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Am accurate efficient and flexible SNBCK-based unified band model for calculations of
spectrally resolved and integrated quantities in participating media containing real-gases

Fengshan Liu, Gregory ). Smallwood, and Omer L. Giilder
Combustion Research Group, ICPET, Natienal Research Council, Building M-9, Monveal Road, Ottawa, Ontario Canoda K14 0RS

An accurate, efficient and flexible non-grey gas band model was developed based on the statistical narrow-
band model and the correlated-k methodology. Unlike the conventional band models, the new band model
provides gas absorption coefficients and can be coupled with any absorption cocfficient based solution technique,
This band model also offers great flexibility and can be easily tailored to suit different applications such as
spectrally resolved quantities or spectrally integrated quantities and different levels of compromise between cpu
time and acouracy without reformulation of the tmodel or regeneration of the model patameters. The model can

___ also easily be_extended_to_account for particulate-scattering-and non-grey—surface-properties—The-aceuracy-and- - --
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efficiency of the band mode] were demonstrated in several examples. The Flsasser narrow-hand/Edwards wide-
band model was also evaluated against the unified band model, .

1. Introduction

Radiative heat transfer plays an important role in many large-scale combustion systems such as furnaces and
engines and fire spread in large enclosures. It is also a critical heat loss mechanism in many findamental flame
phenomena in laboratory-scale laminar flames including radiative extinction at small stretch, bifurcation of near-
limit premixed flames, and flame-balls. While in many practical applications onty the total radiation heat transfer
(spectrally integrated) guantities need to be calculated, prediction of spectrally resolved radiation imtensities are
necessary in some applications such as determining the infraved signature from a rocket exhaust and for remote
sensing,

Aceurate calculation of radiation heat transfer in flames and combustion systems is quite challenging since it
requires adequate treatment of the highly wavelength dependent radiative properties of real-gases (namely CO,
CO;y, and FQ). It has been well established that the grey gas model, though computationally efficient, is in
general inacourate and should not be used in situations where gas radiation is dominant. On the other hand, the
ultimate line-by-line (LBL} approach for solving non-grey gas radiation problems is infeasible for calculating
practical problems. Various approximate models have also been developed. These include weighted-sumn-of-grey-
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correlated-k (CK) and its variant methods, -and various-hybrid methods that combine a-band-model-and: the €K
method. The WSGG models offer good computational efficiency but suffer the disadvantages of loss of spectral
information and relatively poor accuracy. The conventional wide-band and namow-band models are not
compatible with absorption coefficient based RTE solvers including the popular and accurate discrete-ordinates
method (DOM) and are not applicable to scattering problems, The EWB model is less accurate than the SNB
model and does not offer adequate spectral resolution for certain applications. Results of the SNB model have
often used as benchmark solutions in the absence of LBL results.

The hybrid SNBCK. method was first proposed by Lacis and Oinas (1991) for atmospheric applications.
Applications of the hybrid SNBCK method to radiative heat transfer problems have been recently made by Liu et
al. (1999a and 1999b), Goutiére et al. (2000), and Dembele and Wen (2000)., This method overcomes the
disadvantages of the conventional SNB mode], maintains the accuracy of the SNB model and offers much better
computational efficiency than the SNB model. However, the original SNBCK method still requires intensive
computing time in three-dimensional calculations, especially in gas mixttres due to the band overlapping problem
(Goutigre et al., 2000). Further improvement in the computational efficiency of the SNBCK method has been
recently made by Liu et al. (2000a, 2000b, 2001). In this paper we present a unified band model (UBM) whose
bandwidth can be easily switched from a narrow-band (width 25 et} to a wide-band (bandwidth up to 500 cm')
50 that the very same maodel can be used in different applications. In addition, it can be casily tailored to meet
different levels of compromise between epu time and accuracy without revision of the algorithims.

Due to its simplicity, the spectral absorption coefficient formulstion based on the Flsasser narrow-band
coupled with the correlation parameters of Edwards’ EWB model has gained some popularity in recent years for
calculating radiation heat transfer in real-gases (Tong and Skocypee, 1992; Guo and Maruyama, 2000). As the
accuracy of this model has not been evaluated against a more accurate model, it was also employed in the present
calculations to compare it to the SNBCK method and the UBM.
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2. Formulation |
The SNBCK, method has been described in previously by Lacis and Oinas (1991) and recently by Liu et al.

(2000s 2001) Therefore the discussion of e SNBCK. method isel is kept brief with ephasis given 07 howthe K

UBM is-formed, .. . i

The basis of the CK method is that for atiy spectral radiative quantity @, that is sclély dependent on-gas- . |

absorption coefficient (which is true at a natrow-band where the blackbody intensity function and radiative
properties of particulate can be treated as constant) the integration over wavenumber can be replaced by
integration over the absorption coefficient, ie.

g, =-£~;jmgo(rcv)dv = [[ i)k o
where f{k) = 1/4v dvidk is the normalized distribution function of the gas absorption coefficient mside a narrow-
band. 1t is important to realize that when the integration over wavenumber is replaced by integration over the gas
absorption coefficient the spectral absorption coefficient . is replaced by k since it now plays the role of an
independent variable and is no longer function of wavenumber. Application of Eq.{1) to gas transmissivity leads
to the conclusion that f{kj is the inverse Laplace transformation of the narow-band gas transmissivity and

gas fransmissivity 01
transmissivity over 1l

Similar linear relatic

‘When the wide bar
approximate Malkm
to non-overlapping
(Gas absorption coe
inverting Eq.(6), k =
(a narrow-band of Z
noted that as the ve
blackbody intensity

The cumulative distribution function g(k), defined as J': f(k)dk, has also been derived by Lacis and Oinas

(1991)
gtk =-}£{1 -erf[:j"I -fE ]]+ %[1—-&1‘ [v“rbﬁ ]]e’“’ ®

where ;=LJ/7B5 » b=%,,r,,:37 5 and erf(x) is the error function. Using the cumulative distribution function, the

2
narrow-band averaged intensity can now be calculated as

—_ M
T = [ 1g)ig = ¥ wil{g) @

]
The second half of Eq.(4) is the result of applying 2 Gauss type numerical quadrature of order N. At a given Gauss
quadrature point, the value of the cumulative function gy is known, the corresponding value of the gas absorption

coefficient k; is then obtained by inverting Eq.(3). Unfortunately an analytical expression for k= k'(g) does not
exist and the value of & for a given valug of g has to be found iteratively. Once the gas absorption coefficient k; is

- provides-the-theoretical basis-to link the SNB_model to_the CK. method, The analytical expression. for J® theoretically permit

coresponding to the SNB gas trapsmissivity exists and is written as (Lacis and Oinas, 1991) o " band model based ¢
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mown, a RTE solver is called to calculate te radiation intensity-field-Ttks)-which-is-written.as I{gyin Eq.(4).

The above description of ihie SNBCK inethod is applicable-only-at a-non-overlapping narrow-band. When the

SNBCK method is used to caleulate radiation intensity field in a medium containing more than one radiating gas,
the problem of overlapping bands is encountered. Various treatments of overlapping bands have been numerically
‘investigated by Liu et al. (2001). The approximate Mallkmus band method described by Liu et al. (2001). was
employed in the formulation of the UBM. '

When performing numerical calculations using the SNBCK. method, the inversion of Eq.(3) consumes a
substantial portion of the total cpu time (Liu et al, 2000b). Numerical experiments indicate that a relative error
tolerance of 1.0¢10°7 for the iterative calculation of ki using Eq.(3) represents a good compromise between
computing time and accuracy. The inversion of Eq.(3) was conducted using a Newton-Raphson iteration method
with the mnitial value set 10 fra Our numerical experience indicated that the Newton-Raphson method is in general
rapidly convergent. However, this iteration method can experience severe difficulties with convergence under
certain thermal conditions and at certain’ Gauss quadrature points when either the derivative de/dk is very small or
the method enters a nonconvergent cycle (Press et al,, 1986). In this situation, the bisection method (Press et al.,
1986) was used to invert Eq.{3). Therefore, a combined Newton-Raphson and bisection method was employed in
the present work.

The SNBCK method discussed above can be used with any RTE solver. The method can be therefore
extended to include scattering and non-gray surface properties in a straightforward fashion, The SNB model
parameters compiled by Soufiani and Taine (1997) were employed in this work.

Formulation of a UBM based on the SNBCK method is made possible by the observation that the
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gas transmissivity over 4 wide spectral .band--centaining—M-su‘c‘CE'sEi\‘re uniform narrow—bands_jis telated to the gas
" ~HADSHHSSIVITY over these narrow-bands (Liu et ], 2000b) . . o T

1 Ay, 1 1 &
T = - =2V K, LMdv =L {5)
e _Lwexp( x, Lydv - E‘Avm Lmexp( K, L)d MZ "

1 ¥ I ¥
I 1= fua ) B k)= D (4) ©)

When the wide band formed by Af successive narrow-bands contains overlapping bands, the method of the
approximate Malkmus band model proposed by Liu et g), (2001) was employed to convert the overlapping bandg
to non-overlapping ones with the parameters calculated using the expressions based on the optically thin limit.

Gas absorption coeflicients at each wide band containing M narrow-bands can be obtained tumerically by
inverting Eq.(6), k = gy, 2" (%), In this UBM, the value of 3 is a choice of
(2 narrow-band of 25 o i !

_ 8 sinth (7:,8/2) o)
by =p a cosh (7B /2)~cos[ 2z (v~v,)/6]
-spacing ratio given by Edwards’ EWR model (Edwards, 1976) as
o
Ts-zz;exp(-alv- KI:” Cl’)

where S8 is the mean-line-intensity-to

ypical values of § used in the literature are 1 cpy? (Tang
cypec, 1992). The Elsasser narrow-band mode| coupled with
gained some popularity recently due to jts simple expression in terms of the gas dbsorption
coefficient (Tong and Skocypec, 1892; Tang and Brewster, 1994; Guo and Maruyama, 2000). However, a critigal
evaluation of the accuracy of this non-grey 8as model againist the regults from a more accurate model has not been
teported. Parameters of the EWRB model were calculated using the exprassions given in Edwards (1976} along
with the efficient procedure suggested by Lallemant and Weber (1996).

3. Results and Discussions
In the following caleulations the total pressure is 1 atmn, Al calculations were conducted on a SGI Octane 175
MHz workstation,

Spectrally resolved intensities along a-line-of-sight
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| Narrow-band line-of-sight intensities emitted from three gas columns at x = L. and along x direction were
o .._.computed using SNB, SNBCK using the three quadratures, and the Elsasser model. The length of the three gas

columns is 0.5 m and the total pressire is st 1-atro Other-thermal-conditions.are summarized below: Column 1,

performs reasonably well, with only about 10% lower than the SNB intensity.

Radiative transfer in one-dimensional parallel-plate

decrease in accuracy.

Rudiative transfer-in three-dimensional rectan lar enclosure
tes a

T = 400+ (2100 - 400)2/0.75 for z<0.75m and T,

axis

simply takes the value of 1 m.

666

Keoa =02, Xuro = 0.0, T="1000 K; Colunn Z-¥cor = 0.0, Xngo-=.0.2,.7 = 1000 ¥; Colurnn 3, Xeor = 0.1, Xuo =
0.2, and a parabolic temperature distribution with 500 K at boundaries and 2000 K at ‘ihe denier, 1 the calculation- -
using the Elsasser model, each narrow band of 25 e’ width was further divided into 4 uniform segments. The
gas columns were divided into 25 uniform divisions in all the calculations. Narrow-band infegrated intensities
from Column 1 are compared in Fig.1, Results of the SNBCK7 (using the 7-point quadrature) are in very good
agreement with those of the SNB model. The narrow-band intensities are not reproduced well by the Elsasser
model. Also shown in Figl are the total (spectrally integrated) intensities from the SNB, the SNBCK with

- different quadratures, and the Elsasser model. The total intensities from the SNB and SNBCKn (n=2,4,7) differ
only slightly. The Elsasser mode] also predicts a reasonably accurate integrated intensity under these conditions,
being only about 4.6% lower than the SNB value. Fig.2 shows the narrow-band integrated intensities from
Column 2 obtained using the SNB, SNBCK?7, and the Elsasser model. Again the SNBCK7 intensities are in very
good agreement with those of the SNB, However, the narrow-band intensities based on the Elsasser model are in
"”*Sﬁiﬁus*ermr:%efspectrallyfintegrated,intensities based on the SNBCKn (n= 2,4,7) are in excellent agreement
L with-that-of the SNB model. The Elsasser model underpredicts the total intensity by about-20% Results-from——] -
A Column 3 are compared in Fig.3. In this non-isothermal case, mmme—discrepaneies—m-th 2 ;
i tensities between SNBCK? and SNB, patticularly in the spectral region 2300-2400 ent’. Otherwise, the
agreement between the results of these models is very good. The Flsasser mode} does not capture the detailed
spectral distribution of the intensity. As far as the total intensity is concemed, however, the Elsasser model

The one-dimensional parallel-plate case considered here contains a uniform gas mixture of CO;, B0, and N,
The separation distance is % m. The two boundaries are cold and black. The thermal conditions are the same 2s
those in Column 3 described above. The domain was divided into 101 uniform segments. RTE was solved using
DOM along with T; quadrature (Thurgood et al., 1995). The cpu time and the wall heat flux from UBM and the
Elsasser model with various values of N and M are compared in Table 1. Errors of UBM remain less than 7%.
Errors of the Fisasser model are between 12 to 20%. UBM with N = 4 and M = 10 offers a near .order-of-

magnitude decrease in cpu time with an error < 3%. Further decreases in ¢pu time is accompanied by substantial

| ——————— — DOM-was-employed to_solve the RTE in cartesian coO Wit‘rﬂhe‘step—spaﬁal—diﬁerencing—schema_ [
i and the T, angular quadrature {Thurgood et al., 1995). The dimension of th'é‘éh'closure-is—Zm(]_x)XZm(-L.,)xSm(L‘)._- 5
The enclosure is divided into 1717540 conirol velumes, The division in x and y directions is uniform, Non-
uniform grids are used in the 2 direction to better resolve the large temperature gradient region, The walls are
black and at 300 . The mole fraction distributions of COz and H;O in the enclosure are assumed to be uniform at
0.1 and 0.2, respectively. Non-uniform temperature distribution is specified as T =(T,,, —800) f(rysoowhae
and f{7) define the temperature distribution along the centerline and radial direction, respectively, with
- 500 + (2100 —800)(8 ~z)/7.25 for z > 075 m. fir) is given as
fry=i-ar e with r being the distance to the centerline. In the four corner regions where r is greater than 1 m, 7

Figure 4 compares the source term distribution along the certerling calculated using UBM and the Elsasser
model with various values of N and M. In order to highlight the discrepancies between results of different
methods, an enlarged version of Fig.4 around the minimum source term value is presented in Fig.3 along with the
cpu times of the two methods. Fig.5 shows that the acouracy of the UBM is insensitive to the value of N but more
sepsitive to M in this 3D case. This is expected since the blackbody intensity is no longer constant a3 the band
widih increases (increasing ). The UBM is consistently more accurate than the Elsasser model, except when
using N =2 and M = 40 where the errors are similar. Unlike in the 1D parallel-plate case, the cpu time
monotonically decreases with increasing M at a given N. This behavior is the result of the relatively small portion
of the cpu time required in the inversion of g(k) relative to the cpu time spent on solving the RTE in the 3D
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calculations. The cpu times of the UBM with N =2 and M = 10 or 20 are comparable to that of the Elsasser model
with & =2 and M = 20, being within a factor of 2. However, the UBM is more accurate, especially when using M
= 10. Note that use of N=2 and M = 10 and 20 results in respectively 72 and 36 spectral discretisation points,
Such a spectral resolution is also comparable to that used by Guo and Maruyama {2000) who divided the spectral
range 100 to 10000 cmi' into about 100 sub-bands. Therefore, the UBM is preferred in calculations of radiation
heat transfer in real-gases. The net wall heat flux distributions along z at x=2mand y= Im are shown in Fig.6.
Once again, the UBM is more acenrate than the Elsasser model.

Table 1. Comparison of epu time and wall heat flux for the 1D parallel-plate test case,
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range of applications since it accurately
integrated guantities with good efficiency. The unified band model

statistical narrow-band model while offers significant improvement in efficiency. In addition, it can-be-used—for
problems with radiation scattering

="100r 20; the wiified band madel 35 not only more accurate than the Elsasser m

efficiency for calculations of spectrally integrated quantities. The Elsasser model
where specirally resolved information is required,
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