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Teopema 2. Ecau y1(x) — pewenue ypasHenus
v+ f(2)y + Ke¥ + F(x) = 0,

mo ypasHenue
'+ f(x)y + Kue? + F(x) =0

umeem pewenue y = yi(x) — In p.
B pabore [3] gokazana
Teopema 3. Hugpdepenyuanvroe ypasrerue

Yoz + [(2,2)ye + P(y,2) + Fz,2) =0 (4)

donycraem pynny HENPEPLLEHLIT MO NAPAMEMPY NPEOOPA30SAHUT M0206 U MOALKO M020a, K020a
00HOBPEMEHHO BOINOAHAIOMCA COOMHOUEHUS

A% f + f Ay + fuB' + Ay + By + 2A0 — f, Ay — fPA'y — Bl + 3AMf + 3410 =0

(A'y + BYF, + AYF, + ®,) + ®,(A3%y + B®) + f(A3y + B3) + A3 y+
+B3 — A3(F+®)+2(Aly + BH)(F +®) = 0.

IIpu sTOM MOKHO Hajiti bynkimu £ €2 u 1), obecleunBaroIye CyeCTBOBAHIE TAKOTO IIPe0d-
pa30BaHUs [IEPEMEHHBIX, OTHOCUTEILHO KOTOPOTO OyIeT NHBAPUAHTHO JuddepeHITHalIbHOe YPaB-
nenue (4).
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This report is dedicated to the study the problem of stability of some classes of gradient-
like system of differential equations (both autonomous and non-autonomous cases). We present
two main results. The first is a generalization of Absil & Kurdyka theorem [1] about stability
of gradient systems with analytic potential for non-gradient systems. Secondly we generalize
for some classes of gradient-like non-autonomous systems the well-known Lagrange — Dirichet
theorem (see [2]).

Let R := (—o00,4+00), R4 :=[0,400) and R™ be the real n-dimensional Euclidean space.
Consider a system of differential equations

= f(x), (reUCcCR"), (1)
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where U is an open set containing the origin and f(0) = 0. Suppose that the function f €
€ C(U,R™) and satisfies the conditions that ensure the uniqueness of solutions in U.
Let V € C'(R",R) and we consider the gradient-system

i=—-VV(x), (2)

where VV(x) denotes the gradient of V' at z € R". We assume that V(0) =0 and VV(0) = 0.
Let & be the set of all continuous functions ¢ : Ry — Ry possessing the following properties:
1) ¢(0) = 0;
2) ¢(u) > 0 for all u > 0;
3) ¢ is continuously differentiable on (0, 400);
4) ¢'(u) >0 for all u >0, where ¢ is the derivative of ¢.
Remark 1. Not that the function ¢(u) := cu®/a (c,a > 0) belongs to €. In particular, if
a=1, then ¢(u)=cu belongs to €. The function ¢(u)=In(1+ u) also belongs to & and soon.
Theorem 1. Suppose that for (1) there exists a neighborhood U of x =0 and continuously
differentiable function V : U — R4 such that

1) V(0) =0
2) there exists a function ¢ € € such that
do(V(x
WE) <@l veev

(1)

Then the trivial solution of (1) is stable.

Remark 2. If there exist a neighborhood U of z = 0 and continuously differentiable
function V : U — R4, ¢>0 and p € (0,1) such that V(0) =0, V(z) >0 for all x € U and
dV(z)/dt|1y < —cl|[f(2)||V(z)?, then condition 2) of Theorem 1 holds. In fact. It easy to see
that if we take ¢(u) := ¢ 11— p)~'u!™P, then ¢ € € and do(V(x))/dt|) < —|[f(2)]| for all
xzeU.

Example 1. Consider a gradient system of differential equations (2). Suppose that the
potential V' of gradient system (2) has a local minimum at the origin. We take V' as a Lyapunov
function, then V(z) > 0 and V(0) = 0 and all the conditions of Theorem 1 are fulfilled. This
means in particular that if a function V(z) is analytic in a neighborhood of the origin and has
a local minimum at this point, then the trivial solution of the gradient system is stable. In the
work [1] it was proved that for real analytic system this statement is reversible.

An m-dimensional torus is denoted by T := R™/27Z™. Let (7, T,o) be an irrational
winding of T with the frequency v := (vi,v9,...,vp), i.e., o(t,0) := (vt + 01, v9t + 04, . ..
coyUmt + 0) for all ¢ € R and 0 := (01,60s,...,0,,) € T, where vy,v9,...,1, are some
irrationally independent real numbers.

A point x € X (respectively, a function ¢ € C(R;R"™)) is called quasi-periodic with the
frequency v := (v1,1v9,...,Uy) € T, if there exists a continuous function ® : 7" — X (re-
spectively, ® : T™ — R™) and a point 6y € T such that n(¢,z) := ®(o(t,0p)) (respectively,
o(t) = ®(o(t,bp))) for all t € R, where (T, T,o) is an irrational winding of the torus T.

Let € CYR™ x T™ R) and VF(0,0) =0 for all § € T. Below we will study the problem
of stability of trivial solution for system

2+ V., F0,2)=0 (xze€R"), 3)
0 = &(0) (0T,

where ® € C(T™ R™).
Everywhere below we will suppose that the functions F' and ® are regular, i.e., for every
(x0,xp, 0) ER"XR™xT™ system (3) admits a unique solution (¢(t, zo, z(, 0), ¢’ (t, xo, 2(, 0), 0 (t,0))
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defined on R;. This means that system (3) generates a semi-group dynamical system (X, Ry, 7)
on the space X :=R" xR" x T, where (T7™,R, o) is a dynamical system associated by equation

o = 5(0), @)
(p(t, o, xy,0), ¢ (t, 0, x(,0)) is a unique solution of equation
2" +VF(o(t,0),2) =0 (0 T™) (5)
passing through the point (x¢, () at the initial moment ¢ = 0,

W(t’ (:C(),"L‘é),g)) = (ga(t,xo,x6,0),go/(t,xo,xf),e))

for all (t,z0,2(,0) € Ry x R™ x R™ x T™.

Remark 3. 1. By arguments above autonomous system (3) and non-autonomous equation
(5) (in fact the family of non-autonomous equations depending on parameter § € T™) are
equivalent.

2. If equation (5) admits a trivial solution, then the set {(0,0)} x 7™ C R™ x R™ x J™ is an
invariant subset (invariant torus) of system (3).

Definition. Recall that the trivial solution of equation (5) (or equivalently, the invariant
torus of system (3)) is said to be uniformly (with respect to 6§ € J™) Lyapunov stable, if for
arbitrary ¢ > 0 there exists a positive number & = §(¢) such that |[xo||? + ||z{||> < 62 implies
| (t, zo, 2, O)||? + ||/ (t, xo, 2, 0)||* < €2 for all t € Ry and 6 € T™.

Denote by XK the set of all continuous functions a : Ry +— R4 possessing the following
properties: a(0) = 0; a is monotonically strictly increasing.

Theorem 2. Suppose that following conditions hold:

1) F(0,0)=0 and V F(0,0) =0 for all € T™,;

2) there exists a function a € X such that F(x,0) > a(||z]|) for all x € R™ and 6 € T™;

3) (VgF(z,0),2(0)) <0 forall (z,0) € R™ x J™.

Then the trivial solution of equation (5) is uniformly Lyapunov stable.
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In the finite interval [a,b] we consider the problem

dui
dt

= filt,ur,...,un) (i=1,...,n), (1)



