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CHOICE OF CONTROL FUNCTIONS FOR NUMERICAL GRID GENERATION

S.B. Beale

National Research Council
Ottawa, Ontario K1A 0R6

Abstract

This paper considers the use of source terms in grid
generation equations. Exponential-type source terms
for use in diffusion-source equations are commonly
employed in grid generation. A form is presented
which guarantees universal convergence and
generates orthogonality at the boundary when the
boundary points are congregated in the form of a
geometric progression.  For arbitrary boundary point
distribution, a new method of introducing source-
terms which ensure orthogonality at all boundaries is
described and discussed.

INTRODUCTION

Early grid generation techniques were based on a
diffusion formulation (Laplace equation). The term
‘control function’ is a commonly-used euphemism for
functional-modifications to the basic Laplace system,
in order to effect control either of the � distribution or
the slope of the � distribution at the boundaries,

� � �2 0� ...other terms (1)

In a previous paper [1] a grid generation
methodology based on the solution to the general
scalar transport equation,

�

�
�� � � �

t
u S� � � ���� � �� � �

�

�

� �

� (2)

was formulated.  The scheme used the finite-volume
method [2,3,4] to solve for three scalars � (or �	 
	 ��
in a body-fitted co-ordinate grid.  The grid was then
re-meshed by moving the Cartesian displacement
components, x, y, z until nodal values of � , 
 and �
corresponded to desired reference-values of the
contravariant displacement components , �, and � in
the fully-converged state.  Conventional CFD codes
may thus be applied to the grid generation process. 
In this paper some rationales are explored to effect
grid control using ‘control-functions’ using the above
mentioned re-mesh scheme.  Much of the material

presented is also relevant to conventional inverse
schemes.

Types of boundary conditions

The term ‘boundary condition’ refers to the solved-
for scalars � (not the treatment of the grid at the
perimeter).  Boundary conditions are normally
encoded, as fixed sources, S, or as linearized source-
terms,

S C V� � �� � (3)

or a combination of the two.  There may be any
number of such sources.   Three classes of boundary-
value problem are common (i) Prescribed normal
gradients or fixed-flux (Neumann problem), (ii) Fixed
boundary values (Dirichlet problem). (iii) Mixed
(Neumann/Dirichlet) boundary-value problems.

(i) Neumann problem.  Normal gradients S n� �� �

are prescribed at the boundaries.  The case S� 0
indicates orthogonality, and is desirable at certain
boundaries.  The pure Neumann problem where
�� �n is prescribed at all boundaries does not appear
to find much use.

(ii) Dirichlet problem: �-values are specified at all
boundaries.  Values must be fixed in a consistent
fashion: For instance if � were fixed to, say, 1 and n
at all nodes along the west and east boundaries of the
grid, respectively, it could be fixed to 2,3,4,…, n-3,
n-2, n-1 at each pair of opposing nodes along the
north and south boundaries.  In 3D, all values around
a ‘slab’ must be fixed to the same consistent value.

(iii) Mixed Dirichlet/Neumann problem: The term
‘mixed’ boundary-condition is used in a specific
context here; one which corresponds to the ‘ideal’ or
‘natural’ boundary value problem, and which will
produce good results under most circumstances.  As
such, it will generate scalar functions � which, (apart
from a scale-factor) correspond to the velocity-
potential and stream-function when solving a 2D
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Laplace system.  Two fixed-value Dirichlet boundary
conditions are required in each co-ordinate direction,
and additionally two Neumann boundary conditions
are also required: The extension to 3D is obvious,
there being two Dirichlet and four Neumann
conditions for each scalar variable, rotated in a
cyclical fashion.

Treatment of the grid at the perimeter

Treatment of the grid is as follows:  No grid
correction is required if the boundary grid-points are
considered fixed.  This is typical of all Dirichlet
problems and some mixed boundary-value problems
(see below).  For zero-flux Neumann boundaries, the
boundary grid points are allowed to slide along the
boundary itself.

Ideally, control functions would always be used in
conjunction with sliding boundaries points,
corresponding to case (3) above. In this manner
control lines/surfaces could readily be concentrated
towards one or both Dirichlet boundaries, with
orthogonality always preserved along the Neumann
boundaries: Unfortunately, practical considerations
often constrain the user to employ fixed boundary-
point distributions on all sides of the grid.  It is in the
latter context that the remarks below should be
considered.

The re-mesh grid generation scheme allows for grid
control to be realised by adjusting the values of the
reference �, however as in conventional inverse
schemes let it be assumed that � = 1, below.  Under
these circumstances it can be safely assumed that
� =  and 
 = � in the fully-converged state.

CONTROL FUNCTIONS TO CONTROL THE
GRID DISTRIBUTION

In developing a control-function rationale, one may
consider solutions to the ordinary differential
equation,

d u

dx

d

dx

d

dx
C S

� � �
�

* * *

* *
*

*

*
* * *

� �
�

�
�

�
� � ��  (4)

where asterisks denote non-dimensional quantities,
e.g.,

x
x x

x x
* min

max min

�
�

�
(5)

�
� �

� �
* min

max min

�
�

�
(6)

Control of � may be effected by prescribing non-
trivial values of �* , ��, u* , C*, and S*, which
themselves may be functions of �*  or x*.  Entire
mathematical handbooks have been written on classes
of functions satisfying equations such as Eq. (4). 
Only simple cases such as diffusion-source equations
will be considered below.

Criteria that � should meet are  (1) 0 1� ��*
� � �0 1x*   (2) d dx� * * � 0  � � �0 1x* . Also (3)

the solution for � should itself be grid independent.

Many authors introduce control-functions in the form
of a diffusion source formulation [5,6],

d

dx
S

2

2
0

� *

*
*� � (7)

It is easy to show that �� satisfies (1) and (2) only for
� � �1 1S* ; so the programmer should prevent the
user from accidentally selecting values of S* outside
this range.  As will be shown below, Eq. (7) is not a
particularly good method of controlling grid-lines, at
least for constant S*.  However, other functions are
often coded as if they were source terms. For
example, Thompson et al. [5] propose the use of
exponential-type source terms having several forms
reducing to one of two forms in 1D,

S aeb* *
� � (8)

S aebx* *� (9)

The two-parameters a and b control the distribution.
Exponential functions can be designed to effectively
control the grid, however it is easy to show that
source terms may be generated which violate the
criteria (1) and (2). Also use of the two parameters a
and b appears to be somewhat ad-hoc.

Figure 1. Normalised-logarithmic function
showing how cells may be concentrated at either
end of the grid.
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A function such as the normalised-exponential
function,

x
e

e

p

p
*

*

�
�

�

1

1

�

(10)

may readily be used to congregate a set of points
along (0,1) in the form of a geometric progression,
for constant �� * . Under these circumstances, the
inverse, normalised-logarithmic function,

�*
log *

log
�

�

�

1

1

qx

q

� �
� �

(11)

q ep� �1 (12)

may be employed to control �.  Figure 1 shows this
function which satisfies criteria (1) and (2) over
�� � � �p .  Let it be assumed that it is desired to
concentrate cells towards O and consider, say, the
case  p = 2. With reference to Fig. 1 (a) The ��
function must be such that the tangent at O,
d dx� * * , is reasonably steep, in order to effectively
concentrate the grid in this region. (b) The gradient of
�� should be reasonably near to 45º at x*=1, or at
least substantially greater than 0º.

The function �* is a cumulative distribution with
associated density function, d dx� * * . (The statistical
analogy should be obvious to the reader.) Figure 2
shows d dx� * *  vs. x* for a number of functions.
Figure 2(a) shows d dx� * *  in the form of a straight
line, corresponding to constant S, and illustrates why
the slope cannot be made steeper than ±1. Figure 2(b)
shows the case p=2 in Eq. (11). It can be seen that in
order to meet requirements (a) and (b) above, the
control-density function possesses the required
property of skewness:  The sharper the ‘spike’ at
x*=0 the more concentrated is the grid in this region,
conversely at the other end x*=1, as d dx� * * �1,
the grid will tend to become uninfluenced by the
effects at x�=0: A value d dx� * * � 0 implies the
grid is being excessively pulled away at x*=1. Thus it
is seen that constant S  line, Fig. 2(a) is not a
particularly good control methodology due to the
maximum skewness being restricted by the slope of
the d dx� * * while the normalised logarithmic
function appears to facilitate control of the grid lines
in a desirable manner: (However simple and easy-to-
code control functions can be constructed using two
straight lines of differing slopes.)
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Figure 2. Three kinds of density function           (a)
Constant S (b) according to Eq. (14)              (c)
according to Eq (16).
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The normalised-logarithmic function may be coded in
any number of ways, for example as a diffusion-
source equation, Eq. (7) with,

S
q

q

qx
*

log *
�

� �

�
�	

�
�


1

1 1

2

� �
(13)

or in terms of �*.

S
e

p
e

p
p* *�

�1
2

2� � � (14)

which is of course just the exponential function of

Thompson et. al. [5] with a e pp� �1
2

� � and b p� 2 .

The forms Eq. (13) and Eq. (14) are recommended,
since the criteria (1) and (2) are always ensured.

There is no requirement to encode the normalised
logarithmic function as a diffusion-source equation,
alternative forms exist e.g., using a diffusion
formulation [5] with,

�* *� �1 qx (15)

Convection-diffusion, and other formulations may
also be constructed.  The relative merits of each
approach should be based on criteria such as ease of
implementation, stability, and rapidity of
convergence.

One of the merits of the form given in Eq. (14) is that
to attract grid lines to the opposite boundary, the sign
of p is simply reversed. Thus to attract grid-lines to
both boundaries,

S
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e
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p
p* * *
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2

1 1
2

2

2

2� � � �� � (16)

Fig. 2(c) shows that this function exhibits the
property of kurtosis.

Figure 3 shows a C-grid around an aircraft. The radial
� contours ( lines) were generated algebraically
using trans-finite interpolation, while the
circumferential 
 contours (� lines), around the
aircraft, were obtained using the method described
above. (A feature of the re-mesh scheme is that each
scalar variable may be solved-for independently, i.e.
in de-coupled fashion.) In Fig. 3(a) no control
functions are employed, i.e. the grid corresponds to a

Laplace-solution for 
 (only). It can be seen that the

-lines cannot readily be concentrated around the
aircraft fuselage. By introducing a source term
according to Eq. (14) with p = 2, Fig. 3(b), it can be
seen that the grid may readily be concentrated around
the aircraft. Because a fixed (i.e. not sliding)
boundary point distribution was specified along AB
and AC, it can be seen that there is substantial
distortion of the grid in this region. When the fixed
boundary point distribution is specified according to
Eq. (10) with p = 2, Fig. 3(c), not only is the grid
concentrated around the aircraft shape, but also the
grid is orthogonal at the boundary, as desired.

Calculation of the control functions in the interior of
the domain

The example given above is relatively simple, with
the same boundary distribution at both ends (AB and
AC), so that a single distribution was presumed
throughout. More generally, the physical dimensions
of the boundaries could vary preventing the
establishment of a unique length scale L r r� �

� �

max min

needed to calculate S from S*. It is also possible that
different boundary distribution be prescribed at
opposing boundaries, though this is not
recommended. 

Under the above circumstances, interior source terms
require to be computed from boundary values, using a
weighting-function, w.  Suppose for example that 


was fixed to 1 and n� at the north and south
boundaries.  Interior S values would be computed
from sources at the the east and west boundaries,

gS w gS w gS
P WEST EAST

 � � � �  �� � �1 (17)

where SWEST and SEAST are obtained using Eq. (14) or
other means. The Jacobian g  arises when

integrating the finite-volume equations.  A reasonable
choice for w is just,

w WEST

EAST WEST

� �
�

�
�

� �

� �
* (18)



Figure 3. Control function used to control grid distribution. (a) Laplace grid (b) Diffusion-source

formulation according to Eq. (14) with p=2 (c) Diffusion-source formulation with boundary point

distribution along AB and AC prescribed according to Eq. (10) with p=2.
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Figure 4. Control functions used to procure orthogonality. (a) Dirichlet problem with no source terms

(b) Mixed (Dirchlet/Neumann) boundary problem with source terms prescribed according to Eq. (19).
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where � * *�  in the fully-converged state.  It is
worth noting that the 2D distribution is now a
function of changes in 
.  Thus if the 
 distribution
changed, the � distribution would also change (a
little), violating the criterion of grid independence (3)
above.  The effect is probably minor, since it is the
weighting function, w, not the end-values of S, which
are affected.  Nonetheless it is better if a single
distribution be prescribed for the whole domain.

When sliding boundaries are prescribed, it is possible
to control the � and 
 distributions, and always
ensure orthogonality at the boundaries.  Often it is
necessary to presume a fixed boundary point
distribution.  For simple geometries, it is still possible
to control the form of both the distribution and to
generate orthogonality, if the control-functions and
the prescribed boundary point distribution are chosen
in a consistent fashion.  For more complex boundary
distributions, some sort of ‘automatic’ procedure to
generate orthogonality is frequently sought.

CONTROL FUNCTIONS TO PROCURE
ORTHOGONALITY

For problems involving fixed grid-points around
arbitrary curved surfaces, control-functions are
usually prescribed that will in some fashion procure
orthogonality at the boundaries.  Previous authors
[7,8] have treated the problem as a Dirichlet problem,
and impose explicit geometric constraints in the
inverse forms.  Note however that the Dirichlet
problem and the mixed boundary value problem are
the same, the problem being one of finding the
control terms that satisfies both the requirement of
orthogonality (zero-flux), and that of fixed values
�����	�	�	��� n along the boundary.

The author treats the case as a mixed boundary value
problem, i.e., Neumann at the appropriate boundaries:
 With, � fixed to, say, 1 and n at the west and east
boundaries, it is desired not only that there be zero-
flux of � along the south and north boundaries, but
also that the nodal � values converge on values
1,2,3,…n.  Assuming a diffusion-source
formulation, Eq. (7), the goal is to find S such that the
nodal values of � along the north and south
(Neumann) boundaries converge on these reference
values.

The solution is simple.  Let S0 be a guessed value for
the source term and S’ be a source-term correction

factor.  At the end of each ‘sweep’ in the solution
procedure, the source term is re-computed as,

gS g S S� �
0 '� � (19)

The current value of S being taken as S0 for the next
cycle etc. The correction factor, S’, is obtained using,

gS C P' � � �� � (20)

where �P is the current nodal value and  = 1,2,3,..n
are the desired reference values.  This ensures
convergence on the reference value, while at the same
time ensuring that a zero-flux boundary condition is
imposed. The reader will note that although � is
solved at the north and south boundaries, no grid
correction is applied here, i.e. the boundary point
distribution is fixed to the initial locations. The
source terms, S, are evaluated along both the south
and north boundaries, interior values being
interpolated as described above.  The coefficient C is
fixed according to,

C
S

a aE W� � �
�

��
(21)

where aE and aW are just the linking coefficients in the
finite-volume equations for �	

a ggE e
�

11 � (22)

i.e. the diagonal (orthogonal) diffusion terms.  Figure
4 shows a grid in a tube bank with small pitch-to-
diameter ratio. Figure 4(a) shows the Laplace solution
(no source terms).  Values of � were fixed to
1,2,3,…n along the south (ABC) and north (DEF)
boundaries,  using a large coefficient in Eq. (3). 
Because the initial grid locations at the north and
south boundaries are incompatible with the ‘natural’
solution to the mixed boundary value problem, there
is a high degree of non-orthogonality both in the
interior of the grid and at the boundaries.

Figure 4(b) shows that by introducing source terms
according to Eq. (20), it is possible to procure
orthogonality at the boundaries, in spite of the high
degree of shear in the body of the grid itself.  As
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 discussed above, nodal values of � along the south
and north boundaries (ABC and DEF) were not fixed
using a large coefficient, but were solved-for using
the finite-volume procedure.  The boundary points
themselves were however fixed.  A similar procedure
allowed the 
 distribution to be concentrated along
the east (AF) and east (CD) boundaries, and at the
same time automatically ensure orthogonality.

The simple iterative procedure described above was
found to converge without difficulty.  While easy to
implement in a conventional finite-volume approach,
(combined with a grid correction procedure), it is not
immediately apparent how it could be readily utilised
in an inverse-method grid-generation program. Most
readers should be familiar with the diffusion-source
formulation presented above. It is worth noting that,
the same end was achieved using a convection-
diffusion formulation; u-values being obtained as,
u u u� �0 '  where u C P� �� � � .  At the time of

writing, there does not appear to be any inherent
advantage of one approach over another.  The matter
is the subject for research.

CONCLUSION

A number of methods of introducing control
functions into finite-volume equations governing grid
generation were described.  Attention was focused on
the prescription of source-terms in diffusion-source
equations, with prescribed (fixed) boundary point
locations.  It was shown that by prescribing the source
terms according to the inverse function used to
generate the boundary point distribution good quality
grids could be generated.  The example of a
normalised-logarithmic distribution was shown to
meet the criteria for ensuring convergence. It was
shown that this could be implemented in the form of a
source term containing an inverse square function of
x, or equivalently with an exponential function of �.
Many other types of control functions are possible
and should be considered.

For the case of arbitrary point distribution along
curved lines, an automatic procedure based on an
iterative solution to the mixed Dirichlet/Neumann
problem with fixed boundary points (i.e. no grid
correction) was described. The procedure was found
to converge without difficulty.

While there has been much attention in the literature
about the need for orthogonality along mesh
boundaries, the reader should appreciate that no
control function can correct the presence of

significant non-orthogonality in the interior of the
domain, when inappropriate choices are made for
fixed boundary-point locations.  Such non-
orthogonalities may impede convergence for even the
best flow solver.  Under these circumstances, the user
should consider the use of sliding boundaries, or
manually re-adjust the fixed boundary points where
possible, in order to remedy the problem.
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