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We present a finite-element/discrete-element numerical model for calculating full trajectories of

cylindrical metallic colloids in liquid flows and subjected to non-uniform electric fields. The effect of the

particle orientation relative to the liquid flow is investigated by considering barcode magnetic nanowires

pinned in different directions by applying uniform magnetic fields. We compare the motion of free as

well as vertically and horizontally pinned nanowires and demonstrate that their nanoassembly may

accurately be tuned by magnetically controlling the orientation during the dielectrophoretic capture.

 2008 Elsevier Inc. All rights reserved.

1. Introduction

Integration of multiple nanomaterials into complex nanoscale

systems is one of the key issues in recent nanotechnology. Among

the most promising techniques for precise manipulation and po-

sitioning of micrometer or even submicrometer sized particles in

these systems is the dielectrophoresis (DEP), i.e., the actuation of

small particles (generally less than 10−3 m in diameter) through

the action of non-uniform electric fields [1]. Most convenient ap-

proaches to the nanoassembly by using DEP consist of bridging

inorganic nanowires across electrode gaps [2–5] as well as by us-

ing the electrorotation mechanism [6] and combinations of elec-

trophoretic and dielectrophoretic forces [7]. These techniques were

already proposed or even proved to be useful in nanoelectron-

ics for providing small connecting wires [8,9], plasmon-conducting

fibers [8], or integrating DEP of metallic nanowires in biomolecular

recognition [10].

As recent advances in nanotechnology allow a continuously

increasing control of the design of both particles and actuation

devices, it is of great interest to develop theoretical models and

numerical algorithms in order to describe the DEP motion of small

particles of various shapes and sizes. The key issue in numerical

modeling of DEP of small particles consists of accurate predictions

of their trajectories when suspended in known liquid flows and

subjected to non-uniform electric fields. This task usually needs to

address several subsequent problems related to the liquid flow, ac-

tuation fields, and induced electric dipoles as well as drag forces

and torques undergone by particles during their motion. The com-

putation of the electric fields generated by arbitrary configurations
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of metallic electrodes and the velocity fields corresponding to liq-

uid flows in microchannels can both be reduced to simply Poisson

or Laplace equations and solved by finite elements [11]. Moreover,

some fundamental questions related to DEP forces and torques as

well as the influence of size and slip boundary conditions on the

drag forces acting on small colloids [12] must be taken into ac-

count.

Several experimental and theoretical works demonstrated that

the basic theory of DEP and electrorotation [1,13,14] may suc-

cessfully be applied to predict full trajectories [15] or equilibrium

configurations (chaining) [16] of spherical dielectric beads. For par-

ticles of arbitrary shapes, analytical multipolar approaches [17] and

numerical strategies [18] have already been proposed. However,

numerical simulations related to the prediction of full trajectories

in liquid flows are limited to carbon nanotubes [19,20] and do not

take into account the effect of the particle orientation relative to

the liquid flow. In this work, we present a 2D model for predict-

ing full trajectories of metallic nanowires in low-conductive liquid

flows and subjected to non-uniform electric fields. In order to an-

alyze the influence of nanowires’ orientation on their trappability,

barcode cylindrical particles containing small magnetic inclusions

are considered. Then, uniform magnetic fields are applied in order

to tune the orientation of these nanowires relative to the liquid

flow. The trajectories for free (no applied magnetic field), vertically

pinned (vertical magnetic field), and horizontally pinned (horizon-

tal magnetic field) nanowires are obtained from both rotational

and translational equilibrium conditions and by neglecting any in-

ertial effect. Although in this paper we consider a non-uniform

electric field generated by a simple double-strip electrode system,

the model may easily be generalized for more complicated geome-

tries.

0021-9797/$ – see front matter  2008 Elsevier Inc. All rights reserved.
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Fig. 1. Longitudinal cross section of the simulated DEP device used for electric ma-

nipulation and capture of metallic nanowires. The liquid flow is from left to right

between the two plates P1 and P2 located at y = yu and y = yl and represent-

ing the upper and lower walls of the microfluidic channel, respectively. S1 and

S2 represent the strip-like metallic electrodes used in order to generate the elec-

tric actuation field. Simulation domain ranges from x = xl where the nanowires are

launched from up to x = xu where the untrapped particles are counted.

2. Theoretical model

We consider a laminar flow of low conductive DI water be-

tween two parallel plates P1 and P2 (Fig. 1) situated at yl =
4 µm and yu = 15 µm with respect to the origin of the reference

frame xO y. Symmetrically with respect to the O y axis and per-

pendicularly to the plane xO y there are two metallic strips S1
and S2 whose rectangular cross sections are 5 µm in width and

1 µm in height, with a gap between them of about 0.5 µm. A non-

uniform electric field is obtained by applying an electric voltage

between the strips of 2 V (+1 V on S1 and −1 V on S2). Metallic

and magnetic nanowires with different aspect ratios are launched

from upstream points at x = xl = −15 µm and different altitudes

yl < y < yu . By integrating the simultaneous translational

�Fel + �Fdrag = 0 (1)

and rotational

�Tel + �Tdrag + �Tmag = 0 (2)

equilibrium conditions, i.e., the conditions that the two sums of

respectively all forces (electric �Fel and drag �Fdrag) and all torques

(electric �Tel , drag �Tdrag , and magnetic �Tmag) be equal to zero, we

determine the full trajectories and orientations of the nanowires

until they either hit the bottom plate P2 (y < yl) or escape

from the influence of the two strips (x > xu). The integration

time-dependent (unknown) variables in Eqs. (1) and (2) are the

nanowire coordinates x(t), y(t) and nanowire orientation θ(t). In-

ertial effects in these equations are neglected [4] and the depen-

dence of both force and torque terms on the integration variables

is derived in the following.

The calculation of the force exerted by an electric field �E on po-

larizable particles is generally achieved by numerical evaluations of

the Maxwell stress tensor [18]. However, when simple geometries

are employed, simplified analytical expressions as

�Fel = (�p · ∇)�E (3)

may be used in a first approximation [1,13]. Since higher order

terms were omitted, the above expression is accurate only if the

electric field does not significantly vary across the nanowire. Obvi-

ously, for more complicated shapes and large non-uniformities of

the electric fields across the particles, multipolar representations

[17] or advanced numerical methods [18] for evaluating the DEP

Fig. 2. Local (x′O ′ y′—related to individual nanowires) and global (xO y—related to

the microfluidic device) coordinate systems used in the equations of motion of the

nanowires.

forces must be employed. The components of the dipole moment
�p in Eq. (3) may be expressed as
{

px = p‖ cos θ − p⊥ sin θ,

p y = p‖ sin θ + p⊥ cos θ,
(4)

where p‖ and p⊥ are the components of the dipole moment in

the local coordinate system x′O ′ y′ related to the nanowire (Fig. 2).

These components depend on the nanowire polarizabilities α‖ and

α⊥ and the local components E‖ and E⊥ of the applied magnetic

field by

p‖(⊥) = α‖(⊥)V E‖(⊥), (5)

where we denoted with V the nanowire volume. In the DC (or

low-frequency) limit α‖ and α⊥ are functions of nanowire and wa-

ter conductivities only [21]

α‖(⊥)
∼= ε0εr

σp − σm

σm + (σp − σm)L‖(⊥)

, (6)

where ε0 is the vacuum absolute permittivity and εr the relative

permittivity of the surrounding medium (water). Analytical expres-

sions for the depolarization factors L‖ and L⊥ may easily be found

if we consider the nanowires as prolate spheroids [22,23].

The drag force �Fdrag acting on the nanowires will depend on

their orientation relative to the liquid flow. For the sake of sim-

plicity, we approximate again the nanowires (as we did above for

the electric polarizabilities) with prolate spheroids whose semimi-

nor and semimajor axes are equal to the radius R and half-length

L/2 of the nanowire, respectively, and express the local compo-

nents of the drag forces as

�Fdrag,‖(⊥) = 6πηRξ‖(⊥)(β) · �U rel, (7)

where η is the liquid viscosity, �U rel the liquid relative velocity with

respect to the nanowire (that is the liquid velocity in the local co-

ordinate system x′O ′ y′; Fig. 2), β = L/2R the eccentricity of the

nanowire, and ξ(β) a phenomenological factor depending on its

eccentricity and relative orientation to the liquid flow. Once we

decide to approximate the nanowires with prolate spheroids, sev-

eral analytical expressions for the functions ξ‖(⊥) are available in

the literature depending on the desired accuracy or computational

load [24–26]. In this paper we take

ξ‖(⊥)(β) =
4

3
κ

β2 − 1

A‖(⊥) · B ∓ β
, (8)

where

A‖ =
2β2 − 1
√

β2 − 1
, A⊥ =

2β2 − 3
√

β2 − 1
and

B = ln
(

β +

√

β2 − 1
)

. (9)
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We introduce a phenomenological factor κ in Eq. (8) in order to

account for the changes in the drag force due to the transition

to the nanoscale regime [12,27]. However, we assumed here that

κ = 1 as the nanowires used in our study have relatively large sizes

(tens to thousands of nanometers) compared to those necessary to

change the slip boundary conditions at their surface [27].

If we denote with fdrag,‖(⊥) the coefficient of �U rel in Eq. (7) and

with

fdrag,x = | fdrag,‖ cos θ − fdrag,⊥ cos θ | (10)

and

fdrag,y = | fdrag,‖ sin θ + fdrag,⊥ cos θ | (11)

the absolute values of these coefficients in the global coordinate

system xO y, we may easily find from Eq. (1) that the elemental

displacements of the nanowire in the directions of the global coor-

dinate axes are

�x =

[

V liquid(y) +
Fel,x

fdrag,x

]

· �t (12)

and

�y =
Fel,y

fdrag,y
�t. (13)

We consider a simple Poiseuille liquid flow [25] between the plates

P1 and P2 such that the velocity V liquid(y) is parabolic (Fig. 1) and

parallel to Ox axis. Moreover, the time interval �t is considered

small enough so that the changes in orientation relative to the liq-

uid flow during the translation motion described by Eqs. (12) and

(13) are not very important.

As the equations describing the translational motion are de-

pendent on the orientation of the nanowires, it is very impor-

tant to accurately solve Eq. (2) for the equilibrium position of the

nanowire (angle θ ) and the angular velocity (θ̇ ), the last parameter

being responsible for the appropriate choice of the time interval

�t . It is elementary to find that Eq. (2) may be written in the

form

θ̇ = a sin θ + b cos θ + c sin2 θ + d cos2 θ + e sin θ cos θ, (14)

where

a = −
μ0mHx

tdrag
, b =

μ0mH y

tdrag
, c = −

(α‖ − α⊥)V ExE y

tdrag
,

d = −c and e =
(α‖ − α⊥)V (E2

y − E2
x )

tdrag
. (15)

A complete derivation of Eq. (14) from Eq. (2) is presented in

Appendix A. In the expression above μ0 is the absolute vacuum

magnetic permeability, m the magnetic moment of the nanowire,

Hx, H y and Ex, E y the Cartesian components of respectively the

magnetic and electric field. The quantity tdrag stands for the drag

torque per unit angular velocity,

tdrag = π L3ηCr (16)

with

Cr =
2

3

2− e2

1+e2

2e3
ln 1+e

1−e
− 1

e2

(17)

and e =
√

1− β−2 [21].

In the absence of any applied magnetic field Hx = H y = 0 so

that a = b = 0 and Eq. (14) reduces to an electrorotation problem.

The absence of any applied electric field will give c = d = e = 0

and we have a pure magnetorotation of the nanowires. A visual

comparison of these two particular processes is shown in Fig. 3 for

such numerical values of the applied magnetic and electric fields

Fig. 3. Electrorotation vs magnetorotation for various initial orientations of the

nanowire symmetry axis with respect to the direction of the applied field.

Table 1

Geometrical parameters (radius R and length L) of the nanowires considered in the

numerical simulations

Name R (nm) L (nm)

NW1 40 500

NW2 80 1000

NW3 40 1000

so that V (αx − αy)(E
2
x + E2

y) = μ0mH and where Eq. (14) is nu-

merically solved for different values of the initial angle between

the magnetic moment and the field direction. The parameter τ0 in

this figure stands for the tdrag to μ0mH ratio. For analytical solu-

tions to the electrorotation equation of nanowires (that may easily

be adjusted for magnetorotation) the reader may consult Ref. [21].

However, as in the presence of both electric and magnetic fields all

the coefficients in Eq. (15) are nonzero, numerical algorithms for

solving ordinary differential equations (as the forth-order Runge–

Kutta [28]) may become more practical.

3. Numerical simulations

The theoretical model described in the previous section was nu-

merically implemented in order to obtain the trajectories of three

types of barcode nanowires, as shown in Table 1.

All the nanowires have different aspect ratios and a magnetic

moment �m which is considered parallel to their symmetry axis

(Fig. 2). Both magnitudes of nanowire magnetic moments and

magnetic fields are chosen so that the maximum magnetic torque

(when the nanowire is perpendicular to the field) have the order of

magnitude of 10−18 Nm. For the particular geometry of our two-

strip electrode system this value is appropriate in order to align

the nanowires in the direction of the magnetic field. These torques

may be achieved by magnetic inclusions of several hundreds of

nanometers of Ni subjected to magnetic fields of thousands of

A/m.

Since the magnetic field is considered uniform, the magnetic

torque acting on the magnetic nanowires depends on orientation

only, being totally independent of their spatial location. This is not

the case with the electric torque, as the electric field around the

two strips S1 and S2 (Fig. 1) is non-uniform and accurate knowl-

edge about the electric field components Ex, E y at all the points

in the liquid flow is necessary. Moreover, the computation of the
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Fig. 4. Trajectories of free (H = 0) nanowires of different aspect ratios in a DI water flow of average velocity of 3.33 µm/s. The units on axes are in micrometers.

electric force �Fel in Eq. (3) requires accurate values for the gradient

components ∂xEx , ∂y Ex , ∂xE y , and ∂y E y of the electric field. These

requirements are easily achieved when analytical functions for the

electric field are available (see Ref. [19], for example) but it is more

difficult when numerical algorithms are employed, due to the high

order derivatives of primary variables (here the electric potential).

In this paper we solve the Laplace equation (∇2ϕ = 0, where ϕ is

the electric potential) corresponding to our electrode system by a

finite element 2D algorithm using linear triangular mesh [11]. The

corresponding solution (ϕ) is represented in a contour fill plot and

used as background in Fig. 1. The electric field components are

computed by first-order derivatives of ϕ on the triangular mesh

whereas the components of the electric field gradient are evalu-

ated by using an auxiliary rectangular mesh and interpolations of

Ex and E y in four neighbor nodes with polynomials of the form

c0 + c1x + c2 y + c3xy in the least square sense [29]. The electric

field gradient component ∂y E y as well as the components E y and

Ex for the electric field are shown as contour fill plot backgrounds

in Figs. 4, 5, and 6, respectively.

The nanowires are launched from upstream points in the flow

at x = xl = −15 µm and different altitudes (y), uniformly dis-

tributed between the two plates P1 and P2 . As Eq. (3) is a good

approximation of the dielectrophoretic force acting on particles rel-

atively small with respect to the spatial variations of the electric

field, we considered a 2-µm spacing between the electrodes and

the microfluidic channel. This gap will diminish the errors due

to the fact that the dimensions of the considered nanowires (Ta-

ble 1) are comparable with those of the two-strip electrode system

used to generate the electric field. The initial angle at the launch

points is considered 0; that is, the nanowires are initially paral-

lel to the Ox axis. Equations (1) and (2) are simultaneously solved

and both position and orientation of the nanowire updated accord-

ing to Eqs. (12), (13), and (14). This strategy is applied for each type

of nanowire in Table 1 and different degrees of freedom. In a first

simulation we considered completely free nanowires; that is, they

are moving in the absence on any applied magnetic field. As we

see in Fig. 4, the orientation of these nanowires roughly follows

the direction of the electric field and are attracted toward regions

of high electric field gradient. However, the destination points are

relatively scattered on the surface of the two electrodes. This is

mainly due to the fact that the dielectrophoretic force depends not

only on the gradient of the electric field but on the intensity of

this field too (by increasing the induced electric dipole moment).

For average liquid velocities of 3.33 µm/s all the nanowires NW1

launched at altitudes y � 12 µm are trapped, the rest (y > 12 µm)

being escaped. Under the same flow conditions, longer nanowires

(NW2 and NW3) are totally trapped. This demonstrates that in this

configuration, the increase of the drag force due to the increase of

the nanowire dimensions is overwhelmed by the increase of their

polarizabilities and consequently their electric moments.

Vertically pinned nanowires (Fig. 5) are expelled from the gap

between the two strips but trapped onto the surface of the elec-

trodes, where the electric field is almost vertical. On the contrary,

horizontally pinned nanowires (Fig. 6) are bridging across the gap

between the electrodes, where the electric field is almost hori-

zontal. Compared to free nanowires (NW1), the trappability is de-

creased as only nanowires launched at altitudes lower than 9 µm

are trapped. Again, as observed for free nanowires, longer and

larger nanowires (NW2 and NW3) present improved trappabili-

ties, the bigger ones (NW2) being trapped in proportion of 100%

(Fig. 5).
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Fig. 5. Trajectories of vertically pinned (Hx = 0, H y = 100 A/m) nanowires of different aspect ratios in a DI water flow of average velocity of 3.33 µm/s. The units on axes

are in micrometers.

4. Concluding remarks

Although far from being exhaustive, the present model gives an

insight into the influence of the orientation of cylindrical metal-

lic nanoparticles on their DEP manipulation and capture. Each step

of these simulations may be improved in future works by more

accurate evaluations of the DEP forces as well as improved phe-

nomenological expressions for drag forces. The main advantage of

the present approach is that, with some phenomenological cor-

rection factors, we can use it as a predictive tool in the design

of DEP-based microfluidic devices with a minimum computational

load, especially when the problem is extended into 3D.

A network of polarized micrometer-sized electrodes generates

non-uniform electric fields consisting of alternating regions of hor-

izontal and vertical field lines near the electrode gaps or their

middle regions, respectively. The present simulations show that

with an appropriate design of the electrode system and by control-

ling the orientation of the metallic colloids, improved precisions in

their DEP capture may be achieved. In this work we considered

noninteracting magnetic nanowires, so the magnetic interactions

between both suspended and captured nanowires are completely

neglected. Moreover, the electric interactions between particles are

also neglected so that the presented results do not account for the

mutual interactions between particles. Extension of the model in

3D for interacting barcode nanowires and a thorough experimental

investigation of our theoretical predictions are planned in the near

future.
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Appendix A. Derivation of Eq. (14)

The rotational equilibrium condition for a nanowire suspended

in a liquid and subjected to electric and magnetic fields is repre-

sented by Eq. (2). If we restrict the motion of the nanowires to the

plane xO y (Fig. 2) and we consider the nanowires’ symmetry axis

always parallel to this plane then the three vectors in Eq. (2) are

perpendicular to this plane (along Oz direction) and the equilib-

rium reached when

Tdrag = Tel + Tmag, (A.1)

that is, when the sum of clockwise and counterclockwise torques

cancel each other. The above equation is in fact the scalar projec-

tion of the vectorial equilibrium condition (2) on Oz. Due to this

particular restriction to the orientation of the nanowires relative

to the global coordinate system, the modulus Tel of the electric

torque �Tel = �p × �E acting on polarizable nanowires can be simply

expressed as

Tel = (p‖E⊥ − p⊥E‖)ẑ, (A.2)

where ẑ is the unit vector in the direction Oz, and p‖ and p⊥

are the projections of the nanowire electric moment �p respectively

along the nanowire symmetry axis and perpendicular on it. Sim-

ilarly E‖ and E⊥ are the components of the electric field in the

local coordinate system related to the nanowire (x′O ′ y′). These

components depend on the orientation of the nanowires relative to

the electrodes and consequently are unknown. A more convenient

form of Eq. (A.2) can be derived if we relate these two compo-

nents to Ex and E y , corresponding to the global coordinate system

xO y and directly obtained from the finite element solution of the

electric field. Namely, by using
{

E‖ = Ex cos θ + E y sin θ,

E⊥ = −Ex sin θ + E y cos θ
(A.3)
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Fig. 6. Trajectories of horizontally pinned (Hx = 100 A/m, H y = 0) nanowires of different aspect ratios in a DI water flow of average velocity of 3.33 µm/s. The units on axes

are in micrometers.

in (A.2) we obtain

Tel = (α‖ − α⊥)V
[(

E2
x − E2

y

)

sin θ cos θ

+ ExE y(cos
2 θ − sin2 θ)

]

. (A.4)

The magnetic torque �Tmag = μ0 �m × �H is also perpendicular to the

plane xO y and its modulus is given by

Tmag = μ0(mxH y cos θ −myHx sin θ). (A.5)

Finally,

Tdrag = tdragθ̇ , (A.6)

where tdrag is defined in Eq. (16). Using Eqs. (A.4)–(A.6) in Eq. (A.1),

we obtain Eq. (14),

θ̇ = −
μ0myHx

tdrag
sin θ +

μ0mxH y

tdrag
cos θ

−
V (α‖ − α⊥)ExE y

tdrag
sin2 θ +

V (α‖ − α⊥)ExE y

tdrag
cos2 θ

+
V (α‖ − α⊥)(E2

y − E2
x)

tdrag
sin θ cos θ, (A.7)

that is, a first-order ordinary differential equation (ODE) in θ .
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