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a b s t r a c t

Nanostructured (Nano), fused and crushed (F&C) and plasma-fused (PF) titania (TiO2) powder particles

were thermally sprayed via flame spray (FS), air plasma spray (APS) and high velocity oxy-fuel (HVOF)

on low carbon steel substrates. Flame spray processing, although widely employed industrially, generally

has received very limited attention in academic papers. However, the results of this research have dem-

onstrated that a FS Nano titania coating was the best performing among all coatings tested, exhibiting no

measurable signs of mass/volume loss after dry-sliding wear testing (ball-on-disk) and the highest depo-

sition efficiency (DE) level. This is regarded as an important result, considering the fact that among these

three processing techniques FS is the least expensive, the most portable and exhibits the lowest energy

consumption levels. In addition, scanning electron microscopy (SEM) analysis demonstrated that the slid-

ing wear scars of the FS and HVOF-sprayed Nano coatings were smooth, without significant irreversible

deformation or formation of ridges. These characteristics are not typical of ceramic materials. It is

hypothesized that this plastic-like behaviour and resilience exhibited by FS and HVOF-sprayed Nano

coatings explain their improved performance under dry-sliding wear.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Titania coatings and nanostructured-based powders

Titania (TiO2) thermal spray coatings are recommended for

anti-wear applications involving hard surfaces (sliding wear) and

abrasive grains [1]. As examples to be cited, titania coatings have

been applied to pump seals and bearing surfaces [2]. Nanostruc-

tured and/or ultrafine materials offer the potential for significant

improvement in the structural properties of materials, including

coatings for anti-wear applications. In fact, it has been observed

by different researchers that thermal spray coatings produced from

nanostructured-based powders exhibit enhanced wear resistance

when compared to coatings produced from other types of powders

[3,4].

The most widely employed thermal spray processing tech-

niques to deposit ceramic-based feedstock materials in the powder

form are air plasma spray (APS), high velocity oxy-fuel (HVOF) and

flame spray (FS). Of these, FS processing is not often the focus of

scientific papers; however, it is a successful processing technique

in the thermal spray industry. It must be pointed out that FS pro-

cessing is the most affordable and portable and exhibits the lowest

energy consumption levels of the techniques previously cited.

Therefore, it would be interesting to verify if significant gains in

anti-wear properties could be observed by combining FS process-

ing with nanostructured-based powders.

1.2. Influence of the nanostructural character of the powder on the

structural properties of the coatings

Despite the fact that enhanced anti-wear properties have been

observed for ceramic thermal spray coatings produced from nano-

structured-based powders [3,4], there is still some controversy on

the role of the nanostructured character of the powder feedstock

on the mechanical performance of the coatings. One way to inves-

tigate this phenomenon is to produce a feedstock powder that

exhibits nanostructured and/or ultrafine character and try to ‘‘de-

stroy” the nanostructure by passing them through a high temper-

ature plasma (high melting) to form plasma-fused (PF) powder

particles. After being fused (i.e., its major nanostructural character

suppressed), the PF particles then would be thermally sprayed to

form coatings, which would be compared to coatings produced

from nanostructured-based powders.

The objective of this work was to carry out this experiment and

compare the dry-sliding wear behaviour of coatings produced from

nanostructured, fused and crushed and PF particles deposited via

APS, HVOF and FS processing.
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2. Experimental procedure

2.1. Powder and processing

All torches and powders employed in this study were furnished by one supplier

(Sulzer Metco (US) Inc., Westbury, NY, USA). Information on these torches and pow-

ders can be found in Table 1. Argon (Ar) and hydrogen (H2) were the plasma gases

used with the APS torch. The HVOF and FS torches employed propylene and acety-

lene as fuel gases, respectively. Three types of titania powders were used in this

study to produce coatings: nanostructured (Nano), fused and crushed (F&C) and

plasma-fused (PF). Concerning the PF powder, as mentioned in Section 1.2, an

experimental spray-dried titania powder with ultrafine structure (which was not

used to produce coatings), was manufactured and subsequently fused via plasma,

forming the PF powder particles.

The particle size distribution was evaluated by using a laser diffraction particle

size analyzer (Beckman Coulter LS 13320, Beckman Coulter, Miami, FL, USA). All

coatings were deposited on low carbon steel substrates. The coating thicknesses

were approximately 500–600 lm.

The sprayed particles (in some cases) had their velocities and temperature val-

ues measured via one of two types of in-flight diagnostic tools (DPV 2000 or Accu-

raspray, Tecnar Automation, Saint Bruno, QC, Canada). Both types of equipment are

based on pyrometry and time-of-flight measurements. The particle detector was

placed at the same spray distance as used when depositing the coatings.

2.2. Powder morphology and microstructural evaluation

The structural characteristics of the powders, the cross-sections and the sliding

wear tracks of the coatings were evaluated by field-emission scanning electron

microscopy (FE-SEM) (Model S4700, Hitachi Instruments Inc., Tokyo, Japan). In or-

der to better preserve and reveal the true structural features of the coatings (cross-

section), they were mounted in epoxy resin using vacuum impregnation and pol-

ished using standard metallographic procedures. The porosity of the coatings was

evaluated by using SEM and image analysis on the cross-sections. A total of 10 pic-

tures of each coating was taken (at 500�) to evaluate the respective porosity levels.

In order to ensure uniformity of porosity measurements, (i) the pictures of the

cross-sections of all coatings were taken at the same SEM conditions and (ii) during

image analysis the porosity levels of all coatings were evaluated using the same

threshold levels.

2.3. Microhardness and crack propagation resistance

Vickers microhardness measurements were performed under a 300 gf load for

15 s on the polished cross-section of the coatings. A total of 10 microhardness mea-

surements were carried out for each coating.

The crack propagation resistance was determined by indenting the coating

cross-sections (in the centerline of the coating microstructure) with a Vickers in-

denter at a 1 kgf load for 15 s, with the indenter aligned such that one of its diago-

nals would be parallel to the substrate surface. The total length (tip-to-tip) of the

major crack (2c) parallel to the substrate surface that originated at or near the cor-

ners of the Vickers indentation impression was measured. Based on the indentation

load (P) and 2c, the crack propagation resistance was calculated according to the

relation between load and crack length, P/c3/2, where P is in Newtons and c is in me-

ters [5]. A total of 10 indentations were carried out for each coating.

It is important to point out that the crack propagation resistance concept

applied in this study is not an absolute measure of fracture toughness. To determine

indentation fracture toughness other parameters, such as hardness and elastic mod-

ulus, must be introduced in the calculation. However, crack propagation resistance

is a useful technique to compare coatings that (i) exhibit similar porosity and thick-

ness levels and (ii) were deposited using the same type of thermal spray processing.

It provides a basis for determining the relative effect of the thermal spray process-

ing and powder morphology on crack propagation characteristics and wear

performance.

2.4. Dry-sliding wear testing

Ball-on-disk dry-sliding tests were performed at room temperature and atmo-

sphere conditions on a micro tribometer (UMT-2, CETR, Mountain View, CA, USA)

by using a ruby ball (diameter: 10 mm) on titania-coated, disk-shaped (radius:

3 cm), low carbon steel substrates. It has been cited that alumina-based materials

(e.g., ruby – Mohs hardness scale 9) are chosen as a counterface material because

they tend to exhibit a high coefficient of friction against coatings in dry-sliding,

thereby promoting accelerated wear, which is measurable in the timescale of a lab-

oratory testing exercise [6,7]. Bolelli et al. hypothesized that a high coefficient of

friction would tend to be generated between the alumina-based balls and oxide

coatings due to chemical affinity [8]. The coated substrates were fixed to a rotating

disk, whereas, the ruby ball was fixed into a stationary ball holder pressed against

the coating surface with a normal load of 30 N. The radius of the travelling circle of

the ball on the disk was 2.4 cm. The total sliding distance and linear sliding speed

values were 300 m and 5 cm/s, respectively. The surfaces of the titania coatings

were ground and polished before wear testing, and exhibited roughness (Ra) values

of approximately 0.10 lm. After each wear test, the ruby ball was carefully exam-

ined and its position changed to provided a new undamaged counterface contact

at the start of each new wear trial.

The loss of material was determined by weighing the samples before and after

the test. The mass loss values were converted to volume loss values by measuring

the densities of free-standing titania coatings (that had been removed from the low

carbon steel substrates by dissolving the metal base) via the geometrical method,

except the F&C APS coating, for which the density value was obtained from the

coating manufacturer’s technical bulletin [2]. The density range was 3.8–4.1 g/

cm3. One sliding test per sample was performed.

3. Results and discussion

3.1. Titania powders

Fig. 1a shows an experimental ultrafine titania powder pro-

duced via spray-drying. When the powder is observed at higher

magnifications it is possible to distinguish its ultrafine structure

(Fig. 1b), exhibiting particles with diameters varying from �40 to

150 nm. It is important to stress that this powder was not ther-

mally sprayed to produce coatings. As previously stated in Section

2.1, this powder was plasma-fused to form PF particles (Fig. 2a),

which led to a loss of part of the original ultrafine character in

the resulting feedstock (Fig. 2b).

Fig. 3 shows the F&C particle. It is possible to observe the typical

irregular and blocky morphology of these types of particles and the

absence of an ultrafine character.

Fig. 4 shows the nanostructured titania feedstock powder

formed via spray-drying. It exhibits the typical ‘‘donut shape” of

spray-dried particles. When observed at higher magnification, it

is possible to distinguish the nanostructural character of the feed-

stock, i.e., the individual particles are smaller than 100 nm.

3.2. In-flight particle characteristics

Table 2 shows the in-flight particle characteristics and deposi-

tion efficiency (DE) values measured for some of the coatings pro-

duced in this study. The melting point of titania is 1855 �C [9];

therefore, by looking at Table 2, it is possible to observe that for

all powders the average particle surface temperature was higher

than this value. Because the particle temperatures were measured

via a pyrometer, the temperatures reported represent only those at

the particle surface, i.e., inner particle temperature levels may be

lower or higher than the values given in Table 2. It also must be

noted that the values shown in the table are the average values;

i.e., the particles in the spray jet exhibited a range of temperatures.

Due to the low DE value of the HVOF-sprayed F&C coating, fur-

ther analysis was not carried out for this coating. This low DE value

is probably related to the particle size distribution of the powder.

The F&C powder exhibited the largest fraction of large particles

(i.e., highest d90) among the three powders HVOF-sprayed (Table

1). The larger particles probably exhibited no or a somewhat lim-

ited degree of melting during HVOF-spraying. This impeded them

from adhering on the coating surface and probably caused them

to behave as hot grit-blasters, lowering substantially the DE values.

Previous studies have observed that for obtaining ‘‘optimized”

coatings during HVOF-spraying of pure ceramic oxides (e.g., TiO2,

Table 1

Titania powder, particle size distribution (in volume), morphology and torches

employed in this study to produce coatings for wear testing

Powder d10 (lm) d50 (lm) d90 (lm) APS torch HVOF torch FS torch

F&C 15 32 51 9 MB DJ2700-hybrid 6P-II

PF 10 20 32 9 MB DJ2700-hybrid –

Nano 18 27 38 9 MB DJ2700-hybrid 6P-II
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Al2O3 and Cr2O3), particle size ranges from about 5 to 25 lm had to

be employed [10–14]. However, as shown in the next sections,

HVOF-sprayed Nano and PF particles exhibited dense and uniform

microstructures, despite the fact that particles larger than the 5–

25 lm distribution were employed (Table 1).

The DE value of the FS Nano coating stands out, reaching a value

of approximately 80%. This is an important observation, regarding

the fact FS systems are widely used in thermal spray job shops.

3.3. Coating microstructure and porosity

Fig. 5 shows the microstructures (cross-sections) of the titania

coatings produced via FS processing. The coating made from the

F&C powder (Fig. 5a) exhibits pore sizes varying from a few mi-

crons up to 20 lm. The FS coating made from the Nano powder

exhibits a more uniform microstructure, with an even distribution

of smaller pores (Fig. 5b). The porosity level of the Nano coating is

slightly lower than that of the F&C one (Table 3).

Fig. 6 shows the microstructures (cross-sections) of the titania

coatings produced via HVOF processing. Both coatings exhibit sim-

ilar microstructural features, such as, the absence of a lamellar

structure, even distribution of small pores and no significant

microcracking. The porosity level of both coatings is approximately

1% (Table 3). For the magnification at which the pictures were ta-

ken, it seems to be impossible to tell them apart based on the

microstructural features. It is important to point out that both

powders exhibited similar particle size distribution (Table 1) and

in-flight particle characteristics (Table 2), which probably favoured

the formation of similar microstructures. This is an important char-

acteristic to verify the role of the structural character of the feed-

stock powder on the coating properties, i.e., it will be possible to

verify if the nanostructural character of the powder does make a

difference in the wear performance.

3.4. Dry-sliding wear testing

3.4.1. Wear performance

Table 3 shows porosity, microhardness, crack propagation resis-

tance and wear data of the coatings. The dry-sliding wear resis-

tance characteristics of the FS and HVOF-sprayed coatings

produced from the Nano powder stand out. Using a weighing bal-

ance (0.1 mg precision), it was not possible to observe a difference

in mass (i.e., a mass loss) for the FS coating after wear testing;

moreover, the mass loss of the HVOF-sprayed coating was almost

negligible (Table 3). Therefore, these two coatings produced

from a Nano powder exhibited the lowest volume loss and wear

Fig. 1. (a) Experimental spray-dried titania ultrafine powder that was subsequently

plasma-fused. (b) Higher magnification view of (a) showing the ultrafine structure,

i.e., individual particles with diameters varying from 40 to 150 nm.

Fig. 2. (a) Spray-dried titania powder of Fig. 1 after being plasma-fused (PF). (b)

Higher magnification view of (a) showing the absence of the ultrafine character

after the plasma-fusing process.
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rate values, i.e., the highest dry-sliding wear resistance of all coat-

ings tested in this study (Table 3). It is important to point out that

the FS coating made from the Nano powder was tested two times.

During the first test, it was also not possible to measure any signif-

icant mass loss, however, as the ruby broke during testing, the re-

sult was not counted in this paper.

As previously stated in Section 1.2 and Section 2.1, one of the

objectives of this work was to verify if the powder morphology

would influence the wear behaviour of these coatings. To accom-

plish this objective, the PF powder of Fig. 2 had been synthesized

from an experimental spray-dried powder that exhibited ultrafine

characteristics (Fig. 1) similar to those of the Nano powder (Fig. 4).

During the PF processing (plasma-fusing), the powder of Fig. 1 lost

part of the original ultrafine character (Fig. 2). Despite the

differences in structure, the PF (Fig. 2) and Nano (Fig. 4) powders

exhibited similar particle size distributions (Table 1) and both

were HVOF-sprayed by developing spray parameters that would

impart similar in-flight particle characteristics (i.e., temperature

and velocity) for the two materials (Table 2). By looking at the

microstructure of both coatings (Fig. 6), it is evident that they

exhibit similar characteristics (at the magnification at which the

pictures were taken). All these steps were developed and followed

carefully to try to separate the ‘‘true influence” of the morphology/

character/structure of the powders on the wear properties of the

coatings from other possible influences, such as, particle size and

in-flight particle characteristics. By looking at Table 3, it is possible

to notice that the HVOF-sprayed Nano coating exhibited a signifi-

cant superior wear resistance when compared to that of the

HVOF-sprayed PF coating. Therefore, the nanostructural character

of the feedstock powder does make a difference (for the better)

in the dry-sliding wear performance of these coatings. However,

the DE of the Nano powder was only approximately half that of

the PF.

A similar type of thinking could also be applied for the FS coat-

ings. Based on (i) the microstructures of the F&C (Fig. 5a) and Nano

Fig. 3. (a) Fused and crushed (F&C) titania powder. (b) Higher magnification view of

(a) showing the absence of ultrafine character.

Fig. 4. (a) Nano spray-dried titania powder. (b) Higher magnification view of (a)

showing the nanostructure of the agglomerate.

Table 2

Particle velocity, temperature and DE values for the coatings employed in this study

Powder/Torch V (m/s) T (�C) DE (%)

F&C/HVOF 880 ± 105 2091 ± 219 �8

PF/HVOF 944 ± 113 2206 ± 169 �45

Nano/HVOF 896 ± 89 2072 ± 187 �24

F&C/FS na na �65

Nano/FS 70–80 2750–2850 �80

F&C/APS na na �65

Nano/APS 280–310 2400–2500 �68

na – not available.
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(Fig. 5b) coatings, and (ii) their porosity and microhardness values

(Table 3), it is difficult to explain why the wear resistance of the

FS Nano coating was so superior to that of the FS F&C coating

(Table 3). Therefore, the morphology of the Nano powder is prob-

ably playing a major role in the enhanced wear performance of this

coating. Another factor that should be considered is the purity of

the feedstock powder. The X-ray diffraction (XRD) pattern of the

Nano powder shows only the presence of the stoichiometric phase

TiO2 [15], whereas, that of the F&C powder shows the presence of

TiO2 and a reduced phase (Ti8O15 and Ti7O13) mixture [16].

One of the major factors that seems to be causing this difference

in the wear properties of the coatings is the crack propagation

resistance (Table 3), which has also been observed in previous

works [3,4]. Vickers microhardness values of the coatings do not

show significant differences (Table 3), even though the titania

powders were thermally sprayed using different processing tech-

niques (FS and HVOF), i.e., they were sprayed using significantly

different particle temperature and velocity values (Table 2).

Although the microhardness values are not available for the APS

coating in Table 3, Vickers microhardness values of �800–900

(300 gf) have been reported in the literature for F&C and Nano tita-

nia coatings deposited via APS [4,17]. Those values are in the range

of those observed for the other coatings produced in this study.

When comparing coatings produced using the same processing

techniques, i.e., HVOF or FS, the Nano coatings exhibited higher

values of crack propagation resistance when compared to their

Fig. 5. Microstructures of the FS coatings produced from the following powders: (a)

F&C and (b) Nano.

Table 3

Porosity, microhardness, crack propagation resistance and wear data of the coatings

Powder/Torch Porosity (%) n = 10 HV (300 gf) n = 10 Crack propagation resistance (MPa m1/2) (1 kgf) n = 10 Mass loss (g) Volume loss (mm3)

PF/HVOF 1.1 ± 0.2 859 ± 33 20.8 ± 4.4 0.0094 2.47

Nano/HVOF 1.0 ± 0.2 822 ± 40 25.6 ± 5.7 0.0008 0.21

F&C/FS 2.9 ± 0.3 849 ± 29 26.8 ± 3.4 0.0195 5.06

Nano/FS 2.0 ± 0.3 862 ± 20 38.8 ± 4.0 0.0000 0.00

F&C/APS na na na 0.0053 1.29

Nano/APS na na na 0.0136 na

na – not available.

Fig. 6. Microstructures of the HVOF coatings produced from the following powders:

(a) PF and (b) Nano.
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counterparts (Table 3). It has to be stated again that the crack prop-

agation resistance is not an absolute measure of fracture tough-

ness. Nonetheless, crack propagation resistance is a useful

technique to infer the ‘‘relative toughness” of coatings that (i) ex-

hibit similar porosity and thickness levels and (ii) were deposited

using the same type of thermal spray processing. Therefore, from

Table 3 it can be inferred that the Nano coatings deposited via FS

and HVOF tend to be tougher than the other ones deposited by

the same processing techniques. Other works have also reported

this tendency of higher crack propagation resistance levels offered

by nanostructured-based ceramic oxide coatings [3,4,12,18–

22,27].

Finally, it was observed that the two APS coatings exhibited a

‘‘moderate” dry-sliding wear resistance, particularly the coating

produced from the Nano powder (Table 3). Due to the high temper-

atures of plasma jets (which are higher than those of HVOF and FS

torches), it is hypothesized that the original nanostructure of the

Nano powder may have been almost totally destroyed during coat-

ing deposition. Such an occurrence would eliminate major advan-

tage of the nanostructural character of the feedstock and probably

played a role in contributing to the poor wear performance.

3.4.2. Possible hypotheses to explain the higher crack propagation

resistance levels

It is recognized that a deeper and more fundamental study

would have to be carried out to link the origin of these higher crack

propagation resistance levels exhibited by these coatings with the

ultrafine character of the feedstock. This subject is beyond the

scope of this work; however, this issue was extensively discussed

in a review paper [3]. Researchers have proposed three mecha-

nisms of toughening. One of the hypotheses employed to explain

this enhanced crack propagation resistance (with some level of

experimental evidence) is based on the crack arresting effect

caused by the presence of dense semi-molten ultrafine agglomer-

ates (pockets) embedded throughout the coating microstructure

during thermal spraying. According to this hypothesis, dense pock-

ets probably occur when the molten part of a semi-molten particle

fully or almost fully infiltrates into the capillaries (porosity) of the

ultrafine structure during thermal spraying [3].

The second hypothesis to explain the same behaviour (with

some level of experimental evidence) is based on a better splat-

to-splat contact achieved when using a nanostructured powder,

which would also tend to impede crack propagation. Nanostruc-

tured particles (Fig. 4) exhibit larger surface areas when compared

to those of the PF and F&C particles (Figs. 2 and 3, respectively).

Therefore, the large surface area probably translates into a better

capacity to absorb heat from the thermal spray jet.

In addition, the porous structure of the Nano powder (Fig. 4)

could act as a thermal barrier so that the heat absorbed at the par-

ticle surface might propagate at lower rates towards the particle

inner core when compared to those of F&C denser particles. This

could lower the viscosity of the liquid phase of the agglomerate

at its surface and lead to an improved splat-to-splat contact. More-

over, when compared to fully dense particles (e.g., F&C), an

agglomerate of a given diameter would have a lower mass due to

porosity; therefore a given amount of heat transfer could produce

a higher temperature than in a denser particle of the same diame-

ter, which also would tend to lower the particle viscosity at its sur-

face. It has to be stressed that these two mechanisms of crack

propagation arresting described above may work together [3].

The third hypothesis is based on the possibility of crack arresting

by the presence of fine-pored agglomerates embedded in the coat-

ing microstructure. The pores would tend to hinder crack propaga-

tion [4]. It has to be pointed out that it was not identified in this

research which of these three mechanisms is providing the higher

crack propagation resistance levels of the FS and HVOF Nano-based

coatings. It may be possible that all of them are working together

simultaneously, but contribute to different degrees. For example,

the major toughening mechanism for the HVOF Nano coating

may not be the same as that of the FS Nano coating.

3.4.3. Dry-sliding wear scars: morphology

Analyzing the differences in wear scar morphologies exhibited

by thermal spray coatings produced from Nano, F&C and PF cera-

mic oxide powders is an interesting way to better understand

the behaviour of these coatings [3,19–28].

Figs. 7–11 show low and high magnification SEM pictures of the

wear scars of the coatings tested in this study. It is important to

point out that all sets of low and high magnification pictures were

taken under the same conditions. This allows a better comparison

of the wear mechanisms and performances exhibited by each coat-

ing. In general, two groups stand out. The first one is formed by the

coatings produced from F&C or PF powders, deposited via FS

(Fig. 7), APS (Fig. 9) and HVOF (Fig. 10). The wear scars of all these

coatings exhibited brittle fracture, spallation/delamination and

minor plastic deformation under sliding wear. The second group

consists of the coatings produced from the Nano powder, either

sprayed via FS (Fig. 8) or HVOF (Fig. 11). The wear scars of these

coatings exhibit predominantly smooth features indicating higher

degrees of plastic deformation when compared to those of the

F&C and PF coatings. No significant spallation/delamination fea-

Fig. 7. (a) SEM micrograph of the wear scar on FS coating produced from the F&C

powder. (b) Wear scar of (a) observed at higher magnification.
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tures and irreversible deformation were observed for these coat-

ings (Figs. 7, 9 and 10). It has to be stressed that some of these

characteristics related to the wear scars of these types of ceramic

oxide coatings have already been reported in previous works

[3,20,24,26].

Plastic deformation (i.e., ductile flow) and fragmentation (i.e.,

brittle fracture) occur during the sliding wear of ceramic materials

[8,19,24,26,29,30]. During the wear of a ceramic material, a transi-

tion of material removal mechanism from ductile mode to brittle

mode occurs. The initial ductile flowprogressively changes to brittle

fracture after a critical depth of cut is reached. It has been reported

that the critical depth of cut of a ceramicmaterial is directly propor-

tional to the square of its toughness-to-hardness ratio [31].

By looking at Table 3 it is possible to observe that the Vickers

microhardness values of the coatings tested in this study are found

in a range of 800–900 (300 gf), i.e., they are similar. However, the

crack propagation resistance values of the Nano coatings sprayed

by FS and HVOF tended to be higher than those of their counter-

parts (Table 3). As previously discussed in Section 3.4.1, from crack

propagation resistance values it can be inferred that the Nano coat-

ings tend to be tougher than the other ones (Table 3).

3.4.4. Dry-sliding wear scars: plasticity

As discussed in the previous section, the Nano coatings tend to

be tougher than the other ones and all coatings exhibit similar

hardness values. Therefore, it can be hypothesized that the critical

depth of cut (toughness-to-hardness ratio) levels of the Nano coat-

ings are higher than those of the other samples, i.e., the Nano coat-

ings are able to exhibit higher plastic deformation capabilities.

Consequently, the Nano coatings are able to withstand the same

degree of mechanical loading and stress without exhibiting signif-

icant fracture and delamination, which helps to explain the forma-

tion of smooth wear scars and improved dry-sliding wear

resistance of these coatings, i.e., this hypothesis agrees with the

microstructural features of the wear scars of the Nano (Figs. 8

and 11), F&C (Figs. 7 and 9) and PF (Fig. 10) coatings.

To further explore this plasticity issue it is necessary to apply

the concept of tribofilm. According to Bolelli et al. [8,19], the ability

to form a smooth and compact surface film (i.e., tribofilm) by local

plastic deformation is the key property determining coating per-

formance in sliding wear. The tribofilm, which protects underlying

material, is formed by plastically deformed splats and wear debris,

which are caused by high local contact pressures and tempera-

tures. The high local temperatures would be generated by friction

and poor conductivity of ceramic materials.

According to Xie and Hawthorne [29,30], despite the fact that

no complete elastic/plastic model has been developed for the wear

caused by the sliding of a spherical indenter on a material’s surface,

it is reasonable to argue that a hydrostatic compressive stress is

formed just below the contact surface of a rigid spherical indenter

Fig. 8. (a) SEM micrograph of the wear scar on FS coating produced from the Nano

powder. (b) Wear scar of (a) observed at higher magnification.

Fig. 9. (a) SEM micrograph of the wear scar on APS coating produced from the F&C

powder. (b) Wear scar of (a) observed at higher magnification.
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(e.g., between the ruby ball and coating), following the trends of an

elastic–plastic indentation. In this type of elastic/plastic behaviour,

the surface contact of the rigid indenter is encased in a semi-spher-

ical core. Within this core there is a hydrostatic compressive stress

that is equal to the hardness of the surface, which is surrounded by

a plastic zone where the stresses and strains gradually decrease. Fi-

nally, this plastic zone is surrounded by an elastic region. Accord-

ing to Xie and Hawthorne [29,30], the work of Bridgeman [32] (and

subsequently others), has shown that under sufficiently high

hydrostatic pressures, brittle ceramic materials may be prevented

from cracking so that any permanent deformation is essentially

plastic. Therefore, the localized compression under a rigid indenter

(e.g., ruby ball), aided by high local temperature generated during

wear testing, may be high enough to prevent brittle failure, thereby

allowing plastic deformation and the formation of smooth wear

tracks, such as those observed in Figs. 8 and 11 for the Nano

coatings.

Xie and Hawthorne [29,30] cited the works of Lawn [33] and

Fischer-Cripps and Lawn [34] to explain that in bulk, sintered

ceramics, plastic deformation in confined compression occurs pre-

dominantly via dissipative slip of ‘‘shear faults”, i.e., weak particle/

matrix interfaces or twin planes, rather than dislocation slip. This

irreversible deformation can be described as ‘‘quasi-plastic”

[33,34]. However, the plastic deformation mechanisms in ther-

mally sprayed ceramic coatings would tend to be different because

of their unique microstructures. Thermally sprayed ceramic coat-

ings typically exhibit a randomly stacked splat/lamellar aniso-

tropic microstructure with a network of intra- and inter-lamellar

microcracks, which together with well-defined splat boundaries

are sources of ‘‘shear faults” for ‘‘quasi-plastic” deformation. These

concepts were also employed by Bolelli et al. [8,19] to explain dif-

ferences in wear behaviour among ceramic thermal spray coatings.

3.4.5. Dry-sliding wear scars: resilience

Despite the fact that the tribofilm protects the underlying mate-

rial from severe wear and forms a smooth wear scar, it has to be

stressed that it does not impede material removal during wear.

Xie and Hawthorne [29,30] observed smooth wear tracks that

exhibited measurable material removal. Ridges along these wear

scar tracks were also observed. However, the FS and HVOF-sprayed

Nano coatings tested in this study exhibited insignificant material

removal (Table 3), smooth wear scars with no ridges along the

tracks and negligible irreversible deformation (Figs. 8 and 11).

Therefore, there should be another factor affecting the perfor-

mance of these two coatings.

An important property of a material is its ability to absorb en-

ergy when it is deformed without fracture or plastic flow, i.e., resil-

ience. A resilient material can absorb energy by straining

Fig. 10. (a) SEMmicrograph of the wear scar on HVOF coating produced from the PF

powder. (b) Wear scar of (a) observed at higher magnification.

Fig. 11. (a) SEM micrograph of the wear scar on HVOF coating produced from the

Nano powder. (b) Wear scar of (a) observed at higher magnification.
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elastically and this stored energy per unit volume is recoverable if

the applied forces are reduced to zero. The FS and HVOF-sprayed

Nano coatings of this study did not show significant signs of

mass/volume loss, fracture or plastic flow (no ridges along the

wear scars), and no significant irreversible deformation. Therefore,

it can be considered that they exhibit high levels of resilience.

It is interesting to observe that the FS and HVOF-sprayed Nano

coatings exhibited different characteristics of resilience. By looking

at the low magnification pictures of the wear scars of all coatings

(Figs. 7a–11a), it is possible to observe that the FS Nano coating

(Fig. 8a) exhibits the narrowest wear scar (�0.4 mm), whereas,

the HVOF Nano coating (Fig. 11a) exhibits the widest one

(�2.5 mm). The ruby ball does not wear significantly the FS Nano

coating (Fig. 8), which also induces a minimum wear on the ruby

ball surface.

The ruby ball does also not wear significantly the HVOF Nano

coating (Fig. 11), however, after the wear testing it is possible to

observe that the ruby ball surface was flattened, i.e., severely worn

off (Fig. 12).

In a tribological coupling between two different surfaces (mate-

rials), it is the basic principle that the harder one wears the softer

one [8]. Alumina-based materials (9 Mohs), such as the ruby ball,

are known to be harder than titania (5–6.5 Mohs). Despite that,

when the worn off surface of the ruby ball is observed at higher

SEM magnifications (Fig. 12b), it is possible to observe the typical

characteristics of brittle fracture also exhibited by the wear scars

of the F&C (Figs. 7b and 9b) and PF (Fig. 10b) coatings. Further anal-

ysis will have to be carried out to explain this phenomenon, which

is beyond the scope of this current work.

3.4.6. Dry-sliding wear scars: grinding and polishing

It has to be pointed out that this higher capability of forming

smooth tribofilms exhibited by the Nano coatings (Figs. 8 and

11) may indicate that they can be easier to grind and polish, when

compared to F&C (Figs. 7 and 9) and PF (Fig. 10) coatings. In the

majority of the dry-sliding wear applications it is necessary to

grind and polish the as-sprayed coatings prior to use. The process

of grinding and polishing a ceramic coating can be expensive and

time consuming, therefore if this process is facilitated, significant

economy of energy and grinding/polishing materials may be

achieved.

3.5. Integrity of the nanostructural character of the powder

The integrity of the nanostructural character of the powder dur-

ing thermal spraying is a factor to be discussed in this type of re-

search. One may argue if the nanostructural structure of the

feedstock powder (Fig. 4) was totally destroyed during thermal

spraying, due to the particle temperatures reported (Table 2),

which are higher than that of the melting point of TiO2, i.e.,

1855 �C [9]. It has to be stressed again that a pyrometer-based de-

vice was used to measure particle temperature, consequently, the

temperatures measured represented only the temperature at the

particle surface, i.e., inner particle temperature levels were proba-

bly lower than the values reported in Table 2. When the fracture

surface (cross-section) of the FS Nano coating is observed via

SEM at higher magnifications (Fig. 13), it is possible to distinguish

the presence of semi-molten ultrafine particles embedded in the

coating microstructure, i.e., part of the original feedstock structure

was preserved. It is important to point out that the molten part of

the feedstock particles tended to penetrate into the capillaries

(porosity) of the agglomerates.

Gell et al. [20] also observed these microstructural characteris-

tics via SEM and transmission electron microscopy for APS nano-

structured alumina–titania coatings. Therefore, despite the high

temperatures of plasma-sprayed particles, part of the ultrafine

structure of the feedstock was preserved in the microstructure of

the coating, which also exhibited improved wear resistance. How-

ever, as the amount of semi-molten particles embedded in the

coating microstructure was not quantified, it is not possible to infer

how efficient they were in improving the crack propagation resis-

tance of this coating and its wear performance. In fact, the major

toughening mechanism for this specific coating may have been re-

lated to an improved splat-to-splat contact (and not crack arresting

by dense semi-molten particles), due to a lower particle viscosity

level at their surfaces, as discussed in Section 3.4.2 and reported

in a review paper on this subject [3]. Further analysis will have

to be carried out to better understand the role of the Nano-based

feedstock on the improvement in wear properties of these specific

coatings.

3.6. Isotropic behaviour of flame-sprayed nanostructured titania

coating

When bulk, sintered ceramics are indented using Vickers inden-

tation, depending on the indentation load and material properties,

four major cracks tend to be observed originating at or near the

corners of the Vickers indentation impression [5]. This phenome-

non occurs due to the typical isotropic microstructure of bulk

ceramics. Thermal spray coatings are known to exhibit anisotropic

Fig. 12. (a) SEM micrograph of the worn off surface of the ruby ball used to test the

HVOF coating produced from the Nano powder of Fig. 11. (b) Worn off surface of the

ruby ball observed at higher magnification.
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lamellar microstructures. Therefore, when thermally sprayed cera-

mic-based coatings are indented on the cross-section via Vickers

indentation, with the indenter aligned such that one of its diago-

nals is parallel to the substrate surface, two major cracks parallel

to the substrate surface may be observed originating at or near

the corners of the Vickers indentation impression [3,8,35]. This

anisotropic crack propagation occurs predominantly due to the

well-defined lamellar boundaries, which provide easy crack prop-

agation paths.

However, the FS Nano coating tested in this study tended to ex-

hibit isotropic crack propagation under Vickers indentation, i.e.,

four major cracks with similar lengths were observed originating

near or at the corners of the Vickers indentation impression, as

shown in Fig. 14.

This isotropic phenomenon of crack propagation had been ob-

served before for nanostructured-based titania coatings sprayed

via HVOF [3] and APS [36], however, the particle size distribution

of the nanostructured agglomerates varied from 5 to 20 lm, in-

stead of the larger nanostructured agglomerates used in this work

(Table 1). It is important to point out that the HVOF-sprayed Nano

coating (Fig. 6b) did not exhibit this isotropic behaviour.

This isotropic crack propagation is not a typical characteristic of

thermal spray coatings. It is shown in this work as a factor that

may have contributed to the excellent dry-sliding wear perfor-

mance of the FS Nano coating. Further investigation will be neces-

sary to demonstrate the origin of this isotropic behaviour and if it

is making an important influence on the mechanical performance

of this coating under sliding wear.

4. Conclusions

In this work, nanostructured (Nano), fused & crushed (F&C) and

plasma-fused (PF) titania (TiO2) powder particles were thermally

sprayed via FS, APS and HVOF processing techniques. The dry-slid-

ing wear behaviour of these coatings was evaluated via ball-on-

disk testing. The following conclusions were drawn:

- The FS coating produced from the Nano powder was the best

performing of all coatings tested, exhibiting negligible mass/

volume loss after sliding wear testing and DE values of �80%.

- The volume loss of the HVOF-sprayed PF coating after sliding

wear was �12 times higher than that of the HVOF-sprayed

Nano coating. The PF powder was initially produced from a

spray-dried agglomerate that exhibited ultrafine structure,

which was partially lost during the PF manufacture processing

via plasma-fusing. Both PF and Nano powders exhibited similar

overall particle size distribution and were sprayed using similar

in-flight particle characteristics (i.e., temperature and velocity

values). Both coatings exhibited similar microstructures and

porosity levels. Therefore, these series of results show that the

superiority in wear performance of the HVOF-sprayed Nano

coating was highly dependent on the powder structure.

- The superior dry-sliding wear resistance of the FS and HVOF

Nano coatings can be (partially) explained by their higher

toughness levels (inferred from crack propagation resistance

values), formation of a plastic and smooth tribofilm underneath

the ruby ball on the coating surface, and high resilience.

- FS processing is the most affordable thermal spray technique to

spray ceramic powders. It also has the lowest maintenance and

operational costs, it is portable and exhibits the lowest energy

consumption levels when compared to techniques like APS

and HVOF. Based on these characteristics and on the wear

results and DE values observed in this work, it is concluded that

flame spraying Nano titania powders may become a very inter-

esting alternative to produce coatings for dry-sliding wear

applications.

Fig. 14. Four major cracks with similar lengths were observed originating near or at

the corners of the Vickers indentation impression on the cross-section of FS Nano

titania coating.

Fig. 13. (a) SEM micrograph of the fracture surface (cross-section) of the FS Nano

coating showing the ultrafine structure of a semi-molten particle embedded in the

coating microstructure by the action of a previously molten particle. (b) Another

semi-molten particle embedded in the coating microstructure.
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