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STEREOSELECTIVE SYNTHESIS OF NEO-C-GLYCOPEPTIDE BUILDING BLOCKS: 

TOWARDS A FLEXIBLE AND CONTROL-ORIENTED DESIGN AS 

PROBES FOR CARBOHYDRATE-PROTEIN INTERACTIONS 1 

Prabhat Arya,* Sylvain Dion, and George K. H. Shimizu 

Steacie Institute for Molecular Sciences 
National Research Council of Canada, Ottawa, Ontario, Canada, KIA OR6 

Abstract: Neo-C-glycopeptides (1-4) have been synthesized as building blocks to obtain higher neo-C- 
glycopeptides as probes for studying carbohydrate-protein interactions. A convergent approach for the synthesis 
of 4 has been developed, in which two galactose units are attached to a glycine derivative in a stepwise 
procedure (reductive amination followed by amide coupling) and finally coupling to the protected dipeptide 
having a free amino group on the side chain. © 1997 Elsevier Science Ltd. 

Individually weak, noncovalent interactions between protein receptors and carbohydrate ligands form the 

basis of recognition events that are fundamental to a vastly diverse range of intercellular processes. 2 Molecules 

capable of modulating or displacing these interactions offer a plethora of potential applications ranging from 

anti-viral agents, growth regulators to synthetic vaccines. Examples that are currently the focus of numerous 

zealous research efforts include: (i) mimics of Sialyl Lewis X, a cell surface tetrasaccharide that is a ligand for 

the endothelial leucocyte adhesion molecule, E-Selectin; 3 (ii) syntheses of compounds capable of blocking 

influenza virus haemagglutinin binding to cell surface sialic acid residues, the first step in infection of a cell by 

the virus; 4 (iii) the design of oligosaccharide constructs, which inhibit mammalian gamete adhesion in the zona 

pellucida (ZP). 5 It has been postulated that, in mouse ZP, the terminal saccharides involved in this recognition 

are galactose units c~-liuked to the penultimate sugars. 6 

In order to compensate for the weak forces that characterize carbohydrate-protein interactions, 2 both 

Nature, 7 and subsequent attempts by various groups to mimic Nature, 8 have employed multivalency as a tool to 

augment individual ligand-receptor interactions, the so-called "cluster effect". 2c However, equally significant to 

enhancing the binding avidity of carbohydrate mimics is the elucidation of the interactions that dictate the 

specificity of a given recognition event. In certain cases, after synthesis of a series of neoglycoconjugates, 

binding of the saccharide mimics has been used to infer structural details of the protein receptor and to illustrate 

the subtle nature of the complementary interaction. 9 

After several years of efforts in mimicking cell surface carbohydrates, the development of  flexible and 

appropriate designs of  scaffolds to present carbohydrate units in multivalent orientations appears to be an 

important milestone.2c,Sj Towards this goal, we are developing a flexible and control-oriented model for 

multivalent presentations of the terminal saccharides that couples the intrinsic structural variation provided by a 

peptide backbone l0 with the enhanced enzymatic stability offered by C-glycosidic linkages, ll In several cases, 

it has been illustrated that the terminal saccharide represents the minimum recognition motif for the protein 

receptor and that the penultimate sugar's main function is as a scaffolding to properly orient the terminal 

saccharide to maximize the binding interaction. 10a Our strategy is to display the stable mimics of terminal 
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saccharides (i.e., replacement of anomeric oxygen by carbon) as recognition elements on a peptide backbone as 

shown schematically in Figure 1. Optimization in the design of probes for studying carbohydrate-protein 

interactions can be achieved by the variation of spacers 1, 2 and 3, which allows for diversity in the display of 

terminal saccharides. Our approach offers: (i) systematic building block assembly using solid-phase chemistry; 

(ii) highly controlled, yet broad, structural variation; (iii) secondary interactions with adjacent amino acid 

residues, which may further augment binding; and (iv) the incorporation of markers (e.g., biotin) either at the N- 

or C-terminal of the peptide backbone. This model can also exploit the growing library of techniques available 

for glycopeptide synthesis 12 and be applied to the generation of a combinatorial library of stable 

neoglycoconjugates.13 

Figure 1 

C-Analogs of Terminal Saccharides Crucial for Bio-recognition 
I I 

~-" .... ~ 1  spacer 3 k / [ . . .OH H .2.- y ,  ,-,.- y 
o o 

Rseudo-peptide backbone 

In this communication, we illustrate our approach by reporting the synthesis of four neo-C-glycopeptides 

as building blocks, shown in Figure 2, required for the synthesis of higher neo-C-glycopeptides as probes for 

studying carbohydrate-protein interactions. For the initial studies, we have selected a-galactose as the terminal 

sugar in the neo-C-glycopeptide building blocks (1-4) to demonstrate our control-oriented approach. 

Figure 2 
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The peptide unit of compounds 1-4 was obtained from the dipeptide a-N(Fmoc)-e-N(tBoc)-L-Lys-Gly- 

OBn (Scheme 1, 7), which was prepared from the commercially available ~-N(Fmoc)-e-N(tBoc)-L-Lys-OH (5) 

and the p-toluenesulfonic acid salt of Gly-OBn (6) by a DCC/HOBt coupling method in 92% isolated yield after 

purification over silica gel by flash column chromatography. The fully protected dipeptide (7), on brief exposure 

to trifluoroacetic acid (TFA), gave 8 with the E-side chain amino group as the TFA salt. Compound 8 was 

directly used for coupling with the glycoside units, c~-C-galactose derivatives 11 and 12. 

O a R H N ' ~ " ' ~  H O 
B°oHN_ , ~ ~ . . .  + -OTs ÷H3N.~OBn ~ FmooHN.J~ Nv~OBn 

FmocHN COOH 92% 
O 

(5) (6) (7) R: Boc 
1 b 95% 

(8) R: H . ~  

Scheme 1: (a) DCC, HOBt, DIEA, CH2C12; (b) TFA, CH2CI 2. 

The ~-C-galactose derivatives (Scheme 2, 11 and 12), were obtained from I~-D-galactose pentaacetate (9) 

through a number of steps. Stereoselective c~-C-allylation of 9 by allyltrimethylsilane and BF3.Et20 as a Lewis 

acid gave 10 in 75% isolated yield after purification. 14a The c~-C-Allyl group of 10 was converted to the 

aldehyde derivative, 11, by ozonolysis (03, CH2C12, -78 °C) followed by the reduction of the ozonide 

(Zn/AcOH, 0 oC). Subsequently, 11 was oxidized to the carboxylic acid derivative 12, via a Masamune 

oxidation. 14b 

AcO OAc AcO OAc 
~ '  a ~ O  

AcO OAc ~ AcO 
AcO 75% AcO I~, 

I I  
(9) (10) 

b 

72% 

AcO OAc 

A c O ~  O 

AcO !... R 

(11) R: CHO 1 
c 95% 

(12) R: COOH 

Scheme 2: (a) Allyltrimethylsilane, BF3.Et20, CH2C12, 4 °C; (b) (i) O 3, CH2C12, -78 °C; (ii) Zn/AcOH, 0 °C; (c) 
KMnO4, t-BuOH-5% NaH2PO4. 

With the completion of the synthesis of the peptide and glycoside subunits, the neo-glycopeptide building 

blocks 1-3 (Figure 1) were assembled as shown in Scheme 3. Neo-glycopeptide 1 was synthesized by the 

coupling of dipeptide 8 with glycoside 12 under DCC/HOBt reaction conditions. Purification over silica gel 

gave 1 in 87% isolated yield. 15 Mono-reductive amination of 8 with glycoside 11 gave 13 in 58% isolated yield 

after purification over silica gel. Under similar reaction conditions, but using 2.2 equiv of 11, di-reductive 

amination of 8 was performed to give the neo-glycopeptide 2 in 65% isolated yield after purification.15 Neo- 

glycopeptide 3 was synthesized from 13 in 72% yield after purification by coupling with 12 under DCC/HOBt 

reaction conditions. 15 
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a 

(8) + (12) 
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AcO OAc 

A c O . . ~  O 

b AcO J O d 
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Scheme 3: (a) DCC, HOBt, DIEA, CH2C12; (b) 1.5 equiv 11, NaB(OAc)3H, pH 5, THF, AcOH, 0 °C; (c) 2.2 equiv 

11, NaB(OAc)3H, pH 5, THF, AcOH, 0 °C. (d) 1.3 eq 12, DCC, HOBt, DIEA, CH2C12. 

A convergent strategy was used for the synthesis of neo-C-glycopeptide 4 (Scheme 4). The two subunits 

consist of the dipeptide (8) and a di-glycosylated amino acid (16). Di-glycosylated amino acid (16) was 

obtained through the following steps. Reductive amination of the p-toluenesulfonic acid salt of Gly-OBn (6) 

with the aldehyde (11) gave 14 as the mono-reductive product. This was followed by coupling with acid 12 

using the DCC/HOBt method to obtain 15. The final step consisted of deprotection by hydrogenation with 10% 

Pd/C in 95% EtOH (-COOBn to -COOH) yielding the desired subunit 16. Coupling of 16 with dipeptide 8 gave 

neo-glycopeptide 4 in 70% isolated yield after purification over silica gel.15 

O 
-OTs+H3NvJ~'OB n + (11) 

AcO OAc 

a Oo@ ~ Ac 
85% 

HN-, 1 

(14) COOBn 

(6) 

AcO o AcO-~OAc 

80% ~OAc "" N "~O ""-OAc 

AcO O=~/J 

OR 

(15) R: B n q  

I ~  ~ d (16) R: H ~ c 95% 

70% 

Scheme 4: (a) DIEA, NaB(OAc)3H, pH 5, THF, AcOH, 0 °C; (b) 12, DCC, HOBt, DIEA, CH2C12; (c) H 2, 10% 
Pd/C, 95% EtOH; (d) 8, DCC, HOBt, D1EA, CH2CI 2. 

To summarize, the synthesis of neo-C-glycopeptides as building blocks required for the synthesis of higher 

neo-C-glycopeptides has been achieved employing (i) stereoselective C-allylation of a galactose derivative, (ii) 

oxidation of the allyl group to a -CHO group, and (iii) reductive amination of the sugar derivative with a 

protected dipeptide having a free amino group on the side chain. A convergent approach to branched side 

chains, in which two galactose units are attached to a glycine derivative in a stepwise procedure (reductive 

amination and amide coupling), followed by coupling to the protected dipeptide (Scheme 4) has also been 

developed. As a continuation, using the deprotected (-COOBn to -COOH) forms of neo-C-glycopeptides (1--4), 
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systematic synthesis of higher neo-C-glycopeptides is under study. 16 Binding studies with various derivatives of 

neo-C-glycopeptides employing cell agglutination assays and surface plasmon resonance technique using plant 

lectin, Maelura Pomifera, (specific for c~-galactose) will be reported in due time. 16 
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