
Publisher’s version  /   Version de l'éditeur: 

Contact us / Contactez nous: nparc.cisti@nrc-cnrc.gc.ca.  

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=fr

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

NRC Publications Record / Notice d'Archives des publications de CNRC:
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=11343943&lang=en

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=11343943&lang=fr

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 
DOI ci-dessous.

http://dx.doi.org/10.1002/nme.2328

International Journal for Numerical Methods in Engineering, 76, 4, pp. 455-481, 
2008-10-22

Nodal velocity derivatives of finite element solutions: The FiND method 

for incompressible Navier-Stokes equations
Ilinca, Florin; Pelletier, Dominique

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NRC Publications Archive

https://core.ac.uk/display/38556304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://web-d.cisti.nrc.ca/npsi/jsp/nparc_cp.jsp?lang=fr
http://web-d.cisti.nrc.ca/npsi/jsp/nparc_cp.jsp?lang=en
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=11343943&lang=fr


INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2008; 76:455–481
Published online 18 March 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2328

Nodal velocity derivatives of finite element solutions: The FiND
method for incompressible Navier–Stokes equations

F. Ilinca1,∗,†,‡ and D. Pelletier2,§

1Industrial Materials Institute, National Research Council, 75 de Mortagne, Boucherville,

Que., Canada J4B 6Y4
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SUMMARY

This paper presents the development and application of the finite node displacement (FiND) method to
the incompressible Navier–Stokes equations. The method computes high-accuracy nodal derivatives of the
finite element solutions. The approach imposes a small displacement to individual mesh nodes and solves
a very small problem on the patch of elements surrounding the node. The only unknown is the value of
the solution (u, p) at the displaced node. A finite difference between the original and the perturbed values
provides the directional derivative. Verification by grid refinement studies is shown for two-dimensional
problems possessing a closed-form solution: a Poiseuille flow and a flow mimicking a boundary layer.
For internal nodes, the method yields accuracy slightly superior to that of the superconvergent patch
recovery (SPR) technique of Zienkiewicz and Zhu (ZZ). We also present a variant of the method to treat
boundary nodes. The local discretization is enriched by inserting an additional mesh point very close to
the boundary node of interest. Computations show that the resulting nodal derivatives are much more
accurate than those obtained by the ZZ SPR technique. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The accurate computation of nodal values of finite element (FE) solution derivatives is of major

importance to many numerical applications. For example, accurate boundary derivatives are crucial

in the evaluation of skin friction for drag prediction or Nusselt number in heat transfer applications.
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456 F. ILINCA AND D. PELLETIER

Several error estimators used for mesh adaptation rely on some form of projected derivatives to

quantify the solution error. A more recent application, design sensitivity analysis, requires nodal

values of the solution derivatives to evaluate sensitivity boundary conditions in the sensitivity

equation method (SEM). The success or failure of such applications is to a great extent dependent

on the accuracy of the extracted boundary solution derivatives. This work is an extension to the

incompressible Navier–Stokes equations of the finite node displacement (FiND) method developed

by Ilinca and Pelletier [1] for scalar convection–diffusion equations.

It has long been known that the derivatives of the FE solution converge at a slower rate with mesh

size refinement than the solution itself [2]. This observation was made initially in structural stress

analysis where the stresses converge at a lower rate than the displacements. It was also observed

that there are points inside elements at which the convergence rate of the derivatives exceeds

the theoretical rate [3, 4]. This has spurred much efforts to develop techniques for evaluating the

so-called superconvergent solution derivatives. Babuška and Miller developed extraction formulas

for use in structural mechanics (stress analysis). In such problems, the stresses need to be evaluated

very accurately at a few critical sites [5]. Although effective, the method proposed by Babuška

is too expensive to use in projection error estimators, with the SEM or for the above-mentioned

applications.

Many least-squares projection methods have been developed to evaluate solution derivatives.

The pioneering work of Zienkiewicz proposed a technique involving the solution to a global least-

squares system of order equal to the number of nodes in the mesh [6]. Although effective with

linear elements, the method yields wrong answers when applied to quadratic elements [7]. A local

least-squares reconstruction was presented and applied successfully to error estimation and mesh

adaptation for a spectrum of elements (linear and quadratic triangles as well as 4- and 9-node

quadrilaterals) [7–9]. Local averaging techniques in the form of the Zienkiewicz and Zhu (ZZ)

error estimator are analyzed in [10] for low-order FEs in elasticity. Averaging techniques were also

analyzed by Ainsworth and Craig [11] who propose a framework for developing and classifying

error estimators. The asymptotic exactness and superconvergent properties of the reconstructed

solution are discussed.

A family of projection methods is obtained depending on whether the solution itself or its

derivatives are projected and depending on whether the least squares is performed in a continuum

(minimizing an integral of squared quantities) or in a discrete fashion (minimizing a summation)

[12, 13]. In many instances, the technique relies on the existence of superconvergent points that do

not always exist. Variants have been proposed to bypass this difficulty [14–18]. However, either
they are restricted to linear problems or the derivative estimations suffer from accuracy degradation

near the boundary of the computational domain.

The authors have successfully applied local projection methods to adaptive solution of a broad

spectrum of problems: incompressible laminar heat transfer [19–22], isothermal turbulent flows

[23–25], turbulent heat transfer [26], laminar or turbulent compressible flows [27, 28], and more

recently to verification and validation applications [29–31].
One of the main difficulties with the above-mentioned techniques is the lower accuracy that

they deliver for boundary derivatives. Although this is not a major impediment in adaptive

solution algorithms, it is critical in sensitivity analysis by the SEM. Indeed, for shape parameters,

first derivatives of the solution appear in Dirichlet boundary conditions for the sensitivity

variable. Second derivatives appear in the case of Neumann boundary conditions. The

observed lower accuracy of boundary derivatives seems to occur because the derivatives extracted by

most methods are not compatible or consistent with the solution field at or near the boundary [32].
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NODAL VELOCITY DERIVATIVES OF FINITE ELEMENT SOLUTIONS 457

Duvigneau and Pelletier have recently proposed a Taylor-series-based constrained least-squares

procedure to extract high-accuracy boundary derivatives that are compatible with the imposed

Dirichlet conditions [32]. Improvements due to this new approach were demonstrated on examples

of optimal design of thermal systems [33] and in the fast evaluation of flows on nearby geometries

[34]. However, the cost of the Taylor series least-squares method is too high for practical

three-dimensional applications.

In an effort to recover the boundary fluxes with higher accuracy, Carey [35] and Carey et al. [36]
used the FE equations on nodes having Dirichlet boundary conditions to recover the boundary flux.

The technique is based on the work of Wheeler [37], which recovers superconvergent derivatives

for two-point boundary value problems. An extension to internal nodes is proposed, which can

be applied for one-dimensional problems, but which could not be extended to unstructured multi-

dimensional meshes. Evaluation of boundary fluxes was also investigated by Hughes et al. [38]
in the context of global conservation. They introduce a mixed formulation with an auxiliary field,

which amounts to the flux on the Dirichlet portion of the boundary. The auxiliary flux is shown

to complete the global conservation of the FE solution and it is observed to have convergence

characteristics superior to that of the FE derivatives. Kvamsdal [39] and Melbo and Kvamsdal [40]
use a similar approach (variationally consistent postprocessing) to recover surface forces on FE

boundaries.

The FiND method was introduced by Ilinca and Pelletier [1] for the computation of accurate

nodal derivatives in the case of scalar convection–diffusion equations. The approach is based on

imposing a finite displacement on vertices of the mesh and on solving a small local problem

on the patch of elements surrounding each node. The only unknown of the resulting equation is

the solution at the perturbed point. A finite difference between the values of the solution at the

perturbed and original locations of the mesh node yields the directional derivative. For internal

nodes, the method yields accuracy slightly superior to that of the superconvergent patch recovery

(SPR) technique of Zienkiewicz and Zhu [7]. Significant improvement over the ZZ method is

observed for boundary points.

In this paper, we extend the FiND method to the computation of nodal velocity derivatives in the

case of the Navier–Stokes equations. The proposed method is cost effective as only small systems

of equations corresponding to the displaced nodes are computed (4×4 for the Navier–Stokes

equations in three dimensions). We show, via grid refinement studies, that the convergence rate

of the extracted derivatives approaches that of the primary variable. We also show that the FiND

method yields nodal derivatives equivalent to a discretization of the solution gradient by the same

interpolation functions used for the primary variable.

On boundary nodes, the local discretization is enriched by inserting an additional mesh point

very close to the boundary node of interest. The location of the additional point is given by

applying a finite displacement to boundary nodes in the direction normal to the boundary and

towards the interior of the domain. A finite difference between the solution at the additional point

and the solution at the boundary node yields the normal derivative at the boundary. The method

is shown to provide nodal gradients that are consistent with the auxiliary fluxes [38] on Dirichlet

boundary nodes. However, unlike the mixed methods based on the auxiliary flux, which provide

the boundary flux or force, the FiND method computes the derivatives of each component of the

velocity. Boundary nodal derivatives computed with this new method are also much more accurate

than those provided by the SPR technique [7].
In this work we focus on the recovery of velocity nodal derivatives. Although the FiND method

is also able to provide the nodal derivatives of the pressure, we have observed that the dual role
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458 F. ILINCA AND D. PELLETIER

of the pressure for incompressible flows, namely to provide equilibrium of the momentum and to

act as a Lagrange multiplier for the incompressibility constraint, makes it more sensitive to the FE

discretization. Moreover, as can be observed from the momentum equations, the pressure gradient

is expected to have the same accuracy as the second-order derivative of the velocity, which is less

accurate than the velocity gradient. The FiND recovery of the nodal pressure gradient and the

impact of the stabilized form of the FE equations will be the object of a future investigation.

This paper is organized as follows. First, the model problem and the associated FE formulation

are presented. The FiND method for internal nodes is discussed in Section 3. Section 4 presents a

variant of the method suited to evaluate boundary derivatives. Section 5 illustrates the performance

of the FiND method on a few simple test problems. The paper ends with conclusions.

2. THE MODEL PROBLEM

The FiND method has been introduced in [1] for scalar transport equations. This paper extends

the method to the case of the incompressible Navier–Stokes equations. The model problem is

expressed as follows:

�u·∇u= −∇ p+∇ ·[�(∇u+∇u
T)]+f (1)

∇ ·u= 0 (2)

where u, p, �, and � denote the velocity, pressure, density, and viscosity, respectively, and f is a

given source term. The associated boundary conditions are

u=UD(x) for x∈�D (3)

�(∇u+∇u
T) ·n̂− pn̂= t(x) for x∈�t (4)

where �D is the portion of the domain boundary ��, where Dirichlet conditions are imposed, and

t is the traction imposed on �t=��\�D.

In this work we discretize both velocity and pressure using linear continuous interpolants. It

is well known that the P1–P1 element used in conjunction with the Galerkin FE formulation

produces spurious oscillations and some form of stabilization is needed. We use the Galerkin

least-squares (GLS) method that leads to the following weak formulation:

∫

�

�u·∇uNi d�+
∫

�

�(∇u+∇u
T) ·∇Ni d�−

∫

�

p∇Ni d�−
∫

�

fNi d�

+
∑

K

∫

�K

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�u·∇Ni d�K =

∫

�t

tNi d� (5)

∫

�

∇ ·uNi d�+
∑

K

∫

�K

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�∇Ni d�K =0 (6)

where Ni are continuous, piecewise linear test functions associated with mesh nodes. The first four

integrals on the left-hand side of Equation (5) and the first integral in Equation (6) correspond to
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the Galerkin formulation, whereas the integrals over the element interiors are the GLS stabilization

terms. The stabilization parameter � is computed as from References [25, 41]:

�=

⎡

⎣

(

2�|u|
hK

)2

+
(

4�

mkh
2
K

)2
⎤

⎦

−1/2

(7)

where hK is the size of the element K and mk is a coefficient set to 1
3
for linear elements

(see [41, 42]).
The velocity (u,v,w) and pressure p are discretized as

u≈uh =
∑

j

u jN j (x) (8)

v≈vh =
∑

j

v jN j (x) (9)

w≈wh =
∑

j

w jN j (x) (10)

p≈ ph =
∑

j

p jN j (x) (11)

where N j are nodal shape functions, which in the present case are the same as the test functions.

To alleviate the writing, we regroup the four nodal unknowns into the vector s j =(u j ,v j ,

w j , p j )
T. Using this notation, Equations (5) and (6) lead to the following system of equations:

∑

j=1,Nn

Ai j s j = bi for i=1,Nn (12)

Ai j =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Auu
i j Auv

i j Auw
i j A

up
i j

Avu
i j Avv

i j Avw
i j A

vp
i j

Awu
i j Awv

i j Aww
i j A

wp
i j

A
pu
i j A

pv
i j A

pw
i j A

pp
i j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, s j =

⎛

⎜

⎜

⎜

⎜

⎝

u j

v j

w j

p j

⎞

⎟

⎟

⎟

⎟

⎠

, bi =

⎛

⎜

⎜

⎜

⎜

⎝

bui

bv
i

bw
i

b
p
i

⎞

⎟

⎟

⎟

⎟

⎠

(13)

whose unknowns are the nodal values of the velocity and pressure, with Nn being the number of

nodes in the mesh.

3. SOLUTION GRADIENTS AT INTERNAL NODES

The solution to system (13) provides the nodal values s j =(u j ,v j ,w j , p j )
T and from there the

solution sh =(uh,vh,wh, ph)
T at any given point inside the computational domain is obtained

using Equations (8)–(11). The solution derivative of sh along coordinate axes xk is given by

�sh

�xk
=

∑

j

s j
�N j

�xk
(14)
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460 F. ILINCA AND D. PELLETIER

where for three-dimensional problems k=1,2,3 (with x1= x , x2= y, x3= z). Because the interpo-

lation functions N j are C0 continuous, the derivatives of sh will be discontinuous across element

faces. The degree of the interpolant for the derivative is also lower than that of the primary

variable sh . For example, linear interpolation functions for sh lead to piecewise constant gradients.

3.1. General procedure

One would expect a better approximation of the solution derivatives if the gradients were known

at the mesh nodes and interpolated using the basis functions of the primary variable. We propose

a method for computing such nodal gradients that exhibit the same grid convergence rate as the

solution itself. We start from the definition of the derivative of s with respect to xk at a point x as

�s

�xk
(x)= lim

�xk→0

s(x+�xk)−s(x)

�xk
(15)

where �xk =�xk îk is a displacement of magnitude �xk in the direction îk representing the unit

vector along axis xk . When we apply (15) to the FE solution to obtain the gradient at the mesh

node i (located at xi ), we obtain

�sh

�xk
(xi )= lim

�xk→0

sh(xi +�xk)−sh(xi )

�xk
(16)

Because the nodal gradient makes use of the solution computed at (xi +�xk), it depends on

the neighboring element that the point (xi +�xk) is assumed to be in, resulting in different values

of the derivative in the neighboring elements as given by Equation (14). This indeterminacy can

be lifted if one could determine a unique value for sh(xi +�xk). The FiND method considers a

small displacement of the node i from its original location xi to (xi +�xk) (see Figure 1); the FE

solution is then recomputed locally. This provides us with the needed data for s(xi +�xk) used in

Equation (16) to obtain derivatives of the solution at node Pi .

The nodal displacement �xk is very small, much smaller than the element mesh size. In practice,

good results are obtained for a displacement equal to 10−4–10−3 of the smallest element size in the

patch surrounding node P (see [1] for a detailed discussion). It is therefore reasonable to assume

that, when moving node i , the only nodal value affected is that of the node i itself, whereas values

at neighboring nodes remain unchanged, so that the only unknown is the value of the solution s

at the perturbed location. This approximation leads to the following small local problem for the

P’

xk

i
iiP P

Figure 1. Finite node displacement method.
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nodal solution at the displaced point:

Ãi i s̃i = b̃i −
∑

j, j �=i

Ãi j s j (17)

where

s̃i =

⎛

⎜

⎜

⎜

⎜

⎝

ũi

ṽi

w̃i

p̃i

⎞

⎟

⎟

⎟

⎟

⎠

, s j =

⎛

⎜

⎜

⎜

⎜

⎝

u j

v j

w j

p j

⎞

⎟

⎟

⎟

⎟

⎠

, Ãi j =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ãuu
i j Ãuv

i j Ãuw
i j Ã

up
i j

Ãvu
i j Ãvv

i j Ãvw
i j Ã

vp
i j

Ãwu
i j Ãwv

i j Ãww
i j Ã

wp
i j

Ã
pu
i j Ã

pv
i j Ã

pw
i j Ã

pp
i j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, b̃i =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

b̃ui

b̃v
i

b̃w
i

b̃
p
i

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(18)

In the above equations, the parameters depending on the location of the perturbed node (xi +�xk)

are identified by a (˜). It indicates that s̃i =(ũi , ṽi , w̃i , p̃i )
T is the solution at the perturbed location

of the displaced point s̃i =s(xi +�xk), whereas s j =s(x j ), ( j �= i) are independent of �xk and

correspond to the FE solution to the original problem at the neighboring nodes. The solution at

the displaced node is, therefore, given by

s̃i = Ã
−1
i i

(

b̃i −
∑

j, j �=i

Ãi j s j

)

(19)

In the case of linear elements, this reduces to the solution to small systems of equations for

each mesh node (3×3 in the case of two-dimensional problems and 4×4 for three-dimensional

applications).

Once the value of the solution is computed at the perturbed location (xi +�xk), the derivative

of the solution in the direction of the increment �xk is determined using Equation (16) in the form

�s

�xk
(xi )=

s̃i −si

�xk
(20)

The procedure for computing the derivatives of the solution can be extended to locations other

than the mesh nodes. We propose the following formula:

�s

�xk
(x)= s̃−s

�xk
(21)

where s and s̃ are the solutions at points x and (x+�xk), respectively, given by

s=
∑

i

siNi (22)

s̃=
∑

i

s̃iNi (23)

Note that in Equation (23) the solution at the perturbed point is reconstructed from the solution

at the displaced mesh nodes evaluated separately by solving individual local problems. Figure 2

illustrates how the solution at point P is determined by interpolation inside element P1P2P3,

whereas the solution at the displaced point P ′ is obtained by interpolation inside the element

formed with the displaced points P ′
1P

′
2P

′
3. Note that boundary nodes cannot be displaced if this
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P

P

P

P

2

1

3

P
1

P
2

P
3

P’

P’

P’

P’

P

1

2

3

xk

(a) (b)

Figure 2. FiND method for extracting the derivative inside elements: (a) original
mesh and (b) displaced mesh points.

affects the shape of the computational domain. In such a case, instead of the displaced node we

use either an additional mesh node inserted close to the boundary node (see Section 4 for how

the method applies to boundary nodes) or a fictitious node whose solution is computed from the

nodal values of the solution and of its gradient at the original mesh node location.

Substituting (22) and (23) into Equation (21) yields

�s

�xk
(x)=

∑

i

(

s̃i −si

�xk

)

Ni =
∑

i

�s

�xk
(xi )Ni (24)

which shows that the solution derivatives �s/�xk are interpolated inside elements from their nodal

values (from FiND calculation) using the interpolation functions of the primary variable sh . This

means that our choice for interpolating the derivatives �s/�xk using the interpolation functions for

sh is not arbitrary; it is determined by the way in which the derivatives are computed by the FiND

method.

4. EXTRACTING SOLUTION GRADIENTS AT BOUNDARY NODES

In this section we show how to extract the velocity derivatives on the boundary. For boundary

nodes, the derivatives in the normal and tangential directions are first recovered and from there

we compute the derivatives in Cartesian directions. In the case of the velocity, this is performed

by using

�u

�n
= �u

�x
nx + �u

�y
ny+

�u

�z
nz (25)

�u

�t1
= �u

�x
t1x + �u

�y
t1y+

�u

�z
t1z (26)

�u

�t2
= �u

�x
t2x + �u

�y
t2y+

�u

�z
t2z (27)

In the above equations, n̂ is a unit vector normal to the boundary, and t̂1=(t1x , t1y, t1z), t̂2=
(t2x , t2y, t2z) are two orthogonal unit vectors tangent to the boundary.
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4.1. Extracting the tangential derivative

In the case of boundary nodes, the above procedure can be applied directly to obtain the tangential

derivative along the boundary surface. For Dirichlet nodes, the value of the solution at the displaced

node is obtained directly from the boundary condition (Equation (3)) evaluated at the displaced

location. Hence, there is no need to solve an auxiliary FE problem on a patch. The reconstructed

tangential derivatives at the boundary surface are given by the derivatives of the Dirichlet boundary

condition, which means that they are exact. For example, on boundaries with homogeneous Dirichlet

conditions, the tangential derivatives are zero, �u/�t1=0, �u/�t2=0. For nodes with Neumann

boundary conditions, the tangential derivative is computed from the solution at the displaced node

(see Figure 3) using Equation (20) as was the case for internal nodes.

4.2. Extracting the normal derivative

Extracting the normal derivative is more challenging because a boundary node cannot be displaced

in the direction normal to the boundary without changing the geometry of the computational

domain. Normal derivatives at boundary nodes must be computed in a slightly different manner.

The derivative of u in the direction n̂, the nodal normal to the boundary, is given by

�u

�n
(xi )=− lim

�xn→0

u(xi +�xn)−u(xi )

�xn
(28)

where �xn =−�xnn̂ is a displacement of magnitude �xn in the normal direction towards the interior

of the domain (the minus sign appears because the FE normal vector n̂ is the unit outward normal).

To extract the normal derivative, we must determine the solution u(xi +�xn). To avoid changes

in the geometry of the domain, an additional point P ′ is inserted in the mesh at xi +�xn . A local

problem is solved for the solution at P ′.
The procedure is illustrated in Figure 4 for two-dimensional problems and linear triangular

elements. The node P is the boundary mesh node where the normal derivative is needed (located

at xi ) and P ′ is the node inserted at xi +�xn . Integration of the FE equation for node P is

performed in �P , and �P denotes the portion of the patch boundary ��P coinciding with the

domain boundary. Insertion of the point P ′ determines the division of �P into two sub-volumes

denoted by �P ′ and �P as shown in Figure 4. The solution at node P ′ is obtained by solving the

PP

P P

P’

xt(a) (b)

Figure 3. FiND method for extracting the tangential derivative on boundary nodes:
(a) original mesh and (b) displaced mesh point.
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P

P’

xn

n

P’

P

P

P

P P(a) (b)

Figure 4. FiND method for extracting the normal derivative on boundary nodes: (a) element connectivity
of boundary node P and (b) element connectivity of inserted node P ′.

following local FE problem:

∫

�P

�u·∇uNP ′ d�P +
∫

�P

�(∇u+∇u
T) ·∇NP ′ d�P −

∫

�P

p∇NP ′ d�P −
∫

�P

fNP ′ d�P

+
∑

K

∫

�K
P ′

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�u·∇NP ′ d�KP ′ =0 (29)

∫

�P

∇ ·uNP ′ d�P +
∑

K

∫

�K
P ′

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�∇NP ′ d�KP ′ =0 (30)

where NP ′ is the test function associated with node P ′.
Note that for this local FE problem, we assume that the insertion of P ′ will not affect the values

at the vertices of the patch �P . Thus, the only unknowns are the values of u and p at node P ′.
Once this local problem is solved, a finite difference between the values of the solution at the new

node P ′ and boundary node P yields the normal derivative of the velocity:

�u

�n
(xP)=−u(xP +�xn)−u(xP)

�xn
(31)

4.3. Recovering the Cartesian derivatives

Once the normal and tangential derivatives are computed, Cartesian derivatives of the velocity

are obtained by solving Equations (25)–(27). Improved accuracy is achieved by projecting the

resulting velocity gradient into a divergence-free space since the flows of interest to us are

incompressible. The incompressibility condition is, therefore, used as a constraint when solving

Equations (25)–(27). This is performed by minimizing the functional

J = 1

2

(

B
�u

�x
− �u

�d

)2

+lCT �u

�x
(32)
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where C
T={1,0,0,0,1,0,0,0,1}, l is the Lagrange multiplier associated with the incompress-

ibility constraint and B, �u/�x and �u/�d denote

B=

⎡

⎢

⎣

B3×3 03×3 03×3

03×3 B3×3 03×3

03×3 03×3 B3×3

⎤

⎥

⎦
, B3×3=

⎡

⎢

⎣

nx ny nz

t1x t1y t1z

t2x t2y t2z

⎤

⎥

⎦
, 03×3=

⎡

⎢

⎣

0 0 0

0 0 0

0 0 0

⎤

⎥

⎦
(33)

�u

�x
=

(

�u

�x
,
�u

�y
,
�u

�z
,
�v

�x
,
�v

�y
,
�v

�z
,
�w

�x
,
�w

�y
,
�w

�z

)T

(34)

�u

�d
=

(

�u

�n
,
�u

�t1
,
�u

�t2
,
�v

�n
,
�v

�t1
,
�v

�t2
,
�w

�n
,
�w

�t1
,
�w

�t2

)T

(35)

With this notation, minimization of the first term in the right-hand side of (32) leads to Equations

(25)–(27), whereas minimization of the second term enforces the incompressibility of the velocity

field:

C
T �u

�x
= �u

�x
+ �v

�y
+ �w

�z
=0 (36)

Minimization of the functional J leads to the following system of equations:

[

B C

C
T 0

]

⎛

⎜

⎝

�u

�x

l

⎞

⎟

⎠
=

⎛

⎜

⎝

�u

�d

0

⎞

⎟

⎠
(37)

whose solution represents the divergence-free derivatives of the velocity.

4.4. Relationship between the FiND derivatives and the auxiliary flux

The solution to Equations (29) and (30) involves integrals on very thin elements having one

dimension equal to the node displacement �xn . In this section, we investigate the behavior of those

integrals as �xn →0. For this, the integration volume �P in Equations (29) and (30) is decomposed

into �P ′ and �P . The integrals on �P can, therefore, be expressed as a sum of integrals on the

sub-volumes �P ′ and �P . This leads to the following decomposition of convective and diffusive

integrals:

∫

�P

�u·∇uNP ′ d�P =
∫

�P ′
�u·∇uNP ′ d�P ′ +

∫

�P

�u·∇uNP ′ d�P (38)

∫

�P

�(∇u+∇u
T) ·∇NP ′ d�P =

∫

�P ′
�(∇u+∇u

T) ·∇NP ′ d�P ′

+
∫

�P

�(∇u+∇u
T) ·∇NP ′ d�P (39)
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We will now focus our attention on the behavior of the integrals in (38) and (39) as �xn →0. First

it is easy to see that �P ′ tends to �P as �xn tends to zero

lim
�xn→0

�P ′ =�P (40)

The area of �P is proportional to �xn and its differential is given by

d�P =�xnNP d�P (41)

where NP is the test function associated with node P . Note also that in �P ′ we have

lim
�xn→0

NP ′ =NP (42)

whereas in �P we have the following identities:

∫

�P

�u·∇uNP ′ d�P =
∫

�P

1

2
�u·∇uNP�xnNP d�P (43)

∇NP ′ = − 1

�xn
n̂ (44)

Substituting Equations (40)–(44) into Equations (38) and (39) leads to

lim
�xn→0

∫

�P

�u·∇uNP ′ d�P =
∫

�P

�u·∇uNP d�P +
∫

�P

1

2
�u·∇uNP�xnNP d�P (45)

lim
�xn→0

∫

�P

�(∇u+∇u
T) ·∇NP ′ d�P =

∫

�P

�(∇u+∇u
T) ·∇NP d�P

+
∫

�P

�(∇u�P
+∇u

T
�P

) ·n̂
(

− 1

�xn

)

�xnNP d�P (46)

In the limit �xn →0, the boundary integral in (45) vanishes and only the volume integral involving

the test function NP remains. A similar result is obtained for the source term in the momentum

equation and for the velocity divergence term in the continuity equation. In the diffusion term

decomposition (46), the boundary integral does not depend on �xn and the integral is non-zero as

�xn →0:

lim
�xn→0

∫

�P

�(∇u+∇u
T) ·∇NP ′ d�P

=
∫

�P

�(∇u+∇u
T) ·∇NP d�P −

∫

�P

�(∇u�P
+∇u

T
�P

) ·n̂NP d�P (47)

Note that the velocity gradient in the boundary integral of (47) does not represent the gradient of

the original FE solution u, but the gradient inside the elements forming the sub-volume �P once

the node P ′ is inserted; it depends on the velocity at the boundary and the velocity at the inserted

point P ′. A similar treatment applies to the pressure and stabilization terms in the momentum
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equation and to the stabilization term in the continuity equation. Thus, solving for (u, p) at node

P ′ is equivalent to solving the following FE equation:

∫

�P

�u·∇uNP d�P +
∫

�P

�(∇u+∇u
T) ·∇NP d�P −

∫

�P

p∇NP d�P −
∫

�P

fNP d�P

+
∑

K

∫

�KP

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�u·∇NP d�KP

=
∫

�P

[�(∇u�P
+∇u

T
�P

) ·n̂− pn̂]NP d�P

+
∫

�P

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�P

��P
u·n̂NP d�P (48)

∫

�P

∇ ·uNP d�P +
∑

K

∫

�KP

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�∇NP d�KP

=
∫

�P

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�P

��P
·n̂NP d�P (49)

Note that the stabilization terms in the momentum and continuity equations contribute to the

boundary integrals over �P representing the portion of the boundary spanned by the elements

adjacent to node P . However, these terms involve the stabilization parameter ��P
computed inside

the elements of �P . The evaluation of the stabilization parameter inside degenerated elements,

having one side negligible compared with the others, depends on the FE implementation. Observe,

however, that the gradient of interest is in the direction normal to the boundary and that the

element size in this direction is �xn →0. Since the stabilization parameter is proportional to the

element size in the convective limit and to the square of the element size in the diffusive limit (see

Equation (7)), one may conclude that it becomes negligible when �xn is very small. The net result

is that the boundary contribution of the stabilization terms vanishes when �xn →0. The solution

at node P ′ is, therefore, equivalent to solving

∫

�P

�u·∇uNP d�P +
∫

�P

�(∇u+∇u
T) ·∇NP d�P −

∫

�P

p∇NP d�P −
∫

�P

fNP d�P

+
∑

K

∫

�KP

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�u·∇NP d�KP

=
∫

�P

[�(∇u�P
+∇u

T
�P

) ·n̂− pn̂]NP d�P (50)

∫

�P

∇ ·uNP d�P +
∑

K

∫

�KP

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�∇NP d�KP

=0 (51)
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where on the right-hand side of Equation (50)

∇u�P
·n̂= �u

�n

∣

∣

∣

∣

P

=− lim
�xn→0

u(P ′)−u(P)

�xn
(52)

is the normal derivative of the velocity computed at node P .

Alternatively, an FE problem for a boundary node with a Dirichlet condition can also be

expressed using of the auxiliary flux as proposed by Hughes et al. [38] in the form:

∫

�P

�u·∇uNP d�P +
∫

�P

�(∇u+∇u
T) ·∇NP d�P −

∫

�P

p∇NP d�P −
∫

�P

fNP d�P

+
∑

K

∫

�KP

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�u·∇NP d�KP

=
∫

�P

tnNP d�P (53)

∫

�P

∇ ·uNP d�P +
∑

K

∫

�KP

{�u·∇u+∇ p−∇ ·[�(∇u+∇u
T)]−f}�∇NP d�KP

=0 (54)

In the above equation, tn denotes the normal traction on the boundary �P . Comparing Equations

(50) and (53), one concludes that the FiND normal derivative at boundary node P (52) satisfies

the following compatibility relationship with the auxiliary boundary flux tn:

∫

�P

[�(∇u�P
+∇u

T
�P

) ·n̂− pn̂]NP d�P =
∫

�P

tnNP d�P (55)

Observe that the FiND method results in a boundary flux represented by a discontinuous

discretization that is constant on overlapping patches. Figure 5 illustrates the discretization of the

boundary flux on a portion of the boundary for a two-dimensional problem solved using linear

continuous interpolation functions for the velocity. When computing the normal derivative at a

boundary point (say point P2 in Figure 5), the boundary flux is constant on the patch of elements

surrounding the respective point. Its value is given by the derivative of the velocity at node P2. This

discrete form of the boundary flux is consistent with the FE discretization of the velocity in the

sense of the FiND method. For non-planar boundaries, we should define nodal normal directions

Figure 5. Discrete FiND derivative on boundary nodes.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:455–481

DOI: 10.1002/nme



NODAL VELOCITY DERIVATIVES OF FINITE ELEMENT SOLUTIONS 469

on which the boundary nodes would be displaced. A discussion on how to choose the nodal normal

direction can be found in [1].

5. NUMERICAL EXAMPLES

The accuracy of the proposed method is studied on two-dimensional problems with known analyt-

ical solutions. This provides a rigorous framework to perform systematic grid refinement studies

to assess:

• The grid convergence of the FE solution to the exact solution.

• The grid convergence of the reconstructed derivatives to the exact derivatives.

• The effective convergence rate of the derivatives recovered by FiND compared with that of

the ZZ local projection method.

The ZZ and FiND methods are verified on several problems. First, we solve a Poiseuille flow

for which the velocity changes only in the direction transverse to the flow. Then we consider

a manufactured solution [32] behaving like a two-dimensional boundary layer. This problem is

solved on both uniform and non-uniform meshes. For the present examples, the ZZ method using

continuum and discrete least-squares projections (SPR) yields similar results. Hence, only the

results obtained by the continuum (minimizing the integral of squared quantities) method are

shown.

5.1. Poiseuille flow

This problem consists in solving the flow through a channel with parallel walls located at y=±h.

In the fully developed flow region, the velocity distribution is parabolic:

u=U0

(

1− y2

h2

)

, v=0 (56)

where U0 is the maximum velocity. The pressure p varies linearly with x

�p

�x
=�

�
2
u

�y2
=−2�U0

h2
(57)

where � is the fluid viscosity.

The problem is solved in the square [−h;h]×[−h;h] with the following boundary conditions:

both velocity components are zero at the walls (y=±h) and imposed from Equation (56) on the

inlet (x=−h). At the outlet (x=h), the vertical velocity v and the normal traction are set to zero.

This results in a pressure field given by

p(x)= 2�U0

h

(

1− x

h

)

(58)

Computations are carried out on a sequence of uniform meshes of triangles obtained by mesh

halving. The velocity component u(x, y) and its true error eu(x, y)=u−uex for a 20×20 mesh

are shown in Figure 6. The results for the y derivative extracted using the ZZ and FiND methods,

�u/�y |ZZ and �u/�y |FiND, are shown in Figure 7 for the 20×20 mesh (for the sake of clarity, we

have plotted −�u/�y).
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Figure 6. Poiseuille flow: solution (left) and true error (right) on a 20×20 mesh.
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Figure 7. Poiseuille flow: reconstructions of �u/�y by the ZZ method (left) and the FiND method (right).

The true errors of the reconstructed derivatives are defined as follows:

eZZ = �u

�y

∣

∣

∣

∣

ZZ

− �uex

�y
(59)

eFiND = �u

�y

∣

∣

∣

∣

FiND

− �uex

�y
(60)

and shown to the same scale on Figure 8.

The two methods produce comparable accuracy for nodes inside the computational domain.

However, the FiND method yields much higher accuracy for the derivatives at Dirichlet boundary

nodes (y=±h). This indicates the superiority of the FiND method over the ZZ technique. The

FiND derivative is very close to the exact derivative at all nodes, except at the wall near the corners

of the computational domain where the error is slightly higher.

A grid convergence study of the ZZ and FiND methods was carried out by solving the problem

on meshes with 5, 10, 20, and 40 elements in each direction. The results are summarized in

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:455–481

DOI: 10.1002/nme



NODAL VELOCITY DERIVATIVES OF FINITE ELEMENT SOLUTIONS 471

Figure 9 for the L2 norm and H1 semi-norm of the FE solution error, and for the H1 semi-norm

of the reconstruction errors for the ZZ and FiND methods, ‖uZZ−uex‖H1
and ‖uFiND−uex‖H1

:

‖uh−uex‖L2
=

{∫

�

(uh−uex)
2 d�

}1/2

(61)

‖uh−uex‖H1
=

{∫

�

(∇uh−∇uex)
2 d�

}1/2

(62)

‖uZZ−uex‖H1
=

{∫

�

(∇uZZ−∇uex)
2 d�

}1/2

(63)

‖uFiND−uex‖H1
=

{∫

�

(∇uFiND−∇uex)
2 d�

}1/2

(64)
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Figure 8. Poiseuille flow: reconstruction errors of �u/�y by the ZZ
method (left) and the FiND method (right).
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Figure 9. Errors of the finite element solution, ZZ and FiND derivatives.
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For comparison purposes, the reference lines for linear and quadratic grid convergence with

respect to h (mesh size) are shown in thick continuous lines above and below the lines with symbols.

Several observations can be drawn from these results. First we note that, as expected, the L2-norm

of the error exhibits second-order accuracy with mesh refinement (see inverted open triangles). The

H1 semi-norm of the error ‖uh−uex‖H1
(solid diamonds), which measures the accuracy of the FE

derivatives, exhibits first-order mesh convergence. The error in the ZZ derivatives (solid squares)

converges faster than the error in the FE derivatives (the H1 semi-norm of the true error). The

convergence rate of the ZZ derivatives, ‖uZZ−uex‖H1
, is somewhere between 1 and 2, i.e. higher

than the convergence rate of the FE derivatives but lower than that of the L2-norm of the solution

error ‖uh−uex‖L2
. Figure 9 shows that the FiND derivatives (solid circles) are much more accurate

than the ZZ derivatives for all meshes. The FiND derivatives exhibit quadratic convergence similar

to uh . That is, ‖uFiND−uex‖H1
=‖∇uFiND−∇uex‖L2

converges at the same rate as ‖uh−uex‖L2
,

i.e. second order.

To further investigate the behavior of the two methods, we have computed separately the mean

nodal error of the y derivative for internal nodes and boundary nodes. The results are shown in

Figure 10. Again, reference lines for linear and quadratic convergences are included. For internal

nodes, the errors of the ZZ and FiND derivatives are of comparable accuracy (solid symbols), with

the FiND method appearing slightly more accurate. With mesh refinement, both derivatives exhibit

almost second-order accuracy. For Dirichlet boundary nodes, the two methods yield completely

different results. The FiNDmethod computes boundary derivatives that are as accurate as derivatives

at internal nodes. FiND boundary derivatives (open circles) exhibit the same convergence rate as

internal nodes, whereas the ZZ boundary derivatives (open squares) are less accurate than in the

interior and the convergence rate is down to one. This poor behavior of the ZZ projection method at

boundary points has a notable effect on the global performance of the method. One concludes that

the FiND method improves the accuracy of recovered derivatives compared with the ZZ method,

especially at boundary points.

5.2. Boundary layer flow

The next verification test case is a manufactured solution mimicking the flow along a flat plate

[32]. The velocity field is given by

u =U0(1−e−�) (65)

v = U0

2�
√
x
[1−(1+�)e−�] (66)

p = x2−0.01 (67)

where �=
√

�U0/� and �=(y− y0)
√

�U0/(�x). The problem is solved on the square [0.1,1.1]×
[0,1] and the parameters take the values U0=1, �=1, �=0.01, and y0=0. The source term f is

determined such that (65)–(67) are solutions to Equations (1), (2). Dirichlet conditions are imposed

on all boundaries using the exact solution, except on the outlet (x=1.1) where the exact traction

is imposed in the horizontal direction and the velocity is imposed in the vertical direction.

The horizontal velocity (u) and its true error are shown in Figure 11 for a 20×20 mesh. As can

be seen, the velocity exhibits larger errors in the boundary layer near the wall. Results for the y

derivative obtained by the ZZ and FiND methods are shown in Figure 12 (for illustration purposes

−�u/�y is shown). The reconstruction errors for the derivative are shown in Figure 13. We observe
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that the ZZ method performs very well inside the computational domain. However, it produces

less accurate values of �u/�y at and near the wall (y=0). This is especially true near the inflow

where the boundary layer is thinnest. The FiND method produces derivatives of excellent accuracy

for internal nodes and improves the accuracy of the derivative estimate at boundary points.

A grid convergence study is carried out for both methods on meshes with 6×6, 11×11, 21×21,

and 41×41 nodes. Figure 14 presents error trajectories for the solution and approximations of its

derivative. Here again, the FiND method yields superconvergent nodal derivatives (solid circles)

with a rate close to that of the solution itself (open triangles). The ZZ derivatives (solid squares)

are less accurate and exhibit a lower grid convergence rate.

The performances of the two methods for internal and boundary nodes are compared in Figure 15.

Boundary nodes include only points located on the bottom wall (y=0). For internal nodes, the ZZ

(solid squares) and FiND (solid circles) reconstructed derivatives are of comparable accuracy, with

a slightly more accurate prediction for the FiND method. Both derivatives exhibit second-order
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Figure 10. Nodal errors of the ZZ and the FiND derivatives.
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accuracy with mesh refinement. Along the wall, the two methods provide different results. The

FiND derivatives (open circles) have a convergence rate close to O(h3/2) which agree well with

observations of Pehlivanov et al. [43] for the accuracy of recovered boundary fluxes. The ZZ

derivatives (open squares) are less accurate at the wall and the grid convergence rate is close to 1.

We now apply the FiND derivative for computing the wall friction

Fw=
∫

�w

�
�u

�y
d�w (68)

where �w denotes the wall boundary (y=0). The wall friction computed by the two methods is

compared with the analytical value in Figure 16. The wall friction computed from nodally exact

values but interpolated using linear functions inside the boundary elements is also shown. As can be

seen, the predictions from both FiND and ZZ estimates improve with mesh refinement. However,

the FiND derivatives provide a much more accurate wall friction than the ZZ approximation. On

the final mesh, the FiND approximation of the wall friction is 12 times more accurate than the ZZ

prediction. The improvement in the FiND derivative when compared with the ZZ derivative is also

apparent in Figure 17, illustrating the local wall shear stress. The errors in the FiND approximation

are slightly higher near the extremities of the boundary. This is caused by the rapid adjustment of

the solution from the imposed boundary conditions to a divergence-free velocity field satisfying

the momentum equations.

Another use of the approximated derivatives is for error estimation. In practical problems, the

exact solution uex is unknown, so that the norm of the true error ‖uh−uex‖H1
cannot be evaluated.

However, the high accuracy of the FiND derivatives makes them an excellent surrogate for uex,

so that the true error may be approximated as follows:

‖uh−uex‖H1
≈‖uh−uFiND‖H1

(69)

Figure 18 compares the two error estimators ‖uh−uFiND‖H1
and ‖uh−uZZ‖H1

with the true error.

As can be seen, the accuracy of both error estimators improves with mesh refinement, but the

FiND error is much closer to the exact error than the ZZ approximation. Results are presented in
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Figure 19 in the form of an efficiency index (ratio of estimator to true error):

�FiND = ‖uh−uFiND‖H1

‖uh−uex‖H1

(70)

�ZZ = ‖uh−uZZ‖H1

‖uh−uex‖H1

(71)

The closer to one the efficiency index is, the more reliable and accurate the estimator will be.

Both estimators tend to 1 as mesh is refined, indicating that both estimators are asymptotically

exact. This is important in practice as it means that the accuracy of both the solution and its error

estimate improves with mesh refinement. As � goes to 1, the estimator becomes more and more
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accurate. Figure 19 indicates that the FiND estimator achieves asymptotic exactness on coarser

meshes than its ZZ counterpart.

The boundary layer problem was also solved on non-uniform unstructured meshes in order to

verify the behavior of the FiND method on such grids. The initial mesh having 102 elements is

shown in Figure 20. Uniform grid refinement was performed to confirm the convergence rate of

the recovered derivatives. The errors of the reconstructed derivatives are compared with the error

of the FE solution derivatives in Figure 21. The performances of the ZZ and FiND methods for

internal and boundary nodes are compared in Figure 22. Only the y derivative is considered in

Figure 22 and boundary nodes include only points located on the bottom wall (y=0). We observe

that the FiND derivatives are always more accurate than the ZZ derivatives and that the global

rate of convergence is higher for the FiND derivatives when compared with the ZZ approximation.
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Figure 20. Initial non-uniform mesh for the boundary layer problem.
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Figure 21. Errors of the finite element solution, ZZ and FiND derivatives on non-uniform meshes.

The convergence rate for internal nodes is quadratic, but it becomes linear for boundary nodes.

However, the accuracy of the FiND derivatives at boundary nodes is much higher than that of the

ZZ derivatives. These observations are similar with those made by Ilinca and Pelletier [1] when
applying FiND to scalar convection–diffusion equations.

6. CONCLUSIONS

A new method, the finite node displacement (FiND) method, for computing highly accurate nodal

derivatives of the Navier–Stokes solution is presented. The FiND approach is very cost effective.

It uses an imposed finite displacement of mesh nodes and solves small local problems on the patch
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Figure 22. Nodal errors of the ZZ and FiND derivatives on non-uniform meshes.

of elements surrounding the displaced point, for the nodal values of the velocity at the perturbed

locations. For internal nodes, the method provides accuracy that is as good as or better than that

of the ZZ SPR technique. A variant of the method suited for boundary nodes is developed. Nodal

values of velocity normal derivatives at the boundary are computed by inserting an additional

mesh point inside the domain at a small distance from the boundary point in the boundary normal

direction. The FiND method yields normal derivatives at boundary points that are a consistent

representation of the auxiliary fluxes. These boundary derivatives are more accurate than those

provided by the superconvergent patch recovery technique. Results show that the error estimator

using the FiND derivatives is more accurate than the original ZZ estimator.
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