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1 Introduction

Over the last twenty years, much progress has been made in the development of
models and algorithms capable of predicting different phases involved in the injection
molding process. Extensive research work in computer modeling for injection
molding has been conducted by many research groups, including the Comnell
Injection Molding Program (CIMP) [1-11], Université Catholique de Louvain (UCL)
[12-22], IKV [23-27], Ecole des Mines de Paris (CEMEF) {28-31], Industrial
Materials Institute (IMI) [32-37], McGill University {38-42}, University of Hlinois
[43-44], Western Electric Company [45-46], among others.  Basically, two
approaches have emerged. The first uses finite difference method with the grid
generation technique and the second uses finite element method with either the
volume of fluid method or an automatic remeshing technique for the flow-front
tracking. Most of the above numerical methods are based on the lubrication
approximation to formulate the mold filling problems, although a number of recent
papers use a fully three-dimensional approach [23, 24, 29, 30, 33, 34] to address
specific problems that need to solve the full Navier-Stokes equations. As far as final
properties and dimensional stabilities of parts are concerned, either elastic or
viscoelastic formulation is used to model the polymer behavior during cooling and
gjection phases. As a result of the above research, a clear understanding of the flow
behavior, thermal exchanges, dimensional stability and mechanisms of stress
generation is well established.

In spite of many assumptions and approximations used in the mathematical
description of the physics of the underlying problem, nowadays, commercial injection
molding simulation software, e.g., Moldflow [47] and Moldex [48], are, nevertheless,
routinely used as design optimization tool, to analyze the entire injection molding
process, from the filling stage to the ejection. Information collected from simulation,
i.e., the temperature distribution during filling, the position of weld-lines, possible
short shot problems, warpage and residual stresses, are used to manually modify, by
trial-and-error, the initial design, e.g., processing conditions, gate sizes and locations,
runner systems and the layout of the cooling systems, to obtain the best design from
the available alternatives.

While this ‘intuitive’ approach is attractive for simple geometries and small number
of design variables, it becomes quickly time consuming for complex geometries and
results in multiple manual modifications of the design before the best or optimal one
is finalized. In the present chapter, we shall be concerned with the prediction of the
optimal design, where manual modification by trial-and-error becomes tedious and
the need for numerical optimization techniques is essential.

The spectacular progress made in numerical modeling of the injection molding
process [1-46], in conjunction with available efficient optimization techniques used in
many engineering applications [49-56], have led researchers to develop design
optimization tools for injection molding [57-69]. Some of them combine existing
injection molding simulation codes with existing numerical optimization program.



These optimization techniques are either, gradient-based methods that use the
gradients of the objective and constraint functions, or direct search methods that use
only function values. Such an integrated optimization tool, that couples the injection
molding program C-Mold/Moldflow [47] with a commercial design optimization
tool, were successfully used by Turng and Peic [67] to optimize the cycle time and
the volumetric shrinkage. Lame et al. [68], Smith et al. [62-64], and Kabanemi et al.
[65-66] also used such an integrated optimization system to determine the optimal
design for injection molding. The integrated approach enables the selection and
employment of the most suitable optimization algorithm depending on the user’s
specific needs while using well-developed CAE technologies for injection molding.
Therefore, for the sake of clarity in this chapter, we will find it useful to recall the
basic equations for the mold filling problems along with various optimization
techniques.

The aim of the present chapter is to show how gradient-based methods and the design
sensitivity analysis (DSA) can be applied to determine optimal design for injection
molding. The chapter is organized as follows: first, we briefly present the basic
equations for the injection molding process based on the Hele-Shaw approximation.
Next, we introduce the optimization concept and the optimization solution methods.
In section 4, we present the design sensitivity analysis along with the direct
differentiation method and the adjoint method, to evaluate the sensitivities of the flow
equations and the objective functional. Finally, we discuss numerical results
involving complex non-planar mold geometries.

2 Basic Equations for the Mold Filling Problem

2.1 Mathematical Model: Hele-Shaw and Energy Equations

In order to describe the flow behavior of a polymer fluid during filling of a mold
cavity, an expression for the stress tensor has to be specified. It is outside the scope
of this chapter to treat the derivation of constitutive equations in detail. We refer the
reader to specialized literature reviews by Bird et al. [70] and Crochet et al. [71],
among others.

For an incompressible fluid, the Cauchy stress tensor, is decomposed as follows

6 =-pl+2nD (D

where p is the pressure, 1) is the viscosity and D is the rate-of-strain tensor, from
which the shear rate is defined as being the invariant

y=2DD)''? ¥y
In what follows, we study the creeping flow of a generalized Newtonian fluid, with a

viscosity dependence on the temperature T and the shear rate y. In addition, we
consider processes with fluid flow through thin cavities of slowly varying cross



section and arbitrary in-plane dimensions. Then we derive the continuity and the
momentum equations using the lubrication approximation and we average the
continuity equation over the thickness of the mold cavity. For a full description of
the numerical modeling of the injection molding process, we refer the interested
reader to the literature review by Hieber and Shen [3], Dupret et al. [12] and Tucker
[43-44], among others. We shall here only briefly recall the basic results of the
model.

Taking into consideration the above assumption, the resulting boundary value
problem in the mid-surface of a mold cavity is given by the Hele-Shaw equation for
the pressure

V- (-S(p,T)Vp)=0 in Q 3

where p is the pressure field in the flow domain Q. According to Hele-Shaw theory
and the lubrication approximation, the pressure variation in the gape-wise direction is
negligible.

The fluidity parameter S, in Eq. 3, is given by

h CZ
S(p,T)= [——d 4
(p,T) ({n(%T)C 4)

where h is the local half-thickness of the cavity. The viscosity, 1, is given in the
present work, by the Carreau-Yasuda model of the form

N4 T) = noA[l + (A * 10D/ (5)

In Eq. 5, o is a model parameter, n the power index, T a characteristic relaxation time
and Mg the zere shear rate viscosity. The temperature dependence of the viscosity and
relaxation time is taken into account by a shift function At, which expresses time-
temperature equivalence and is defined by a WLF-type relationship

o (T=T,)

logAT =
AT =T AT,

(6)

where T; is a reference temperature, and c¢; and c; are material constants.

We further need an equation that describes the temperature field during the filling
stage. This is written in the following simplified form

pcPD—T=V-(kVT)+21'|D:D Q)



where p, c and k are the density, heat capacity and thermal conductivity, respectively.

Since we consider processes with fluid flow through thin cavities, the heat conduction
is dominated by the gape-wise direction, while the in-plane flow dominates the
convection. While the flow equation for the pressure, Eq. 3, is locally a two
dimensional equation that vary only in the mid-surface of the cavity, the energy
equation, Eq. 7, remains a purely three-dimensional equation.

2.2 Boundary Conditions

In order to complete the mathematical description of the filling stage for the injection
molding problem, we must specify appropriate boundary conditions.

The Hele-Shaw equation, Eq. 3, involves boundary conditions of three kinds:

1. At the flow front, a vanishing value of the pressure is specified;

2. On the lateral sides of the mold, a vanishing pressure normal derivative is
imposed;

3. Atany gate, a flow rate profile or a pressure profile is imposed;

In general, the energy equation is a balance between heat advection in the mid-
surface direction, heat diffusion in the gap-wise direction and viscous heat. The
thermal wall boundary condition takes into account the transient heat transfer inside
the walls, and requires as input the coolant temperature and the heat transfer
coefficient. At the flow front, an equivalent instantaneous heat advection in the gap-
wise direction is applied to account for the fountain flow effect. At any gate, an
injection melt temperature is imposed.

2.3 Numerical Discretization
Finally, one needs to solve numerically Egs. 3 and 7 for the pressure and temperature

fields. The Hele-Shaw equation, Eq. 3, is then discretized by means of the Galerkin
method, which yields

Aij(p.T)p;j =b;
Aij(p,T) = Is(psT)((pi,x(pj,x +(Pi,y‘Pj,y +(Pi,z(pj,z)dQ
Q

v

(8)

b; =— jo;hv,dl
aQ J

where p; are nodal values of the pressure, ¥, is the normal average velocity on the

boundary I" of the flow domain Q and the @;’s are shape functions. The Newton-
Raphson method is used to solve the above non-linear set of equations, Eq. 8.



Spatial and time discretization of the energy equation are performed in two steps.
The full systems are, therefore, of the generic matrix form:

n+1/2 _ wq 0 _ N .
MjT] =MjT} - ANy} + AL

(9)

n+l _ p Tn+l/2
KT = ByT;

In Eq. 9,, M is the mass matrix and all the terms arising from heat advection and
viscous heating are included in the matrix N and vector L, respectively. The matrix
K, in Eq. 9,, is associated with the thermal diffusion and the mass matrix B.
Equation 9, corresponds to the advection problem while Eq. 9; is a diffusive problem.

Having formulated the mold filling problem, the optimization techniques and
algorithms will now be described to demonstrate how these techniques can be applied
to injection molding problems.

3 Optimization Techniques
3.1 Optimization Concept

In injection molding process, we wish to reduce the cycle time as much as possible,
to produce products with accurate geometrical shape and to achieve high performance
quality. In this regard, the rise of the number of design variables needed to be
coordinated with each other in an optimal way, have led to the necessity of using
mathematical modeling and numerical optimization techniques. The techniques of
numerical optimization provide methods for automatically searching the space of
admissible designs to determine the best possible design. They may be seen as
procedures, which determine a combination of parameters, i.e., design variables,
which minimize or maximize an objective function under given conditions. The
combination of such parameters is then termed optimum. The optimum must by
definition lie in the feasible space, i.e., satisfy all the constraints. Each design
variable can be considered as one dimension in a design space and any combination
of variables as a point in this space.

3.2 Optimization Problems

In the unconstrained optimization problem [51], we seek a local minimizer of a real-
valued function, F(x), where x is a vector of real variables. In other words, we seek
a vector, x*, such that

F{x*) € F(x) for all x close to x*.

Global optimization algorithms try to find an x* that minimizes F over all possible
vectors X as illustrated in Fig. 1. This is a much harder problem to solve. No
algorithm for optimizing general nonlinear functions exists that will always find the



global optimum for a general nonlinear minimization problem in a reasonable amount
of time.

side side
F A X )
constraint constraint

C(x): function

constraint
X¥ X x* X
. 13 I 2 x
global minimum - ~ ~

without constraints  feasible region

Fig. 1. Unconstrained and constrained minimization problem.

On the other hand, the basic constrained optimization problem can be stated as:

Given a scalar objective function,

F=F(x)

Find the value of n decision variables x, that minimizes F and simultaneously satisfy
m constraint equations. The side constraints represent bounds on the design variables
that define the feasible region (Fig. 1). In injection molding, we are only concerned
with constrained optimization problems.

3.3 Numerical Solution of Optimization Problems

Most optimization algorithms require that an initial set of design variables, x°, be

specified. Beginning from this starting point, the design is updated iteratively. The
most common form of the iterative optimization procedure is given by

x9 =x971 1 9GY (10)

where q is the iteration number and G a vector search direction in the design space.
The scalar quantity 0 defines the distance that we wish to move in direction G.



Equation 10 involves the determination of the search direction G? and the solution of
the one dimensional search problem for the scalar 8, which will minimize F(x) as
much as possible in direction G, without violating any constraints.

For a thorough description of the numerical solution of the optimization problems, we
refer the reader to specialized literature reviews [49-52], among others. Here, it
suffices to recall the following alternatives for the computation of the parameter :

The two most popular methods for finding the minimum of a function of one
variable, associated to the scalar 8, are the polynomial interpolation and the golden
section method. The procedure for the polynomial interpolation method is to
evaluate the function at several points and then fit a polynomial to those known
points. The minimum of this polynomial is then found and is considered to be a good
estimate to the minimum of true function. The golden section method, on the other
hand, consists in evaluating functions on a smaller and smaller interval until a desired
interval of uncertainty is achieved. Alternatively, 8 can be selected randomly
between 0 and 1, for random search methods.

On the other hand, one can use the following alternatives for the numerical solution
of the search direction GY, involved in Eq. 10:

3.3.1 Zero-order Methods

Zero-order methods or direct search schemes, which include random search, genetic
search, simulated annealing and Powell’s method, do not require gradient
information. These methods are usually reliable and easy to program but require
thousands of function evaluations to achieve optimum. Because genetic algorithms
are essentially random search techniques (stochastic), they offer an improved
prospect of finding the global or near global optimum. While the emphasis in this
chapter is on gradient-based methods, genetic search methods are only briefly
outlined here.

For sake of clarity, we repeat here the genetic search method developed by Young
{60] to search the optimal gate location in liquid composite molding, and by Lam et
al. [69] for the optimal cooling system design in injection molding. A thorough
description of general genetic algorithms is given in [72].

Genetic algorithms are inspired by Darwin's theory of evolution. The basic approach
of genetic algorithms is based on the mechanism of biological evolution, natural

selection, and genetic recombination.

Consider, for example, a two variable design

. [1o11101001
“|oto1100110



where each x; is represented as a binary string. We can think of this design as one
long string of zeroes and ones

x=10111010010101100110

Several bit strings generated by different combinations of design parameters
constitute the population. Subsequently, the biological reproduction and evolution
processes will change the members of the population. Through the natural selection
and reproduction, the population is improved and only those who fit in the
environment will survive. This approach is facilitated by defining a fitness or
objective function indicating the ‘goodness’ of a member in a generation during the
evolution process. The individual with higher fitness means that it has a better
chance to survive the evolution. In a biological system, the genetic memory is
preserved and transferred from generation to generation in the form of chromosomes
(population). In order to use genetic algorithm, the design variables must be
represented in a chromosome-like form. For a n-dimensional design, the n binary
strings representing n design variables can be connected in a head-to tail way to form
a single binary chromosome. Several operations of genetic evolution and selections
can be performed on the artificial binary chromosome. The basic operations of
genetic search include selection, reproduction, crossover and mutation. The basic
genetic search algorithm consists of the following steps:

I. Generate random population of n chromosomes.

2. Evaluate the fitness, F(x), of each chromosome x in the population.

3. Create a new population by repeating the following steps until the new
population is complete:

a. Selection and reproduction: Select two parent chromosomes from a
population according to their fitness. The better fitness, the bigger
chance to be selected, the more chances they have to reproduce.
Consequently, the string with higher fitness will have more chances to
be selected to crossover in generating the succeeding generation.

b. Crossover: With a crossover probability, cross over the parents to form
new offspring (children). If no crossover was performed, offspring is
the exact copy of parents.

¢. Mutation: With a mutation probability, mutate new offspring at each
locus (position in chromosome or population).

d. Accepting: Place new offspring in the new population.

4. Use new generated population for a further run of the algorithm.
5. Repeat the process until convergence is achieved.

In a finite element model, for example, the node numbers define the candidates for
gate location, and each gate node is coded as a binary string.

Although the genetic search method was successfully used by Lam et al. [69] for a
cooling system optimization problem (non-convex optimization problem), the
required computational time is still a limit, due to the large number of function



evaluation. Young [60] also pointed out the large amount of computational time
needed to obtain converged solution, for the gate location optimization problem.

3.3.2 First- and Second-Order Method

Conversely, first-order methods, such as the steepest descent method and the
conjugate direction method, those that utilize gradient information for the search
direction, GY, are usually more efficient than random or zero-order methods. The
price paid for this efficiency is that gradient information must be supplied. Also, to
determine the scalar quantity, 6, an implementation of a line-search algorithm is
required. On the other hand, second-order methods (e.g., Newton's method) give rise
to a wide and important class of algorithms that require computation of the gradient
vector and the Hessian matrix (second derivative) [51]. Although the computation or
approxtmation of the Hessian can be a time-consuming operation, there are many
problems for which this computation is justified. Gradient-based methods are in
essence local optimization algorithms. A full description of these gradient-based
algorithms may be found in {49-52]. The algorithm used in section 7 is sequential
quadratic programming (SQP). In the SQP algorithm, the objective function is
augmented using Lagrange multipliers and an exterior penalty so that the resulting
one-dimensional search is unconstrained. The SQP algorithm then replaces the
augmented objective function with the quadratic approximation and replaces the
constraint functions by linear approximations. The search direction is, therefore,
found by solving a sub-problem with a quadratic objective and linear constraints.
The solution procedure involves three main stages: updating of the Hessian matrix of
the Lagrangian function, quadratic programming problem solution and line search
calculation.

3.3.3 Combination of Zero-Order and Gradient-Based Methods

Finally, we can think of algorithms that combine a mixture of the above methods, as
outlined hereafter. The search method introduced by Pandelis and Zou {57] combines
a deterministic hill climbing search with a stochastic simulated annealing search
method (SANHIL) for gate location optimization. We recall here the basic concept
of the algorithms. In the simulated annealing process, a system of particles seeks low
energy configurations. If the temperature of the system is gradually lowered and
enough time is allowed at each temperature to reach thermal equilibrium, the system
will attain a very low energy configuration. If the system is in thermal equilibrium at
a given temperature T, the probability Pr{b) of the system in a given configuration, b,
is a function of the energy, E(b), of the configuration and satisfies the Boltzman
distribution

o~EM)/kpT
5 ¢ E(B)/kgT

B

Pr(b) =



Where kg is Boltzman’s constant and B is the set of all possible configurations. To
apply the simulated annealing method to optimization problems, the objective
function F(x) is used as an energy function E. Instead of finding a low energy
configuration, the problem becomes one of seeking a near global optimal solution. A
random number generator is used as a way of generating new values for the design
variables.

In the case of gate location optimization, the methodology developed by Pandelis and
Zou is as follows. Let’s assume that the probability distribution of the objective
function F(x) for gate g has a Boltzman distribution. Let’s suppose that at time t at
iteration k, gate location g; is chosen. A candidate gate location g is chosen
randomly at time t+1 at iteration k. The criterion for whether or not the move from g,
to gz is successful, depends on the difference between the objective function value
F(gi) and F(g;), and iteration k. The ratio R between the probability of being at
location g, and the probability of being at location g, can be decided by the
following equation

_F@g-Fg,)
_Pr@g) _ o kT

" Pr(gy)

When R>1, the objective function value at location g» is smaller than that at location
g1. This move is considered successful, and location g; is automatically chosen as an
optimal gate location at time t+1. When R <1, the objective function value at
location g is greater than or equal to that at location g,. This move is then
considered successful with probability R, but gate g will not be accepted as optimum
gate at time t+1 at iteration k. An iteration limitation M is set for a search process,
and a time limitation N is also chosen for each iteration. If there is no successful
move after N moves or M iterations are reached, the process is stopped and the last
calculated optimurmn value is taken as an answer.

In the hill climbing search method, after a starting point is chosen, the objective
function will go along a path of steepest descent direction until there are no more
downhill moves possible. For example, when the initial gate is chosen in the gate
location optimization, the objective function will evaluate this starting gate and each
of the neighboring nodes. The node associated with the minimum objective function
value is then selected as the next starting node. The process continues until no
improvement is possible, and the last selected node is considered as the local
optimum. It can be seen from the above description that the hill climbing search is
good for finding the optimum in a convex region. If there are many local optima in
the search space, it is possible to obtain an unsatisfactory solution because of an
improper initial gate. On the other hand, the simulated annealing search can find a
near global optimum if enough time is spent on function evaluation at each iteration.

The SANHIL search developed by Pandelis and Zou combines the simulated
annealing search with the hill climbing search. In SANHIL search, the hill climbing



can be considered as a sub-search in the simulated annealing search. To find the local
optimum, the hill climbing search is applied to each initial gate randomly selected by
the simulated annealing search. The results are then sent back to the simulated
annealing search.

3.3.4 Choice of a Method

The choice of a particular algorithm for any situation depends on the problemn
formulation and application. Direct search methods are not considered to be
particularly competitive for solution of continuous optimization tasks. Instead,
gradient-based methods are generally considered superior to zero-order methods in
their efficiency. Since the emphasis in this chapter is on gradient-based methods, one
is required to supply gradient information of the objective functional and function
constraints. Information on gradients can be supplied either by finite-difference
computations, or by design sensitivity analysis (DSA). Whatever the gradient-based
method we choose, an efficient computation of accurate gradients is a major
requirement of any design tool. To obtain good estimates of gradients with the finite-
difference method, it is important to properly choose the finite difference step size,
Ax, for each design variable, which depends highly on the objective functional F(x)
and on the current position of the vector of design variables, x9, in the design space.
When Ax is too large, truncation errors affect the results whereas round-off errors
affect the results when Ax is too small. So that several perturbation sizes, Ax, may
be necessary to venfy that reliable results are obtained. For these reasons, the finite
difference method is not used here for computing sensitivities. Instead, DSA-based
methods are used to evaluate gradients of both the objective functional and function
constraints, along with the gradients of the flow equations. Hereafter, we focus our
attention on DS A-based methods.

4 Sensitivity Analysis

The use of direct sensitivities and adjoint methods in optimal design is certainly not
new and is fairly well developed in structural design [73-81]. However, in material
processing problems, much remains to be done on this topic, especially in injection
molding process.

The state sensitivities (derivative of the state with respect to the design variables)
play two key roles: they provide gradient information for the optimization algorithm
and sensitivity information for analysis of a particular design.

4.1 Direct Sensitivity Equation Method

Let F be the objective functional,

ts
F=F($.a,1) = Jg(¢.a,t)dt (11)
0




where ¢ is the vector of flow field variables, t; the terminal time and a the vector of
design variables. The time-dependent state equation or flow equation may be written
symbolically as

%(t)+B(¢(t),a)=0 in Q and Vte 0,t.]

ot =0)=g in Q > (12)
¢(t)=¢p, on T’

J

where B is a partial differential operator and T denotes the boundary of the flow
domain Q.

Direct sensitivity equations can be obtained by direct differentiation of the above
equation with respect to a as follows

IF 6a.0-L0.a ,t)@+a—F—<¢, 0= I[ 9.2 ,t)d¢+—(¢a t)]dt (13)
da od

We still need to specify how the vector of flow variable sensitivity dd/da is
determined. One may compute the total derivative of the flow equation (Eq. 12), to
obtain the linear system for the sensitivities

[d"’) ¢(¢ )9"—’+-a—B(¢ a)=0 (14)

The nonlinear flow system, Eq. 12, is solved first using the Newton iteration, then the
sensitivities of the flow variables at the new step are found by directly solving Eq. 14
for each design variables. Both the state and the sensitivity equations are integrated
forward in time. The forward sensitivity analysis is best suited to the situation of
finding the sensitivities of a large number of solution variables with respect to a small
number of design parameters.

4.2 Adjoint Equation Method
Alternately, one may use adjoint equation method to determine sensitivities of the

objective functional. Introducing a Lagrange multiplier, A, and using the flow field
equation, Eq. 12, as constraint, we get the augmented objective functional

G(¢.a,t) =F(¢,a,1) - IKT(I)(aq’(l)+B(¢ a))dt (15)

The first variation of the objective functional yields



t
dG dF_J dgdo, g ' ()[ [dq)) ,3Bdo 3Bl (16)
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By denoting the sensitivity of ¢ with respect to a design variable by

=4

¢a-da (17
we get

F o= 1[0 + 2 |- aT o[ 2, 2B,y 3B

Applying integration by parts to term 1Ta¢a /at, yields

E_l JA .T OB T 0B T
1|22 [Ma 2T B4, 42T B WTog)

dd da
or
E TaB ag ag k’raB AT
da f[ x " 3% a¢)¢a % 5 A ¢’a)|0 (19)

By choosing A such that it satisfies the adjoint equation

M _,TB_ 3
—=A =0 in Q and Vte 0,

= a¢ % in Q and Vte [0t ] 20)
Atg)=01in Q

we obtain a simple expression of the sensitivity of the objective functional F as
dF 9 oB
=@.a,0=[[2-ATZ=(0,2) i+ WT,) oo @1
da olLoa oa

We note that in Eq. 21, ¢, |;,—¢. is the sensitivity of the state variables at the initial

time. The adjoint equation, Eq. 20, is a terminal value problem, which depend on the
solution ¢(t;) of the original problem, Eq. 12. It must be integrated backward in time
for its solution at time t=0. Therefore, a procedure is needed for providing the states
¢ obtained during the forward integration phase of the state equation to Eq. 20, during



the backward integration phase of the adjoint equation. The sensitivity, dF/da, can be
obtained without any information about the flow variable sensitivity vector, df/da.
This makes the computational cost for the sensitivity analysis independent of the
number of design variables. Once the parameter, A, is computed from Eq. 20, the
sensitivity formula, Eq. 21, can be used to compute the sensitivity of the objective
functional with respect to any design variables. It follows from this analysis that, the
adjoint sensitivity method is best suited to the situation of finding the sensitivity of a
scalar functional of the solution with respect to a large number of design variables.

4.3 Comparison of Solution Methods

In practice, both direct and adjoint sensitivity methods can be used. The equations
related to the direct sensitivity method must be solved for each of the independent
design variables, whereas those derived for the adjoint sensitivity method, need to be
solved for each of the functions whose sensitivities are sought. Hence, for steady
state problems, the best choice will be based on the number of function evaluations
needed to obtain the sensitivity sought. While, the direct sensitivity method is more
efficient for determining the sensitivity of many outputs (objective functional) to one
or a few input parameters (design variables), the adjoint method is better suited for
sensitivities of one or a few outputs with respect to many input parameters. However,
for transient systems, the direct differentiation method appears to be more suitable.
Indeed, the adjoint method requires values of all time steps before the adjoint analysis
may begin. This increases both the computation and storage costs. The direct
differentiation method allows to evaluate the response sensitivities simultaneously
with the transient solution of the problem (see e.g., McDavid and Dantzig [78], Haug
et al. [79], Pandelis and Zou [57] and Smith et al. [62-64]).

5 Optimal Design for Injection Molding

Having introduced the design sensitivity method for a general time dependent flow
equation, we now specialize to injection molding process. In what follows, we limit
ourselves, for sake of clarity, to a scalar objective functional, although the
methodology remains valid for a vector of objective functional and various design
variables. Additionally, we describe, in more detail, the different steps involved in
the definition and solution of a typical mold filling optimization problem, using DSA-
based methods. This approach was used by Smith et al. [62-64] and Kabanemi et al.
[65, 66] to optimize gate location and processing conditions. It can be easily
extended to various optimization problems in injection molding, including the
optimization of warpage, differential shrinkage and mold cooling system.



5.1 Problem Parameters

In order to facilitate our subsequent discussion, we begin by defining parameters
involved in the specific optimization problem addressed in the following sections:

¢ Vector of design variables: a={a,, as,..., ay, ...., ar}. The gate locations in the
cavity and the injection pressure profile during the filling stage are design
variables considered in this analysis. These variables can be modified during
the optimization process to meet our objective;

* Vector of state variables: ¢={p(a;), T(a), f(a,), a;}). The pressure, temperature
and filling fraction fields are the state variables of the optimization problem.
These state vanables are obtained from the flow equations (see section 2).

¢ Objective function: F=tp(a,), T(a,), f(a;), a). The objective function to be
minimized is the total filling time.

* Vector of constraint functions: C={C(p(as), T(ay), f(a,), a;), Ca(p(ar), T(ay),
f(a;), a;)}. The optimization is performed under two constraints, i.e., the
maximum clamp force and the maximum flow rate.

5.2 Problem Definition
Having defined the parameters involved in the problem, we can now write the non-
linear constrained optimization problem for the filling stage of the injection molding
process as follows:

minimize the objective function (fill time):

F=tp(ar), T(ay), f(a,), a);

subject to (maximum clamp force and maximum flow rate):

Ci(p(ay). T(a,).f(a,).a.))

Ci,max

-1<£0,1=1, 2 (constraint functions);

8¢ min £ar €4 max» r=1,...,R (side constraints);

where the design variables are the gate locations in the cavity and the injection
pressure profile during the filling stage.



5.3 Direct Sensitivity of the State Equations

Having computed the pressure field from Eq. 8, the design sensitivity analysis of the
Hele-Shaw and energy equations can now be considered. In practice, one can derive
the sensitivity equation at the partial differential equation level, and then discretize it,
to obtain a set of discrete sensitivity equations. This continuum approach is known as
the material derivative method. Alternately, one can discretize the flow equations
first and then differentiate them to obtain another set of discrete sensitivity equations.
This approach is known as the discrete approach. The two approaches, i.e.,
differentiate-then-discretize and discretize-then-differentiate lead to different
sensitivity equations and therefore to different approximate sensitivities. The relative
merits of the two approaches are discussed in Haug et al. [79] and Lund [80]. The
conclusive argument for the selection of a method for design sensitivity analysis has
been that the continuum approach takes a tot of analytical work in order to develop
the expressions for design sensitivities. For that reason the discrete approach to
design sensitivity analysis has been chosen due to its ease of implementation.

Differentiating Eq. 8 with respect to a design variable a, and rearranging different
terms, yields the following discrete version for the flow sensitivities

Dpj’  JAi (P (a,),a,,T)

Tij(py = M (a 2
U(pk ) Dar aar Ps ( 1') ( )
_9Ais (0 @r)ar. D DTy 3b,
dTy Da, Ps da,
where
vy ooy ey

The geometric interpretation of the pressure sensitivity with respect to the gate
location, for a 1-D Newtonian filling problem, of a rectangular cavity is shown in Fig.
2. The pressure profile is plotted along the cross line.
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Fig. 2. Pressure profile and pressure gradient across the cavity for two different gate
locations.

In Eq. 22, a, is the rth component of the design variable belonging to the design
vector a.

Similarly, the sensitivity equations for the advection and diffusion problems, Eq. 9,
are given by:

n+l/2 n
M..P_L=M.._]2TL+(TF _TFH‘Uz)%
Y Da, ¥ Da I da,
oN;: ONy; DT  oN;; DT!
— A 1) Dpk + 1) k + 1) )Tn —AtNij—J— (24)
oP Da, Ty Da, da, J Da,

oL; DPy oL; DT, L oL
dP, Da, Ty Da, oa,

+ At(

and



nl n+1/2
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Y Da, da, Y Da, da,

The solution of sensitivity equations (Eqgs. 22-25) requires the parameterization of the
injection pressure profile and the flow domain.

5.4 Sensitivity Formulation of the Objective Function

The optimization problem requires the minimization of the objective functional
F(p(ay), T(a,), f(a;), a;) subject to certain constraints. Gradient-based methods are
available to efficiently traverse the design space to locate extrema of F. To use these
methods, we need the design sensitivity, i.e., the gradient of F with respect to a design
variable a,, which can be computed by application of the chain rule

DF JF Dp JF DT oJF Df oF
=— +— +— + (26)

Da, dpDa, dTDa, of Da, da,

Since F is an explicit function of p, T, f and a,, explicit derivatives dF/dp, dF/dT,

dF/of and oF/0da, can be evaluated directly. The solution sensitivity Dp/Da, is

obtained by solving the sensitivity of the Hele-Shaw equation, Eq. 22, while the

sensitivity DT/Da; is obtained by solving the sensitivity of the energy equation, Egs.
24 and 25. The sensitivity of the flow front is described in a forthcoming section.

The objective function to be minimized represents the total fill time, i.e.,

oy
F=tf(p(a,),T(a,),f(a,),ar)=k'zmk @7
=1

where nyy is the total number of time-steps needed to fill the mold cavity and Aty is

the filling time-step size at time t,. This time step is restricted by the Courant-
Friedrichs-Lewy (CFL) condition for numerical stability. Selecting the time-step size
such that the advancing front does not completely traverse more than one element
anywhere in the flow field during a single time-step satisfies the CFL condition. The
maximum filling time-step is thus given by

< _min__ (28)

where Ax ;, is the characteristic length of the mesh and Vv, is the maximum
velocity in the flow field.



5.5 Parameterization of the Injection Pressure and Sensitivities

We use the same injection pressure parameterization as the one used by Smith et al.
[62, 63], that we outline bellow. The prescribed injection pressure, pP (y(a,),a,), is

expressed as a piecewise linear function of the filling fraction y. The values y=0 and
y=1 designate an empty and full mold cavity, respectively and, fractional values

denote partially filled mold cavity. The gradient of pP(w(a,),a ) with respect to a
design variable a, is given by

DPP _ 3PP Dy 3PP

= 29
Da, oJy Da, da, @)
The filling fraction is defined by
N 1o N ot Vk
Y= 2yg= 2 (30
k=t k=1Viot

where V¥ and V,, are the volume to be filled during the time step Aty and the total
volume of the mold cavity, respectively. The volume V¥ is given by

VK =S v @) -fEa,)) (31)
c

In Eq. 31, V. is the volume of element e and fé‘ is the filling fraction of that element

at time t,. The values fgf =0 and fé‘ =1 designate an empty and full element,

respectively, and, fractional values denote partially filled element. By differentiating
Eq. 31, one obtains

pvk+! Df¥ oV k
=¥ (-V, —& +2&(1 - f 32
Da, E( € Da, aar( e ) (32)

Equation 29 requires the sensitivity of the filling fraction, which can be computed by

k
Dy _ 1 % DV (33)
Day Vi k=1 Da,

The parameterization of the injection pressure for the filling range,
y; <wy(a,) <Yy, is given by



Pis1{ar)—pila,)
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pp(w(ar)’ar):pi(ar)'*' (y(a,)-w;) (34)
where the abscissa of the control points w;,i=1..., r, are fixed during the

optimization process and the ordinates of the control points are such that,
Pi =a;, i=1,.., 1; rp being the number of parameters that define the transient

injection pressure profile.
At each time step, one obtains

Vk+l
k
Q

Aty = (35)

where Q¥ is the total flow rate during the time step Aty . The sensitivity of the time
step Aty is then given by

Da, @k Da, ka Da,

(36)
Equation 36 requires sensitivities of both the flow rate and the volume, which are
computed with the help of Eqs. 22 and 32, respectively.

5.6 Sensitivities of the Function Constraints

The constraints on the clamp force and flow rate are given respectively by

Cy = [p(T,a)dQ = [p(T,a)J (@, )|dw < Cy max 37
Q w
and
ngate _ ngate
CZ = Z - ](pihvndl"= > Aij(p,T,ar)pj(T,ar)<C2,max (38)
i=l 30 i=l

where the ¢;’s are shape functions, J the Jacobian matnx, @ the parent element and
ngate the total number of gates.

Since gradient-based methods are used in the resolution of the optimization problem,
we need gradients of both constraints. These are given by
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5.7 Flow-Front Tracking and Sensitivities

In modeling of the filling phase of the injection process one of the difficult task is the
successful tracking of the flow fronts. Performing a mass balance on an element, e,
produces an explicit evolution equation for the element fill state

k
VC

where qlé is the total flow rate of fluid into element, e, at the kth time step.

In order to compute the filling fraction sensitivity, we differentiate Eq. 40 with
respect to a design variable a,

K+l k K k
Df, " _Dfg + Btk Dqs + 9 DAL ety IVe

(4D
Da, Da, V., Da, V. Da, \

Equation 41 implies computation of several sensitivities, i.e., the flow rate sensitivity

Dqk
£, the element volume sensitivity
dp ap
DAty 4
Da,

Ve

and the sensitivity of the time step,

5.8 Parameterization of the Flow Domain and Sensitivities

Injection molding process involves, most of time, flow in a non-planar cavity of
witch the mesh domain is defined through its nodal rectangular coordinates X(x,y,z).
Using the isoparametric description, these components may be written as follows:

x(ap)=x;@.)0;
y(a,) = yj(ap)o; (42)
z(a;) =zi(a,);

where the ¢;’s are shape functions.



The mesh derivatives needed to solve sensitivity equations described in previous
sections are obtained from

dx  dx; , ]
=—0;
da, da,
L, 43)
da, da, :
dz _ dz;
da, da, |

We recall that side constraints for the gate movement define the region of search for
the optimum in the mesh domain. While it is straightforward to define these side
constraints for planar mesh domain, it becomes impossible to define for non-planar
geometry without adding additional inequality function constraints. For that reason,
we used a mapping technique in which a physical non-planar mesh domain,
representing the region of search, is mapped into a rectangular geometry as shown in
Fig. 3(a). The mapping process generates a curvilinear coordinate system and makes
defining side constraints much easier.

Thus, the nodal coordinates are defined as complex function in the design, based on
parametric spline surfaces. More explicitly, one may write for each component (see,
e.g., Dierkx [83] and Tortorelli et al. [81])

~

g h
K@ V@)= 2 _Z]Ci’iji,k+1(U)Mj,1+1(V)
1= J:-—-—

v

£ h
y(ua),v(ap))= 2 ZIC{jNi,kH(U)Mj,HI(V) 44)

i=—k j=-

£ h
z(ua ). v@a )= X zlcﬁjNi,kH(u)Mj,H.(v)
=k j== .

where u and v are the parametric coordinates of the region of search (0<u,v<1),

Njk+1 and Mj ) are the normalized B-splines of degree k and 1, respectively, and
X y
i il
by its parametric coordinates, (ug, vg), in the regular geometry as shown in Fig. 3 (a).

and a::iz j are called B-spline coefficients. Thus, each gate is characterized
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Fig. 3. (a) Mapping of an irregularly shaped physical flow domain into a rectangular
computational domain and (b) Schematic illustration of the mesh sensitivity with
respect to a small gate movement.

One can then derive the sensitivities for the x-component with respect to a given gate
location as follows

dx _dx du +8_x dv
dug T u dug av du,
dx _a_x du +8_x dv
dvg du dvg ov dvg

A geometrical interpretation of such sensitivities is highlighted in Fig. 3(b), where we
see how the mesh may deform due to a small perturbation of the gate position.

(45

Similarly, the sensitivities for the y and z-components can be obtained by replacing in
Eq. 45 the x-component by the y and z-components, respectively.



The sensitivity of the state equations greatly depends on the topology of the mesh
connected to the gate (aspect ratio of elements connected to the gate). These results
are illustrated in Fig. 4, where we show pressure sensitivity fields with respect to the
gate movement during the filling stage of a center-gated disk, with the following data:
150 mm diameter, uniform thickness of 3 mm and the viscosity approximated by a
power law model with n=0.4 and m=9360 Pa.s’*. Also, Fig. 4 highlights the effect of
mesh distortion around the gate on the sensitivity of the pressure, which greatly
influences the sensitivity of the objective function. While in Fig. 4(a) we observe a
symmetrical distribution of the pressure sensitivity field about the center gate, Fig.
4(b) shows a completely asymmetrical sensitivity, due to the distortion of elements
around the gate. Therefore, the rate-of-convergence of the global optimization
algorithm will greatly depend on the mesh configuration of the region of search for
the optimum.

(a) (b)
Fig. 4. Pressure sensitivity with respect to the gate movement at the end of filling of
the center-gated disk. Effect of distortion of elements connected to the gate.
Uniform (a) and deformed (b) elements around the center gate.



6 Algorithm

The optimization methodology is completely automated. The objective functional
(fill time) and its sensitivities, the constraints and their sensitivities are computed and
transferred to DOT [82], a commercially available optimization code. The
optimization algorithm proceeds as follows:

Start from an initial guess a for the design variables (gate locations and injection
pressure profile) and for each iteration:

1. Solve the complete filling problem:
® At each time step during the filling simulation:
o Solve the Hele-Shaw equation for p, the energy equation for T
and the flow front for f,
o Solve the sensitivity equations for Dp/Da, , DT/Da, and Df/Da,.
o Evaluate the objective function F, the sensitivities DF/Da;, the
constraints C; and the sensitivities DC;/Da,.

2. At the end of each complete filling:
e Send different functions and corresponding sensitivities to DOT

program for 8a¥.

e Compute a new design a9*! = a9 +8a9.

3. Goto | with the new design until satisfactory convergence is achieved.



7 Illustrative Applications

We now demonstrate with two examples the use of DSA-based methods in optimal
design for mold filling problems. The main object here in studying complex
geometries is to exhibit the type of convergence that one may expect from the
optimization algorithm.

7.1 Automotive Part

As a first application of the DSA-based approach in injection molding, we analyze
the filling of a complex automotive non-planar geometry, which has a uniform
thickness of 3 mm. The geometry is shown in Fig. 5. The finite element mesh
consists of 7887 linear triangular elements and 3965 nodes in the middle plane.

Fig. 5. Mesh and domain search for the optimum in gray.

The material used is a polypropylene, whose viscosity is approximated by the
Carreau-Yasuda-WLF model. The material properties and processing conditions are
summarized in Table 1.



Table 1 Polypropylene material properties and processing conditions
(PP Ma3U from Mitsubishi).

Material Properties Data
Zero shear rate 1o 13682.6986 Pa.s
Relaxation time A 0.0598 s
Power index n 0.3423
Yasuda coefficient a 0.7613
WLF coefficient C,; 16.4989
WLF coefficient C; 496.3101 °C
Reference temperature T, 203.6024 °C
Density p 700 Kg]mj
Specific heat ¢ 2000 ¥Kg 0C
Thermal conductivity k 0.19 W/m °C

Processing Conditions

Injection temperature Ti 220°C

Interface heat transfer 20 W/m? °C
coefficient h

Mold Temperature T, 40 °C

There are four pressure profile parameters and one gate. Therefore the total number
of design variables is six. Side constraints of the design variables are set as follows:

1 Mpa <P, <70 MPa (i=1,4)
0 <u,v=1 (Gray region in Fig. 5)

The region of search in the mesh domain that was parameterized to track the gate
movement during the optimization process is also shown in Fig. 5 (in gray). The
injection temperature was imposed on nodes connected to the gate and on all nodes
lying within three element layers around the gate.

The clamp force and flow rate limits are 7E03 kN and 2E04 cm’/s, respectively. The
clamp force is evaluated at 100% fill.



Optimization results are summarized in Table 2. The optimization algorithm requires

16 gradient and 45 function evaluations.
corresponds to a complete filling simulation.

Each function or gradient evaluation
The fill time was reduced in the

optimization process from 1.1 s to 3.3 s. The gate location moves from the initial
location (-261.1; 651.8; 621.4) mm to the final location (-344.73; 510.73; 659.21)

mm, as shown in Fig. 6.

Table 2 Optimization results for the filling of an automotive part.

Optimization Data

Initial Design

Optimal Design

Objective function (s) 11.18 3.31
Constraint C, (clamp force) -6.725E-02 -2.687E-03
Constraint C; (flow rate) 0.2727 -0.118

Design Variables

Injection Pressure (MPa)
P, 55 60.03
P> 56.65 70
Py 58.3 70
Py 60 56.92

Gate Coordinates (mm)
X -261.1 -344.73
y 651.8 510.73
z 621.4 659.21

Successive gate locations during the optimization process are depicted in Fig. 6. The
trajectory shown is only for illustration purposes. The constraints on clamp force
(C1) and gate flow rate (C;) remain within allowable tolerances, i.e., —2.687E-02 and

—0.118, respectively.
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Fig. 6. Successive gate locations during the optimization process. The trajectory is
only for illustration purposes.

The Pressure, flow-front patterns and average temperature results, for both initial and
optimal design, are shown in Figs. 7-9. As can be seen from these figures, optimal
gate location considerably affects the fill time, the pressure distribution, the
temperature field and the direction of the polymer flow. The optimization produces
the desired effect, i.e. the melt reaches the opposite boundaries of the mold almost
simultaneously. We also observed that the flow is much better balanced in the
optimal design. This will have a beneficial effect on the quality of the part, such as
the differential shrinkage and warpage.

(a) (b)

Fig. 7. Initial (a) and optimal (b) designs: successive flow fronts.



The effect of the optimization on the temperature at the end of flow is highlighted in
Fig. 9(b). A reasonably uniform average temperature distribution throughout the
cavity is achieved. The average temperature difference between the highest and the
lowest temperature, in the optimal design, is about 6 °C, while in the initial design,
this difference is about 24 °C as shown in Fig. 9(a). This temperature distribution
will affect the final deformation of the part, i.e., the shrinkage and warpage as
reported in Kabanemi and Crochet [18] and Kabanemi and Dupret [19].

(a) (b)
Fig. 8. Initial (a) and optimal (b) designs: pressure distribution at the end of filling
(in MPa).

(a) (b)
Fig. 9. Initial (a) and optimal (b) designs: average temperature distribution (in °C).




A comparison between the initial injection pressure profile and the optimal pressure
profile is shown in Fig. 10. At the end of filling, the pressure decreases to satisfy the
constraint on the clamp force. The optimal pressure profile is such that side and
function constraints are not violated as shown in Table 2. We also observe that the
effect of the design variable, pressure P, on the objective function (the total fill time)
is very small. Therefore, its value does not change much during the optimization
process, consistent with the gradient-based method used. Yet, the constraint on the
maximum flow rate greatly influences the design variable P, while design variables
P; and Py, are limited (in their change) by the constraint on the maximum clamp
force, in addition to be bounded by side constraints.

In Fig. 11, we show the history of the objective function during the optimization
process. After 12 iterations, there is no change in the objective function.
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Fig. 10. Injection pressure profiles before and after optimization.
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Fig. 11. Fill time history for the optimization of an automotive part.

Table 3. Optimization results for the filling of an automotive part.

Optimization Data Initial Design Optimal Design
Objective function (s} 12.52 3.60
Constraint C, (clamp force) -0.117 -2.951E-02
Constraint C; (flow rate) -0.298 -0.3166
Design Variables
Injection Pressure (MPa)
P, 55 5341
| 2 56.65 70
P; 58.3 70
P, 60 54.87
Gate Coordinates (mm)
X -201.6 -343.0
y 561.3 502.6
z 660.5 660.9

Let us now analyze the effect of changing the initial gate location {(Fig. 12) on the
optimal design. The material data, side and function constraints remain the same.
The optimization algorithm requires 7 gradient and 21 function evaluations, much



lower than the number of function evaluations needed to achieve optimal design in
the preceding initial configuration. Results are summarized in Table 3.

The gate location moves from the initial location (-201.62; 561.39; 660.59) mm to the
final location (-343.02; 502.65; 660.94) mm, as shown in Fig. 12. In the same figure,
successive gate locations during the optimization process are also depicted.
Constraints on clamp force (C;) and gate flow rate (C;) remain within allowable
tolerances, i.e., -2.951E-02 and —0.3166, respectively.

NAARE
Y.

T Ay
\vJ% L (’ :

Optimal gate
focation

Initial gate
location

Fig. 12. Successive gate locations during the optimization. The trajectory is only for
illustration purposes.

A comparison between the initial pressure profile and the optimal pressure profile is
shown in Fig. 13. Once again, at the end of filling the pressure decreases to satisfy
the constraint on the clamp force. Figure 14 shows the history of the objective
function during the optimization process. After 4 iterations, there is no change in the
objective function. These results show that the initial gate location has a small effect
on the optimal design (of the order of percentage), though the objective is about the
same. Therefore, the optimal design obtained, i.e., the gate location and the injection
pressure profile, can thus be considered to be the global optimum of this problem.
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Fig. 14. Fill time history for the optimization of an automotive part.



7.2 Automotive Lens

As a second application, we analyze the non-isothermat filling of an automotive lens
mold cavity shown in Fig. 15, which has a uniform thickness of 3 mm. This case is
analyzed to demonstrate the applicability of the method to multiple gate locations.
We also choose to perform edge gate optimization. The finite element mesh consists
of 3393 linear triangular elements and 1840 nodes in the middle plane. The material
used is a PMMA, whose viscosity is approximated by the Carreau-Yasuda model.
The material properties and processing conditions are summarized in Table 4.

Table 4. PMMA material properties and processing conditions
(LUCRYL G88, PMMA, BASF AG).

Material Properties Data
Zero shear rate Mg 10071.1678 Pa.s
Relaxation time A 0.0642 s
Power index n 04
Yasuda coefficient a 1.0
WLF coefficient C, 14.3245
WLF coefficient C, 144.6981 °C
Reference temperature T, 220.0981 °C
Density p 1010 Kg/m®
Specific heat ¢ 2554 J/Kg °C
Thermal conductivity k 0.16 W/m °C
Processing Conditions
Injection temperature Ti 230°C
Interface heat transfer 200 W/m?* °C
coefficient h
Mold Temperature T,, 90 °C

There are four pressure profile parameters and three edge gates (Fig. 15). Side
constraints for the design variables are set as follows:

1 Mpa <P, <60 MPa(i=1,4)
O<u<land v=0

Therefore the total number of design variable is seven. The edge segments
parameterized to track the gates movement during the optimization process arc shown
in Fig. 15. The clamp force and flow rate limits are 1500 kN and 2E04 cm’s,
respectively. The clamp force is evaluated at 100% fill.
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Fig. 15. Gate axis definition and finite element of an automotive lens mold cavity
with three edge gates.

The optimization algorithm requires 4 gradient and 8 function evaluations.
Optimization results are summarized in Table 5. The fill time was reduced in the
optimization process from 2.33 s to 0.59 s. The gate locations move from their initial
edge locations, i.e., u=0.566, u=0.943 and u=0.743, for the first, second and third
gate, respectively, to their final locations, i.e., u=0.049, u=0.116 and u=0.940, as
shown in Fig. 16. The constraints on clamp force (C,) and gate flow rate (C,) remain
within allowable tolerances, i.e., —1.487E-03 and —0.759, respectively.

Table 5. Optimization results for the filling of an automotive lens mold cavity.

Optimization Data Initial Design Optimal Design
Objective function (s) 2.33 0.59
Constraint C; (clamp force) 0.137 -1.487 E-03
Constraint C; (flow rate) -0.221 -0.759

Design Variables
Injection Pressure (MPa)
P, 35 21.23
P> 36.65 46.85
P; 383 60
Py 50 46.15
Parametric Gate Coordinates

u for gate 1 0.566 0.0497

u for gate 2 0.943 0.116

u for gate 3 0.743 0.940
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Fig. 16. Initial (a) and optimal (b) designs: gate locations and successive flow fronts.
The time step between successive flow fronts plotted is not constant.

Filling fronts and pressure results, for both initial and optimal design, are shown in
Figs. 16 and 17. As can be seen from these figures, optimal gate location
considerably affects the fill time, the pressure distribution, and the position of
weldlines.

30

(b)
Fig. 17. Initial (a) and optimal (b) designs: predicted pressure distribution at the end
of filling (in MPa).



A comparison between the initial and the optimal injection pressure profiles is shown
in Fig. 18. As in the preceding application, we observe a decrease of the pressure at
the end of filling, to satisfy the constraint on the clamp force.
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Fig. 18. Injection pressure profiles before and after optimization.

3.0

2.5

2.0

1.5

Fill time (s)

1.0 1

0.5

0.0 T T T
0 1 2 3 4 5

Optimization iteration
Fig. 19. Fill time history for the optimization of an automotive lens mold cavity with
three edge gates.



Figure 19 shows the history of the objective function during the optimization process.
Only 3 global iterations were necessary to achieve the optimal design.

The mathematical optimization model developed here has revealed that the objective
functional is a highly nonlinear functional with respect to the design variables. For
this reason, multiple optimal gate locations may be found from our optimization
solution that depend on: the initial gate locations; the number of gates; the geometry
of the mold cavity; and the symmetry of the part. Such results are shown in Fig. 20,
where we can see the effect of the part symmetry on the optimal design.

SN

(c) (d)
Fig. 20. Effect of the cavity geometry on the optimal design: pressure distribution at
the end of filling, for two different optimal designs. (a) and (c) Initial designs; (b) and
(d) Optimal designs.

In the example of Fig. 20, we started the optimization procedure from two different
initial gate locations as shown in Figs. 20(a) and 20(c) and as a consequence of the
sole symmetry of the part, we obtained two different optimal designs shown in Figs.
20(b) and 20(d). Thus, depending on the nonlinearity of the problem, the optimal
gate location is not guaranteed to be the global optimum. Therefore, it may be




necessary to restart the optimization process from several different gate locations to
provide reasonable assurance of obtaining the global optimum. Yet, since the design
space is often “‘flat’’, starting from different initial points will usually produce a
slightly different optimum, though the objective function will be about the same. In
case of multiple optimum gate locations, the final decision of the placement of gates
in a mold cavity will be dictated by factors such as, weld-line position in the cavity,
pressure distribution, temperature field, shrinkage and warpage, among others.

Finally we wish to point out that in the course of the optimization procedure, the
function evaluation involves a complete filling simulation. Such a result, for the
mold cavity of Fig. 20, is shown in Fig. 21, which gives the history of the objective
functional during the optimization process. This figure clearly shows the increasing
number of function evaluation before the optimal design is reached. While this may
seem to be time consuming for highly nonlinear problems and complex mold cavity
geometries, these optimization techniques nevertheless provide to engineers an
efficient tool for automatically finding the best possible design from admissible ones,
instead of using ‘intuitive’ design methods based on trial-and-error.

Fill time ()
[/]

0 T T T T
0 5 10 15 20 25

Optimization iteration

Fig. 21. Optimization history.



8 Conclusions

We have discussed in this chapter the applicability of the DSA-based approach to
optimal design for mold filling problems. This technique enables efficient analyses
and optimal design for computationally expensive injection molding systems. Its
effectiveness as a tool for the optimization of the injection molding process has been
demonstrated from two different industrial applications. The approach developed
here combines an existing injection molding simulation code with an existing
numerical optimization program (DOT), which enables the selection and employment
of the most suitable optimization algorithm. The emphasis was put on gradient-based
optimization methods. Those methods are local optimization methods and best suited
in situations where the design space is convex and the objective functional
continuous. We have also briefly discussed the use of stochastic-based methods as
they provide a tool for finding a global or a nearly global optimum and can deal with
non-convex and discontinuous functions. The drawback of those stochastic
techniques remains the computational time that is required to achieve the global
optimum.
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