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ABSTRACT 
This paper presents a method based on Tikhonov 

regularization for solving one-dimensional inverse tomography 
problems that arise in combustion applications.  In this 
technique, Tikhonov regularization transforms the ill-
conditioned set of equations generated by onion-peeling 
deconvolution into a well-conditioned set that is more stable to 
measurement errors that arise in experimental settings.  The 
performance of this method is compared to that of onion-
peeling and Abel three-point deconvolution by solving for a 
known field variable distribution from projected data 
contaminated with artificially-generated error.  The results 
show that Tikhonov deconvolution provides a more accurate 
field distribution than onion-peeling and Abel three-point 
deconvolution, and is more stable than the other two methods 
as the distance between projected data points decreases. 

 
INTRODUCTION 

Abel’s integral equation arises in many areas of science 
and engineering, notably in combustion problems in which the 
radial distribution of a quantity in an axisymmetric flame is 
inferred from line-of-sight measurements made through the 
flame.  An example of such an experiment is shown in Fig. 1 
(a) where the objective is to determine the spectral absorption 
coefficient distribution from laser attenuation measurements 
taken at evenly-spaced axial locations.  After some geometric 
analysis, it can be shown that transmittance measurements P(y) 
= −ln[τλ(y)] are related to the local spectral absorption 
coefficient f(r) = κλ(r) by 

 
(1) 

 
which is a form of Abel’s integral equation.  In the generic 
form of Abel’s equation f(r) is called the field variable, while 
P(y) is the projected data.  Flame temperature measurements 
made by emission/absorption pyrometry [1] and Schlieren 
imaging [2] also involve equations of a similar form. 

Abel’s integral equation is a Volterra integral equation of 
the first-kind, a class of equations that is moderately ill-posed.  
Unlike most Volterra equations of the first-kind, Abel’s integral 
equation has a known analytical solution, 

 
(2) 

 
where P′(y) = dP(y)/dy.  In practice, however, this solution is of 
limited usefulness because the analytical derivative of the 
projection data is usually unknown and approximating P′(y) by 
a finite-difference scheme amplifies experimental error present 
in the P(y) measurements; this effect is exacerbated as the 
number of measurement locations increases, limiting the 
resolution of f(r).  On the other hand, using too few P(y) values 
to estimate P′(y) leads to large errors in f(r) due to truncation of 
higher-order Taylor series terms. 
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Because of the ubiquity of Abel’s equation in science and 
engineering, a large and diverse set of numerical deconvolution 
methods have been developed for solving Eq. (1).  The 
majority of these techniques belong to one of two classes: those 
that work directly on Eq. (1), and those that work on Eq. (2).  
Comprehensive reviews of these methods are provided by 
Dasch [3] and Gorenflo and Vessella [4]. 

The simplest and most common of the first type is the 
onion-peeling method [3], in which the flame field is divided 
into N evenly-spaced annular elements of thickness ∆r = 
R/(N−1/2), as shown in Fig. 1 (b).  Assuming f(r) to be uniform 
over each element transforms Eq. (1) into 

 
 

(3) 
 

where yi = i∆r, r j = j∆r, Pi = P(yi), and  fj approximates f(r j).  
Writing Eq. (3) for each annular element gives rise to a set of 
linear equations that can be rewritten as AOP x = b, where x 
contains the unknown field variables, x

T = {fi,, i 
= 0, 1, ..., Ν−1} and b contains the projected data set, b
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{P(r i),, i = 0, 1, ..., Ν−1}; because AOP is an upper-triangular 
matrix, x is readily solved for by back-substitution. 

Another way of solving Eq. (1) is by filtered back-
projection, a technique originally developed for multi-
dimensional medical imaging applications [5] and later adapted 
to perform one-dimensional deconvolution [3].  In this 
approach, a Fourier analysis is used to transform Eq. (1) into its 
frequency space.  Next, the transformed P(y) distributions 
measured from different view angles is “back-projected” over 
the field domain to recover f(r) in the frequency space.  (In this 
application, the number of view angles is infinite due to axial 
symmetry.)  Although the back-projection step filters out 
experimental error, active filtering techniques are also 
sometimes employed to smooth P(y) in the frequency space. 

The techniques belonging to the second class of 
deconvolution can be divided into two subclasses.  Those of the 
first subclass work by finding an easily-differentiable function 

( )yP
~

 that approximates a subset of the projected data [6, 7, 3], 

and then substituting it into Eq. (2) to find an estimate of f(r).  
Of these techniques, Abel three-point inversion [3] has become 
one of the most popular deconvolution techniques used in 

combustion applications.  In this approach, ( )11 ,,,
~

+− iiii PPPyP  

is a quadratic that approximates P(y) over the interval yi – ∆r/2 
= y = yi + ∆y/2 by interpolating the subset {Pi−1, Pi, and Pi+1}.  
The domain of integration in Eq. (2) is divided into N evenly-

spaced subdomains, and the corresponding ( )11 ,,,
~

+− iiii PPPyP  

is then substituted into each integral to give 
 

(4) 
 

(At r = 0, Pj−1 is set equal Pj+1 so that P′(0) = 0, and Pj+1 = 0 at r 
= R.)  Carrying out the integration over each subinterval results 
in N linear equations that explicitly define fi in terms of the 
projected data; these in turn can be rearranged into a matrix 
equation, x = DAbelb, where x and b are defined as above. 
 Methods belonging to the second subclass transform Eq. 
(2) through integration-by-parts into a form that doesn’t 
involve P′(y), thereby avoiding differentiation of discrete and 
error-contaminated projected altogether.  Examples of this 
approach are presented in [8-10]. 

The main drawback of these techniques is their instability, 
caused by the inherent ill-posedness of Abel’s equation.  Small 
errors in the projected data, inevitable in an experimental 
setting, are magnified by the deconvolution process into large 
errors in the field variable distribution.  The present work 
describes how Tikhonov regularization can be applied to 
stabilize the deconvolution process.  Regularization methods 
work by solving a sequence of well-posed problems formed by 
modifying, or regularizing, the original ill-posed problem.  
Well-posed problems that closely resemble the original ill-
posed problem have solutions that accurately solve the ill-
posed problem, but tend to be large in magnitude and highly 
oscillatory.   As the degree of regularization increases, the 

solutions become smoother at the expense of accuracy.  Most 
regularization methods are heuristic in the sense that the analyst 
must adjust the degree of regularization by varying a 
regularization parameter in order to find the optimal trade-off 
between smoothness and accuracy. 

In this paper we first describe the ill-posed nature Abel’s 
integral equation and demonstrate how this condition is 
diagnosed, and then show how Tikhonov regularization is 
applied to solve Abel’s integral equation.  Finally, the 
performance of Tikhonov regularization is compared to that of 
the onion-peeling and Abel three-point deconvolution methods 
by solving a contrived problem based on an experimentally 
determined soot-volume fraction distribution of an 
axisymmetric flame.  The results demonstrate that Tikhonov 
regularization is less sensitive to experimental error and 
provides more accurate solutions compared to the other 
deconvolution methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1: (a) Evaluating spectral absorption coefficient 
distribution within an axisymmetric flame, and (b) 
discretrization of the problem domain 

NOMENCLATURE 
A Coefficient matrix 

AOP Coefficient matrix of onion-peeling deconvolution 

b Right-hand side vector containing projected data 

δb Vector of perturbations in b 

δx Perturbation in solution corresponding to δb 

DAbel Coefficient matrix of Abel three-point deconvolution 

f(r) Field variable 

fi Approximation of f(r i) 
Li ith derivative operator in discrete space 

N Number of discrete field variables/projection locations 

P(y) Projected data 

Pi P(yi) 
r Radial location 
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R Outer radius of field variable domain 

wi ith singular value 

x Vector of unknown field variable values 

y Axial location 

αi ith regularization parameter 

ε Error in projected data 

εRMS Root-mean-squared error of {fi}, Eq. (16) 

λi ith eigenvalue 

µ Mean value of Gaussian error distribution 

µi ith eigenvector 

σ Standard deviation of Gaussian error distribution 

  
Subscripts and Superscripts 
Abel Abel three-point deconvolution 

OP Onion-peeling 

* Solution/global minimum 

~ Approximate value 

STABILITY OF DECONVOLUTION METHODS 
The formal definition of an ill-posed problem arises from 

Hadamard’s description of a well-posed mathematical problem 
[11].  In order for a mathematical problem to be well posed, 
Hadamard stated that it (1) must have a solution, (2) that the 
solution must be unique, and (3) the solution must be a 
continuous function of the inputs.  Any problem that doesn’t 
satisfy all three of the above criteria is ill-posed.  

Abel’s integral equation is only mildly ill-posed because 
the existence and uniqueness of a solution can be demonstrated 
mathematically, providing that f(r) and P(y) are continuously 
differentiable [4].  Intuitively, Hadamard’s first criterion is 
obviously satisfied in an experimental setting, since the 
projected data is derived from the unknown field distribution.  
The second criterion is also satisfied since the domain of the 
integral in Eq. (1) approaches zero as y approaches R, so f(R) is 
known with certainty.  Values of f(r) with r < R are then found 
from f(r′) where r < r′ = R, in an analogy to onion-peeling in 
continuous space. 

Instead, Abel’s integral equation is ill-posed because it 
violates Hadamard’s third criterion, i.e. that the solution for f(r) 
is very sensitive to small perturbations in P(y).  This well-
known and troublesome property arises when solving Abel’s 
equation both in its forward form, Eq. (1), and in its inverted 
form, Eq. (2).  When solving Eq. (1) through onion-peeling, for 
example, rows in AAble become less distinct as N becomes 
large, leading to a coefficient matrix that is nearly rank-
deficient.  (An example is shown later in the paper.)  
Furthermore, errors in the estimation of f(r) accumulate as r 
approaches 0, since fi is contaminated by errors contained in fj, j 
> i as well as the experimental error in Pi.  As previously 
mentioned, solving Eq. (2) necessitates the approximation of 
P′(y) using discrete values of {Pi, i = 0, 1, …, N−1} through 

numerical techniques like finite differences, which also tend to 
magnify errors in the projected data.  Rather than considering 
these error amplification mechanisms independently, both 
should be thought of as manifestations of the fundamental ill-
posed nature of Abel’s integral equation. 

The degree of ill-posedness inherent to the solution 
procedure can be quantified by applying perturbation theory 
[12] to estimate the sensitivity of a solution to perturbations in 
the input data.  In particular, consider the linear system Ax = b, 
where vectors x and b contain the field variable and projected 
data evaluated at discrete values over the domains of r and y, as 
described above.  Suppose the projected data contained in b is 
contaminated by error contained in δb.  The corresponding 
error in the field variable, δx, is found by 

(5) ( ) b,bxx įį +=+A
 

which can be simplified by substituting b = Ax, so that Aδx = 
δb, or δx = A−1δb.  To estimate the magnitude of δx, note from 
the theory of vector and matrix norms that ||A−1|| ||δb|| ≥ 
||A−1δb||, so 

(6) .1
bx įį −≤ A  

 
Finally, it is customary to normalize the left-hand side of Eq. 
(6) so that the stability measurement is independent of the 
solution magnitude.  Noting that ||A|| ||x|| ≥ ||b||, we get 

 
( ) ,1-

b

bį
b

bį
x

xį
AAA Cond=⋅≤ (7) 

 
where the condition number of matrix A, Cond(A), indicates 
the stability of x relative to perturbations in b, or more 
precisely, the maximum effect a perturbation in b can have on 
x.  In well-posed linear problems, Cond(A) is of order unity, so 
small perturbations in b do not cause large changes in x; in this 
case A is said to be well-conditioned.  If Cond(A) is large, on 
the other hand, small changes in b are magnified into large 
errors in x, in which case A is said to be ill-conditioned.  The 
latter scenario occurs when solving Abel’s integral equation. 

The ill-posed nature of Abel’s integral equation is 
demonstrated by examining the condition numbers of the 
coefficient matrices that arise when solving Eq. (1) through 
onion-peeling and Eq. (2) through Abel three-point 
deconvolution.  Since the linear equations defined by the latter 
method expresses the vector of field variables x explicitly in 
terms of the projected data contained in b, x = DAbel b, we 
instead examine the condition number of AAbel = DAbel

−1.  The 
condition number of a matrix can be evaluated numerically as 
the ratio of the largest and smallest singular values of A, 

 
( ) ,minmax wwCond =A (8) 

 
which in turn are found by performing a singular value 
decomposition on A, 

(9) 
,TVVUA ⋅⋅=  
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where U and VT are two orthogonal matrixes and W is a 
diagonal matrix containing the singular values. 

The condition numbers for AOP and AAbel are plotted in 
Fig. 2 as a function of the number of discrete field 
variables/projection locations, N.  The condition numbers of 
both AOP and AAbel both increase linearly with N and are large 
even at moderate values of N.  This behavior limits the field 
variable resolution that can be achieved in experiments like the 
one shown in Fig. 1 (a), where measurement errors in the 
projected dataset are unavoidable.  The relative magnitudes of 
the condition numbers obtained from the onion-peeling and 
Abel-three point deconvolution techniques suggest that the 
error magnification by onion-peeling is about 2.25 times worse 
than the error amplification by Abel three-point deconvolution, 
i.e. ||δx||OP = 2.25 ||δx||Abel for a given value of N.  Although the 
predicted value of ||δx|| using the condition number can be as 
much as an order of magnitude greater than the actual value of 
||δx||, the relationship between the magnitudes of the condition 
numbers and relative error amplification of the deconvolution 
techniques is confirmed later in the paper. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig 2: Matrix condition numbers from onion-peeling 

and Abel three-point deconvolution. 

TIKHONOV REGULARIZATION 
Problems caused by the ill-posedness of Abel’s integral 

equation in the deconvolution of projected data can be 
overcome by using a regularization technique.  These 
techniques work by generating solutions to a sequence of well-
posed problems that approximate the exact solution to the 
original ill-posed problem.  Well-posed problems that are 
closely related to the original ill-posed problem have solutions 
that solve the ill-posed problem with a very small residual, but 
these solutions tend to be large in magnitude and highly-
oscillatory.  On the other hand, well-posed problems that are 
more distantly related to the original ill-posed problem have 
smoother but less accurate solutions.  The set of well-posed 
problems is formed by varying a heuristic regularization 
parameter; by systematically adjusting this parameter, the 

analyst can find a solution that represents an acceptable 
compromise between accuracy and regularity. 

Tikhonov regularization [13] is well-suited for solving ill-
conditioned linear systems like the ones described in the 
previous section.  The approach is based on the observation 
that the quadratic objective function 

 

( ) bxxxx
TTTTF AAA −=

2

1
1

(10) 
 

is minimized when x solves the linear set of equations Ax
∗ = b, 

since ∇F1(x) = ATAx−AT
b = 0 when x = x

∗.  If A is ill-
conditioned, however, F1(x) will be nearly degenerate, meaning 
that a strong global minimum is difficult to discern over the 
domain of x.  This condition is shown graphically in Fig. 3 (a) 
for 
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where matrix A is ill-conditioned because it is nearly rank-
deficient, since its rows are nearly linearly-dependent.  The 
relationship between the ill-conditioned nature of A (and that 
of ATA) and the objection function topography shown in Fig. 3 
(a) is better understood by noting that at x∗, the ith eigenvalue 
of ATA, λi,  indicates the rate that F1(x) increases as x moves 
away from x∗ in the direction of the corresponding eigenvector, 
µi.  Furthermore, the condition number of a matrix can 
alternatively be defined as the ratio of its largest and smallest 
eigenvalues, Cond(ATA) = λmax/λmin.  If Cond(ATA) is large 
then AT

A has at least one very small eigenvalue, λmin, and then 
||∇F1(x)|| is small near the line x

∗+cµmin.  Furthermore, since 
∇F1(x) = ATAx−AT

b, there is an infinite set of solutions 
{xi=x

∗+δxi} close to line x
∗+cµmin that satisfy A(x∗+δxi) = 

b+δbi, where δbi represents a small perturbation to the input 
data. 

140

Onion-Peeling 
Abel Three-Point 

In order to stabilize the solution of Ax = b, a regularizing 
objective function F2(x) is added to F1(x) to define a new 
composite objective function, F(x) = F1(x) + F2(x).  The 
regularizing objective function F2(x) is given by 

 
(12) 

 
where Li is an approximation of the ith-derivative operator in 
discrete space and αi is the regularization parameter.  In this 
paper, we focus on the 0th-order regularization, 

 
 
 

(13) 
 
 
 

and αi = 0, i > 0.  Accordingly, F2(x) is minimized by a 
constant solution, xi

∗ = C, i = 1, 2, …, N.  Because L0 has one 
more column than row, F2(x) is also degenerate as shown in 
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Fig. 3 (b).  Nevertheless the sum of F1(x) and F2(x) is 
non-degenerate, having a well-defined global minimum  as 
shown in Fig. 3 (c) that can be found by setting 
∇F

*x
~

1( *x
~ )+∇F2( *~

x ) = 0 and solving the resulting matrix 
equation, 

(14) 
 
The solution to Eq. (14) is a trade-off between a highly-
accurate solution that minimises F1(x) and a smooth solution 
that minimizes F2(x).  In a topographical sense, increasing α0 
improves stability by “steepening” the curvature of F(x) in the 
vicinity of , thereby reducing the magnitude of the 
perturbations δx

*~
x

i that solve A( *~
x +δxi) = b+δbi for a given 

magnitude of δbi.  This is done at the expense of solution 
accuracy, however, since  moves further away from x*~

x
∗ as α0 

is increased and F2(x) becomes larger. 
In the present application, Tikhonov regularization is used 

to regularize the matrix equation arising from onion-peeling 
deconvolution, so AOP is substituted in place of A in Eq. (14).  
The analyst must heuristically select a suitable value of α0 that 
gives a sufficiently smooth and accurate solution for a 
particular ill-posed problem; a methodology for doing this is 
presented in the next section.  

Finally, it should be noted that onion-peeling and Abel-
three point inversion are themselves regularization methods, 
since their solutions only approximately solve Eqs. (1) and (2), 
respectively.  Onion-peeling regularizes by forcing f(r) to be 
uniform over the domain r i−∆r/2 ≤ r ≤ r i+∆r/2 while Abel 
three-point inversion regularizes by approximating P(y) with a 

smooth function over yi−∆r/2 ≤ y ≤ yi+∆r/2.  In both cases, the 
regularization parameter is the number of discrete annular 
locations, N; increasing N improves the solution accuracy at the 
expense of solution stability. 

DEMONSTRATION OF METHOD ( ) ,~
0 b*x

TTT ALLAA =+α  In order to demonstrate the use of Tikhonov regularization 
as a deconvolution method, it is applied to invert simulated 
experimental data based on laser attenuation measurements of 
the soot-volume fraction distribution within an axisymmetric 
flame estimated [14].  The field variable distribution is a 
piecewise function f(r) composed of two 4th-order polynomials 
that has a shape resembling the normalized experimental data; 
the curve has the properties f′(0) = 0, f(1) = 0, Max[f(r)] = 1, 
and is at least C1 continuous over its domain.  A plot of f(r) and 
the normalized experimental data is shown in Fig. 4. 

Next, the set of projected data is generated by numerically 
integrating Eq. (1) at discrete values of y.  In order to simulate 
data taken in an experimental setting, the projected data is 
contaminated with random errors 

(15) ( ) ,1,,1,0,,
~

−=+= NiPP ii Kµσε 
where ε(σ, µ) is a random error characterized by a Gaussian 
distribution with σ = 0.01 and µ = 0, which is consistent with 
errors found in experimentally-determined projection data [14].  
This level of error is also much larger than the error caused by 
truncation in the numerical integration algorithm.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3:  Plots of ( a) F1(x), (b) F2(x) with α0 = 0.01, and (c) F(x F1(x)+F2(x) corresponding to Eq. (11).  Diamonds 
show solutions obtained by perturbing b with randomly-generated δb vectors with δb  < 0.2.
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Fig 4: Field variable distribution and normalized  
soot-volume fraction data. 

 
As previously mentioned, the analyst must identify a 

suitable level of regularization to obtain a field variable 
distribution that is both smooth and accurate.  This can be done 
with the aid of an L-curve, formed by plotting the solution and 
residual norms obtained using different levels of regularization.  
Points on the upper-left part of the curve represent under-
regularized solutions that accurately solve the linear equation 
AOPx = b but are also highly oscillatory due to the 
contamination of b with experimental error.  Points on the 
lower-right portion of the curve belong to over-regularized 
solutions that are smooth but do not accurately model f(r).  The 
L-curve shown in Fig. 5 for N = 20 indicates that the correct 
level of regularization lies within the range 10−3 ≤ α0 ≤ 1, since 
this level is sufficient to smooth out the largest oscillations in 
f(r) caused by experimental error without over-regularizing.  
Close examination of the solutions obtained using this range of 
regularization, shown in Fig. 6, lead us to choose α0 = 0.1 for 
the remainder of the analysis.  (The regularization parameter 
should be re-evaluated for every different value of N since AOP 
becomes more ill-conditioned as N increases, but we use α0 = 
0.1 for all subsequent values of N to simplify the analysis.) 

Figures 7 and 8 show results obtained using onion peeling, 
Abel three-point, and Tikhonov methods to recover f(r) from 
sets of 20 and 100 points of perturbed projection data.  (All 
methods used the same perturbed data set for each value of N.)  
In both cases, the data obtained by Tikhonov regularization 
most closely matches the exact field variable distribution, 
followed by sets obtained by Abel three-point and onion 
peeling deconvolutions.  Also, while the magnitude of the 
oscillations in the Tikhonov solution increase only slightly 
between N = 20 and N = 100, those in the other solutions grow 
dramatically with increasing N due to the large condition 
number of the governing equations, as indicated by Fig. 2.  In 
practice, the small oscillations in the Tikhonov solution could 
be filtered out by increasing α0 as N increases, although again 
this is not done here. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: L-curve for N = 20. 

 

 

 
 
 
 
 
 

 
 
 
 
 

Fig. 6: Tikhonov solutions obtained using different 
levels of regularization at N = 20. 

 
The performance of the three deconvolution techniques is 

quantified by measuring the accuracy of their solutions using 
the parameter 

 
(16) 

 
Each data point in Fig. 9 represents the average of 100 εRMS(N) 
values generated from independently perturbed projected data.  
Figure 9 shows that solutions obtained using Tikhonov 
regularization are more accurate than those found using the 
onion-peeling and Abel-three point methods at all values of N.  
Furthermore, while the errors in the solutions obtained using 
onion peeling and Abel three-point increase with increasing N, 
the error in the Tikhonov data remains approximately constant.  
This suggests that Tikhonov regularization is particularly well-
suited for solving problems where the projected data is 
measured at small intervals (high spatial resolution).  Also note 
that the errors associated with onion peeling are roughly twice 
as large as those obtained using Abel three-point inversion at a 
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given value of N, and that both errors grow linearly with N; 
these results are consistent with the stability analysis of the two 
methods performed above. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 7: Field distributions obtained from perturbed 
projected data, N = 20. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 8: Field distributions obtained from perturbed 
projected data, N = 100. 

CONCLUSIONS AND FUTURE WORK 
This paper demonstrates how Tikhonov regularization can 

be applied to solve inverse tomography problems governed by 
Abel’s integral equation.  Tikhonov regularization stabilizes the 
deconvolution process by adding a regularizing matrix to the 
ill-conditioned set of equations obtained from onion-peeling 
deconvolution, transforming it into a well-conditioned set of 
equations.  The performance of this method was assessed by 
using it to solve the distribution of a known field variable from 
sets of N projected data points, each contaminated with 
artificially-generated experimental error.  The field variable 
distribution found using Tikhonov regularization was less 
sensitive to perturbations in the projected data compared with 
those obtained from unregularized onion-peeling and Abel 
three-point inversion techniques at all values of N.  

Furthermore, the Tikhonov solution remained stable at large 
values of N compared to those of the other two methods, which 
became increasingly sensitive to experimental error as N 
increases.  The latter result is particularly important for 
problems in which many projected data points are needed to 
accurately resolve f(r). 

This study will shortly be extended to include comparisons 
of Tikhonov regularization to filtered back-projection and 
derivative-free deconvolution methods.  We also intend to 
evaluate Tikhonov regularization as a tool to solve nonlinear 
deconvolution problems that arise in emission/absorption 
tomography experiments involving optically-thick flames. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9: Accuracy of field distributions obtained from 
perturbed projected data. 
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