 indicate that neglect of gas radiation significantly increases the peak soot 
volume fraction but only slightly reduces the visible flame height. In contrast, neglect of soot 
radiation significantly reduces the flame height but only slightly lowers the peak soot volume 
fraction. Since soot distributions are the result of two competing processes: soot formation 
(nucleation and growth) and soot oxidation, it is important to analyze how gas and soot radiation 
affect these processes in order to understand the results shown in Fig.3. The predicted rates of soot 
nucleation, growth, and oxidation by OH are shown in Figs.4-6. The OH oxidation mechanism was 
found to be the dominant one in the present study. The rate of soot oxidation by OH is an order of 
magnitude higher than that by O atom and about two orders of magnitude higher than that by O2. As 
mentioned earlier, the high-concentration regions of the three radiating gases are in different parts 
of the flame: H2O is in the lower annular region of the high temperatures, CO2 is in the upper part 
of the flame tip (centerline region), and CO is just below CO2 and is formed by soot burnout. 
Therefore, gas radiation affects the flame temperatures in these regions. It is seen from Figs.4 and 5 
that soot nucleation and growth primarily occur in the inner region of the high-temperature annulus 
below about z = 3 cm. Therefore, gas radiation affects soot nucleation and growth through radiation 
heat loss by H2O in soot nucleation and growth regions. Neglect of gas radiation increases rates of 
soot nucleation and growth, Fig.4(c) and Fig.5(c), especially the growth rate. However, the rate of 
soot oxidation by OH in the upper part of the flame is only slightly increased, compare Figs.6(a) 
and 6(c). This is why neglect of gas radiation results in a much higher peak soot volume fraction 
and a slightly shorter visible flame height as shown in Fig.3(d). On the other hand, soot radiation 



 

 

primarily affects the flame temperatures in the upper part of the flame roughly above z = 2 cm, 
Fig.2(e). Therefore neglect of soot radiation enhances the rates of every process of soot, i.e. 
nucleation, growth, and oxidation, at relatively upper part of the flame above z = 2 cm. When soot 
radiation is neglected, not only the peak soot oxidation rate by OH increases, Fig.6(d), but also the 
region of high soot oxidation rate appears at a distance much closer to the burner exit, leading to a 
reduced residence time for soot particles to grow. The combined effects of soot radiation on rates of 
soot nucleation, growth, and oxidation explain why neglect of soot radiation yields a much short 
visible flame height, a lower high-concentration soot annulus and an almost unaffected peak soot 
volume fraction. 
 

CONCLUSIONS 

 
Numerical simulation of a coflow laminar diffusion C2H4-air flame at atmospheric pressure by a 
detailed gas-phase reaction mechanism, complex transport and thermal properties, and a simplified 
two-equation soot model was conducted. Numerical results show that the simulation captured the 
main features of the flame temperature and soot distributions. Soot nucleation, growth, and 
oxidation are all affected by gas and soot radiation. The effect of gas radiation on soot nucleation 
and growth is greater relative to its effect on soot oxidation. Neglect of gas radiation yields about an 
8% higher peak soot volume fraction and a slightly shorter visible flame height. Soot radiation is 
clearly more important than gas radiation in the flame investigated. Soot radiation affects soot 
oxidation by OH more than its effect on soot nucleation and growth through enhanced OH 
concentrations. Neglect of soot radiation leads to a much shorter visible flame height due to rapid 
soot burnout and an almost unaffected peak soot volume fraction as a results of two competing 
mechanisms: enhanced rates of soot nucleation and growth and reduced residence time for growth 
as a result of increased soot oxidation by OH. Use of the optically thin radiation model predicts a 
slightly lower (about 2%) peak soot volume fraction and a slightly higher visible flame height. The 
temperatures in the upper centerline region above the flame tip predicted by this model are more 
than 50 K lower, which may have a significant impact on the calculation of NOx emission from this 
flame. Overall results of the optically thin model are in good agreement with those of the band 
model in the calculation of the flame studied. 
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Figure 1.  Computational grid and schematic of the solution domain and boundary conditions. 
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Figure 2.  Comparison of measured and predicted temperature distributions with the peak values 
indicated. 
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Figure 3.  Comparison of measured and predicted soot volume fraction distributions with the peak 
values indicated. 
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Figure 4.  Comparison of predicted soot nucleation rates in mol cm-3 s-1 with the peak values 

indicated. 
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Figure 5.  Comparison of predicted soot growth rates in mol cm-3 s-1 with the peak values indicated. 
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Figure 6.  Comparison of predicted soot oxidation rates by OH in mol cm-3 s-1 with the peaks values 

indicated. 
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