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Abstract

The ability to predict segregation of the solid phase in processes such as powder injection
molding and injection molding of semi-solid materials is of special interest since such
phenomenon affects the final properties and characteristics of the molded parts. In powder
injection molding, for example, defects appear very often in the debinding and sintering stages
but are caused by filling problems and determined by a non-uniform distribution of the solid
particles within the molded part. In this paper we propose a 3D numerical solution algorithm for
the simulation of particle migration in dense suspensions. The particle migration is modeled
using the diffusion flux model and integrated into the NRC’s 3D injection molding software. The
solution algorithm is validated by solving flow problems for which experimental and numerical
data are available: circular Couette flow, piston driven flow and sudden contraction-expansion
flow. Since it is observed that the piston movement in the sleeve can induce particle migration
even before the material enters the cavity, an ALE (Arbitrary Lagrangian-Eulerian) formulation is
also developed to include the piston movement in molding simulations. The ALE formulation is
first compared with an Eulerian solution for the case of the piston driven flow problem. Then, the
approach is applied to injection molding problems and the segregation inside the molded parts is
studied.

Keywords: Powder Injection Molding, 3D Modeling, Finite Elements, Segregation, Diffusive

flux model.

1. INTRODUCTION

Segregation of the solid phase in powder injection molding (PIM) is of special interest since it
affects the final properties and characteristics of the molded parts. PIM defects appear very often

in the debinding and sintering stages but are often caused by filling problems and determined by



a non-uniform distribution of the solid particles within the solution. Inhomogeneous particle
distribution affects the apparent viscosity and thus the flow during filling. This distribution may
also affect the part deformation during sintering and consequently the final part geometry.

Various models have been proposed to describe the separation of the solid and fluid
constituents in dense suspensions. In mixture models each constituent is considered as distinct
specie of a mixture. The development of the mixture formulation is done by writing the
conservation equations for each phase involved in the system. Two sets of momentum, mass and
energy conservation equations are therefore written, one set for the liquid phase and one for the
solid phase. These coupled equations can be solved directly [1,2]; however, for computational
efficiency reasons, it is usually further simplified using phase mixture rules. By doing so, the two
sets of conservation equations are reduced to one set of conservation equations into which the
unknowns are the average mixture velocity, pressure and temperature; the local concentration of
the mixture is computed using an additional phase concentration equation [3,4].

PIM can also be modeled using dense suspension models. Dense suspension models have been
developed to predict shear induced particle segregation. Conceptually, such models assume that
particle-particle collision occurring in the suspension is the main driving force for phase
separation. High-shear regions have a higher collision probability than low shear regions, thus
based on probabilistic arguments, particles tends to migrate from the high shear flow regions to
the low shear flow regions. Phillips et al. [5] introduced the diffusive flux model based on the
concept of particle concentration diffusion. Experimental validation of the model for simple one-
or two-dimensional problems is shown in Refs. [6,7]. The suspension balance model was first
introduced by Nott and Brady [8] who introduced the concept of suspension ‘temperature’.
Morris and Boulay [9] modified the model to take into account the effect of the normal stress

difference, whereas Fang et al. [10] used a flow aligned tensor to model the normal stress



difference for both diffusive flux model and suspension balance model. Experimental validation
of both diffusive flux and suspension balance models is shown in Refs. [11,12].

In this paper we propose a 3D numerical solution algorithm for the simulation of particle
migration in dense suspensions. The particle migration is modeled using the diffusion flux model
proposed by Phillips et al. [5]. The particle migration model is integrated into the NRC’s 3D
injection molding software [13]. The solution algorithm is validated by solving flow problems for
which experimental and numerical data arc available: circular Couette flow, piston driven flow
and sudden contraction-expansion flow [6,10]. An ALE formulation is also developed to treat the
piston movement in injection molding problems. The ALE formulation is first compared with an
Eulenan solution for the case of the piston driven flow problem. Then the approach is applied to

injection molding problems and the segregation inside the molded parts is studied.
2. MODEL EQUATIONS
2.1, Flow equations

The flow of incompressible fluids is described by the Navier-Stokes equations
du
Jo, E*‘“C'V“ =~Vp+V-(2nDy), (1)

~V-u=0, 2
where 7 is the apparent viscosity of the suspension and D, =(Vu+(Vu)")/2 is the strain rate
tensor.

Heat transfer is modeled by the energy equation:

oT
pcp(gi-uc -VT)zV-(kVT)+2qujD,j. ()



In the above equations, t, u, p, T, p, 1, ¢, and k denote time, velocity, pressure, temperature,

density, viscosity, specific heat and thermal conductivity respectively. The convection velocity u,
is equal to the fluid velocity u in an Eulerian frame of reference, but depends on the mesh

velocity u,, in an ALE formulation:
u =u-u, (4)
The viscosity of the mixture is considered function of the solid fraction as given by
n=nn, n,=(1-8)", (5)
where 77, is the viscosity of the suspension (liquid phase), 73, is the relative viscosity of the
mixture with respect to that of the suspension, and ¢ denotes the normalized solid fraction,

¢ =¢/¢, . Here ¢ denotes the solid fraction and ¢, its maximum value (@,=0.68 for the present

work).
2.2. Phase segregation

The segregation of solid particles is modeled by the diffusive flux model of Phillips et al. [5].

The solid fraction is therefore obtained by solving the transient advective-diffusive equation

9w Vo=_v.
Ey +u, -Vg=-V-N (6)

where the diffusive flux N is given by
N=N,+N,, (N
with N; describing the interaction caused by varying collision frequency and N, describing the

interaction caused by spatially varying viscosity:

N, =-a’¢K.V (), ®)



N, =-a’¢*7K,V (In7). )

In the above equations a represents the radius of solid particles in the suspension, 7=./2D,D.

i~
is the shear rate, and K, K, are model constants. In the standard form proposed by Phillips et al.

[5] they take on the values K.=0.41, K,;=0.62.
2.3. Mold filling simulation

For mold filling applications, in addition to the momentum-mass and energy conservation
equations we have to solve for the free surface. In this work the position of the flow front is
determined using a pseudo-concentration method [14]. A smooth function F¢x,¢) such that the
critical value, F, represents the position of the interface. A value larger than F, indicates a filled
region. The pseudo-concentration function is transported using the convection velocity provided
by the solution of the momentum-continuity equations:

oF
—+u,-VF=0 10
5 Tu (10}

2.4. ALE formulation

In most injection molding applications the material is pushed into the mold cavity by means of
a plunger. As shown later in the piston driven flow application, to repr;asent the flow behavior
and segregation mechanism we need to model the plunger advancement and hence consider
changes in the computational domain. This is done by means of an Arbitrary Lagrangian-Eulerian
formulation (ALE) with the geometrical change given by simple relationships depending on the
plunger speed. The change of the computational domain in time is illustrated in Figure 1. The
portion of the computational domain located between the initial plunger position x=x; and a fixed

location x=x, changes in time to account for the actual plunger position. At any given time t, this



volume will be considered between the actual plunger location x=x;+v,¢ and the fixed location
x=xp. The mesh is therefore deformed in time as given by the change of variables x— x* :

X,— X
x*=x+-2

ut for xXe|x,x 11
xﬂ—x‘. P [ i 0] ( )

where u, is the plunger velocity, x is the coordinate of a mesh point in the initial un-deformed
mesh (at =0} and x* is the coordinate of the respective point in the deformed mesh. At the end of

the filling (¢=¢;) the plunger will be located at x=x; where x/=x;+upt;. As the mesh deforms, the

ALE formulation of the conservation equations has to take into account for the mesh velocity

given by:
u_ = x"_xup for  xe[x,x]
Xy — X, (12)
u,=0 for  xe[x,x]

The convection velocity is then computed using Eq. (4).

2.5. Boundary conditions

A combination of Dirichlet and Neuman boundary conditions is imposed for velocity,
pressure, temperature, front tracking function and solid fraction. For injection molding
applications, no-slip boundary conditions are imposed on the cavity walls filled by the polymer,
while on the unfilled part, a free boundary condition allows for the formation of the typical
fountain flow. The heat transfer between the cavity and the mold is given by

q,=h(T-T,) on I (13)
where &, 1s a surface heat transfer coefficient and 7, is the mold temperature. The solid fraction

is set to an initial value and then a zero solid fraction flux is imposed on the boundary. This will

ensure that there is no flux of solid particles across the boundary of the computational domain.



3. FINITE ELEMENT SOLUTION

Model equations are discretized in time using a first order implicit Euler scheme. Linear
continuous interpolation functions are used for all variables. At each time step, the global system
of equations is solved in a partly segregated manner: momentum-continuity (u,p), energy (7),
solid phase concentration, and then the front tracking equation. The incompressible Navier-
Stokes equations (1), (2) are solved using a Galerkin Least-Squares method [15], the energy
equation is solved by a combined SUPG/GGLS (Streamline Upwind Petrov-Galerkin / Galerkin
Gradient Least-Squares) method [15], and the front tracking equation is discretized by a SUPG
method. A SUPG method is also used for the solution of the solid phase concentration. The finite

element formulation for the solid fraction equation is as follows:

d¢
(!’(EI_J,UC .v¢)wdQ—J(Nc +N, ) VwdQ+

14)
d¢ ~
> | 5-+u. V¢ |ru, - VwdQ, =— [(N, +N,)-fiwdT.
X G\ Of an
The integrals in the first row together with the right hand side term represent the standard
Galerkin formulation with the diffusive flux integrated by parts. Integrals over the element

interiors represent the stabilization terms. The flux of particles across the boundary is zero and

therefore the boundary integral in the right hand-side of (14) vanishes.
4. VALIDATION

In this section the solution algorithm is validated on cases for which both experimental and
numerical data are available: circular Couette flow, piston driven flow and sudden contraction-

expansion flow [6,10].



4.1. Circular Couette Flow

This application was the object of an experimental study by Abbott et al. [16] and
reinvestigated both numerically and experimentally by Tetlow et al. [7). The experimental
apparatus has the inner rod (R;) of 0.64 cm and the inner radius of the outer tube (R,) of 2.38 cm.
The particle radius a is 675 um.

The flow is axi-symmetric and can be solved using the model equations written in cylindrical
coordinates. Because the variables depend only along the tube radius a simplified one-
dimensional problem can be obtained. The only variables to be solved are the circumferential
velocity vg and the solid fraction ¢, as the axial and radial velocity components are zero, whereas

the pressure is constant. The 1D problem for the circular Couette flow writes as:

%%[ﬂfga;[vj)]ﬂ (15)
9 _10[ e 2 ol 1 2 g 2
o ror [ra oK. Br(w)]+ r or [ra yrK, or (lnr])] (16)

The problem is solved using both the 3D solution algorithm and the 1D model equations. This
way the 3D algorithm is validated using the 1D solution as a reference. Then the predictive
capability of the model is quantified by comparing the numerical results with the experimental
data.

The initial particle concentration ¢ is taken constant. The numerical solution is first compared
with the experiment during the transient evolution in Figure 2. For this case the particles diameter
is 655um, the initial solid fraction is 0.5 and the inner rod rotates at 1 7rpm. As can be seen, the
1D and 3D solutions are almost identical and the model prediction agrees well with experimental

observation. The velocity at steady state for the same conditions is compared with the measured



one in Figure 3. The Newtonian velocity profile is also shown for comparison purposes. Here
again the numerical solutions agree well with the data indicating that the viscosity model is
appropriate.

The steady-state particle distribution for various initial solid fractions is shown in Figure 4.
Only the 3D solution is compared with the experiment here. For these cases the particles diameter
is 675um and the inner rod rotates at 17rpm. Observe however, that at steady-state both the
transient and convective terms vanish (the velocity is normal to the solid fraction gradient) and
the solution does not depend on the particle size but only on the initial value of the particle
concentration. The numerical results are in good agreement with the experimental data of Abbott
et al. [16] and are similar with those reported by Fang et al. [10]). In Figure 5 the 1D and 3D
solutions are compared for different mesh density and for an initial solid fraction of 0.5. As can
be seen, the two solution methods results in similar results and the effect of the mesh size is
negligtble. The only discrepancy is observed for the solution on the coarser mesh at the inner rod
surface and is explained by the fact that in the 1D case the derivative of the shear rate at the

boundary is more accurate than the one used in the 3D solution.

4.2. Piston driven flow

This test case consists of displacing a fixed volume of suspension down a pipe by means of a
piston. The material exhibits a similar behavior in injection molding where the suspension is
pushed by a piston and forms a free surface. The uniformity of the suspension downstream of the
piston will then affect the distribution of particles inside the molded part. An experimental study
of this problem was performed by Subia et al. [6]. The piston radius is 2.54 ¢m and the pipe was
filled with material on a length of 30 cm. The suspension contained 50% of spherical particles

having 3178 um in diameter. The piston moves from left to right at a speed of 0.0625 cm/s, while



the pipe was held stationary. A first computation was carried out on a fixed mesh by considering
that the pipe moved from right to left and the pistons were maintained fixed. The flow pattern
after the piston was displaced with 15 piston diameters is shown in Figure 6. Segregation of solid
particles for different positions of the piston is shown in Figure 7. The solid fraction decreases in
front of the piston that pushes the suspension and is higher in the second half of the domain along
the pipe axis. This is in agreement with experimental observation [6].

The mean solid fraction on sections normal to the pipe axis was computed and plotted along
the pipe axis in Figure 8. The results are compared with experimental data collected after the
piston was displaced with 5 piston diameters. The numerical solution recovers correctly the
segregation behavior, but slightly underestimates the change in the solid fraction. Simulation
indicates that segregation in front of a moving piston produces quite rapidly and that a somehow
steady distribution is attained after a 10D piston displacement.

This problem describes well the behavior of the material during injection molding. However,
simulation of the piston movement in material processing would not be possible in an Eulerian
frame of reference, since the model includes both the moving piston and stationary parts as the
mold cavity. Therefore the more general Arbitrary Lagrangian Eulerian (ALE) formulation
described in Section 2.4 needs to be considered. Results using the ALE formulation for the piston
driven flow with a free surface on the right hand-side are shown in Figures 9 and 10. The ALE
results are very close to those given by the Eulerian approach (Figures 7 and 8). Small differences
are observed on the right hand-side of the computational domain, where a non-planar free surface
is present in the ALE solution and a flat no-slip surface is present in the Eulerian case. This test
case indicates that the ALE approach performs well and can be used for injection molding

applications.



4.3. Sudden contraction-expansion flow

This test case was the subject of an experimental study by Altobelili et al. [17]. The suspension
is pushed by a piston from a reservoir pipe into a smaller diameter pipe and then into another
larger catch pipe. The reservoir pipe and the catch pipe have a diameter of 5.08 cm, while the
smaller pipe has an inner diameter of 1.27 cm. The smaller diameter pipe is 38 cm long. Initially
30 cm of the reservoir pipe, the entirc smaller diameter pipe and 4 ¢cm of the catch pipe were
filled. The plunger was displaced at a constant velocity of 0.0625 cm/s, resulting in a mean
velocity of | cm/s in the smaller pipe. The solid particles in the suspension were 50% by volume
with a mean particle diameter of 675 pm.

The numerical solution was obtained using the ALE formulation. The computational mesh and
solid fraction after the piston moves 2, 4 and respective 6 larger section diameters are shown in
Figure 11. The mean solid fraction along the pipe axis is shown in Figure 12. Several
observations can be drawn from these results. First we remark that the solid fraction decreases at
the surface of the moving piston, observation made also in the case of the piston driven flow.
Second we observe a sharp increase in the solid fraction just prior to the 4:1 contraction (x=0cm).
The solid fraction decreases then rapidly and reaches smaller values along the smaller diameter
pipe. Third, we remark that at the 1:4 expansion, x=38cm, the solid fraction decreases before the
section change and increases on a very small region after the expansion. In the catch pipe,
x>38cm, the solid fraction is initially smaller than the mean value of 0.5, but increases towards
the end of the pipe.

Figure 13 shows the solid fraction distribution in radial direction at various locations along the
smaller diameter pipe together with the expenmental data of Altobetli et al. [17]. Results are

plotted for x/£=0.1, 0.5 and 0.95, where L denotes the length of the smaller diameter pipe and x is



the coordinate along the pipe measured in the sense of the flow (from the contraction, x=0,
towards the expansion, x=L). The results indicate that the solid fraction is larger near the axis of
the pipe and decreases close to the pipe wall. We remark also that the segregation is more
pronounced at x/L=0.5 and 0.95 than at the entry of the smaller diameter pipe. These observations

agree well with the experimental findings of Altobelli et al. [17].

5. MOLD FILLING APPLICATION

In this application the ALE formulation is used to solve the injection molding of a rectangular
plate. The plate is 8 cm by 6 cm and has 4 mm in thickness. The filling piston has a radius of 1
cm and his displacement is 13.2 cm. Filling of the plate is made through a circular gate with a
radius of 2 mm. The suspension contains particles of 50 pm in radius and the initial solid fraction
is uniform at 50%. Complete filling of the plate takes 10 s. The filling pattern and the solid
fraction distribution i1s shown in Figure 14 after 1.8 s, 4 s, 7.2 s and respectively 10 s. The figure
shows a cut along the symmetry plane parallel to the longest side of the plate in order to see the
solid fraction distribution inside the part. The images show both the complete domain (where the
displacement of the piston dunng the filling is clearly seen) and details of the flow inside the
plate. Segregation of solid particles is apparent inside the pipe as previously observed for the
piston driven flow case. This causes the material to enter the gate with a non-uniform solid
fraction. Additional segregation is observed inside the gate where shear rates are highest. Finally,
the molded part has higher solid fraction in the mid-plane and on the outside boundaries of the

plate and lower solid fraction on the upper and lower surfaces.



6. CONCLUSION

In this paper a three-dimensional finite element algorithm is shown for the solution of the flow
of dense suspensions. The segregation of solid particles is described by a diffusive flux model.
Validations cases show a good agreement with experimental data and previously published
numerical solutions. The application to injection molding problems is done by using an ALE
formulation. For the piston driven flow the ALE formulation is shown to provide similar results
as an Eulerian approach on a fixed mesh, thus indicating that the procedure performs well.
Application to the mold filling of a rectangular plate shows the ability to use this method to the

solution of powder injection molding.
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FIGURE 1. Computational domain changes from plunger movement.




Symbols: Expenmém from: Abbott et al. ( 1991)
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FIGURE 2. Transient Couette flow: Comparison of numerical predictions with experimental

data of Abbott ct al. [16].
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FIGURE 3. Circular Couette flow: Comparison of predicted velocity profile with experimental

data of Abbott et al. [16].
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FIGURE 4. Comparison of model prediction with experimental particle concentration profiles

of Abbott et al. [16].
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FIGURE 5. Circular Couette flow: Effect of mesh size on the 1D and 3D solutions for ¢=0.5.



FIGURE 6. Velocity distribution for piston driven flow after 15 piston diameters (15D) for

Eulerian approach.
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(c) After 15D

0.40 0.45 0.50 0.55 0.60

FIGURE 7. Distribution of solid fraction for various piston displacements (Eulerian approach).
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FIGURE 8. Mean solid fraction along the tube axis using an Eulerian approach (experimental

data from Subia et al. [6]).
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FIGURE 9. Distribution of solid fraction for various piston displacements (ALE approach).
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FIGURE 10. Mean solid fraction along the tube axis using an ALE approach (experimental data

from Subia et al. [6]).
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FIGURE 11. Contraction-expansion flow: Distribution of solid fraction and computational mesh

for various piston displacements.
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FIGURE 12. Sudden contraction-expansion flow: Mean solid fraction along the pipe axis.
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FIGURE 13. Solid fraction in radial direction at various locations along the smaller diameter

pipe.
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FIGURE 14. Distribution of solid fraction for the injection of a plate.
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