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The regularities of the motion for every test body in photogravitational field of a star,
which can significantly differ from the regularities of motion of a body in gravitational field,
have been obtained. The following effects of STR and GTR to the terms of order v2/c2

have been considered: the light pressure, the Poynting-Robertson effect, the longitudinal
and transverse Doppler effect, the increase in mass of the moving test body, the effects of the
space-time curvature which arise due to the gravitational fields of the star and gas-dust ball
surrounding the star. We have showed that the longitudinal Doppler effect and the aberration
of light (the effects of order v/c) lead to the spiral motion of the test body around the star.
Taking into account other effects of order v2/c2 accelerates approximately by factor two the
body fall on the spiral onto the star. The spiral can be seen as the decreasing in size ellipse
with decreasing eccentricity and periastron, which can shift against the motion in orbit due
to the influence of the gravitational field of gas-dust ball.
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Introduction

The relevance of the research is caused by the
need for more accurate forecast of the movement
of small bodies in the solar system (asteroids,
comets, meteorites, dust particles, space vehicles
and stations, possibly with a solar sail, etc.) due
to intensive development of near and deep space,
as well as to solve some cosmogonic problems of
planetary systems.

Relativistic motion of bodies without
considering light pressure has been studied for
many years by Belarusian and Kazakh science
schools on the problem of motion of bodies
(see e.g., [1]–[9] and the references therein).
These science schools used different methods

∗E-mail: olgazubko@tut.by

for investigation such e.g. as the method of
Einstein–Infeld [10, 11] and Fock method [12].

Light pressure in the theory of motion of
bodies presumes the use of photogravitational
field of laws of electrodynamics, which are based
on covariant Maxwell equations and special
relativity theory (SRT). One should consider the
following SRT effects: (i) relativistic change in
mass of the body moving relative to the observer,
(ii) relativistic change in the electromagnetic
radiation of the star (light pressure) acting on
the body in accordance with the longitudinal
and transverse Doppler effect, (iii) Lorentz
contraction of the midsection of the body, (iiii)
the aberration of light. From all the effects listed
in papers [13]–[15] and papers of other authors,
only the aberration of light and light pressure of
the star effects have been considered before. The
aberration of light leads to Poynting-Robertson
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effect and is of the first order v/c where v is
the velocity of the body, c = 3 · 1010 cm c−1 is
the speed of light in vacuum. Longitudinal and
Doppler effect is also of the first order relative to
v/c so it is logical to consider it as well. All other
effects listed above are of the order v2/c2. If the
motion of the body occurs in the neighborhood of
the star, which is surrounded by a gas-dust cloud,
it is reasonable to take into account space-time
curvature and the resulting forces in accordance
with general relativity theory (GRT). That leads
to additional terms of order v2/c2 appearing in
the equations of motion.

Light pressure attracts special attention due
to the possibility of using it in astronautics as a
low thrust engine (solar sails, control of spacecraft
using mirrors, etc. [16]–[18]).

The aim of this paper is the integration
of relativistic equations of motion of a test
body with accounting the effects of SRT and
GRT mentioned above. The aim will be achieved
by representation of functions in the equations
of motion and by representation of functions
describing the solutions of these equations of
motion as power series taking into account the
terms of the order v2/c2. Therefore, another
significant step will be made in the approximation
of the proposed theory of motion of bodies in the
two-body problem where one body is the star of
mass M , and the second one is the test body of
rest mass m0, to the motions actually existing
in the nature. Let us call this approximation
the post-Newtonian approximation (PNA) SRT–
GRT. Ignoring the effects of PNA GRT, we obtain
approximation, which is indeed PNA SRT.

1. Derivation of the equations of

motion in PNA SRT-GRT

Consideration of the factors listed above and
the assumption, that the star, distribution of
medium in the gas-dust cloud surrounding the
star, and the particle are spherically symmetric,
lead to the conclusion that the motion is planar.
Without loss of generality, we can assume that
the motion of a test body occurs in the Oxy plane

of rectangular Cartesian coordinate system Oxyz,
i.e. in the coordinate plane z = 0. According to
the investigations described in details in [19]–[26]
and using Poincare-Einstein-Infeld approximation
method, the equations of motion can be written
as (O is the center of masses of the star; ~r(x; y)
is radius vector of the center of masses of the
test body; |~r| = r; t is the time of distant fixed
observer; γ = 6, 67 · 10−8 g−1 cm3 s−2 is the
Newton’s constant of gravitation):

d2~r

dt2
+

γM

r3
~r = ~F0 + ~F1 + ~F2� + ~F2g + ~F2ρ. (1)

The meaning of the quantities in equations
(1) is the following. All ~F are specific forces
(accelerations) of different orders. Consideration
of these forces distinguishes system (1) from the
classical (Newtonian) equations of motion of a
test body. If there are zeroes on the right side
of the equations of motion, then we get:

d2~r

dt2
+

γM

r3
~r = 0. (2)

We introduce the polar coordinate system on the
Oxy plane using formulae x = r cosϕ, y = r sinϕ
then we find the solutions of the equations of
motion (2) using known methods (see e.g. [21]–
[24] and the references therein):

1/r = (1 + cosϕ) /p, (3)

which describes conic section with parameter p
and eccentricity e.

We will further analyze finite motions in the
gravitational field, i.e. 0 ≤ e < 1 . When deriving
orbit equations (3) we used the first two integrals
of the system (2): the integral of conservation of
energy

v2 = γM (2/r − 1/a) , p = a
(

1− e2
)

(4)

where a is a semi-major axis of elliptical orbit,
and v2 is defined as

v2 =

(

dx

dt

)2

+

(

dy

dt

)2

=

(

dr

dt

)2

+ r2
(

dϕ

dt

)2

.

(5)
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The formula gives the square of the translational
velocity of the test body on the orbit as well as
the integral of conservation of orbital momentum
of the test body (area integral).

L ≡ x
dy

dt
− y

dx

dt
=

∣

∣

∣

∣

~r × d~r

dt

∣

∣

∣

∣

= r2
dϕ

dt
=

√

γMp.

(6)
We can take into account the influence of

light pressure on the motion of the test body with
different degree of accuracy (DA). We mean by
this the consideration of terms on the right in the
equations of motion (1): 0) do not contain v/c,
1) contain (v/c)0 and v/c in the first degree of
accuracy (1DA), 2) contain v2/c2, v/c and (v/c)0

(2DA is the second DA).

2. Integration of the equations of

motion in the case 0DA

In this case the equation of motion takes the
form of (replace ~r(x; y) with ~r∗(x∗; y∗), because
the equation of motion and its solution when
taking into account light pressure ~F0 differs from
formulas (2)–(6):

d2~r∗

dt2
+

γM

(r∗)3
~r∗ = ~F0 =

γA

(r∗)3
~r∗ (7)

where A is the reduced mass of the star relative
to the test body and is defined as (see [13, 14])

A = kσ0W0r
2

0/ (γm0c) (8)

where k is the coefficient of light reflection by the
test body (1 ≤ k ≤ 2); σ0 is the midship section of
the body in the reference system K, relatively to
which the body is at rest; W0 is the star constant,
i.e. total amount of energy of the electromagnetic
radiation of the star in the rest system K. The
total amount of energy comes in one second on
one square centimeter of fixed in the system K
platform, which is perpendicular to the direction
of the star and is at a distance r0 from the star.
The quantity Π = kσ0/m0 is called windage of
the test body and for the vast majority of the
dust particles (micrometeorites) varies in range
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FIG. 1. Possible trajectories of the test body in the
photogravitational field (gravity field) of the star with
focus F and periastron Π:
1 – unperturbed ellipse in the Newtonian gravitational
field;
2 – perturbed ellipse from light pressure

104 ≤ Π ≤ 105 (see [14, 15, 19]). For example,
micrometeorite ice particle of density 0.9 g cm−3

and radius l = 10−4 cm has Π ≈ 104 cm2 g−1,
which in the solar system gives A ≈ 0.1M⊙

(M⊙ = 2 · 1033g is the mass of the Sun).
Integration of the equations of motion (7) is

the same as integration of the equations of motion
(2). As a result, we have in polar coordinates the
following integrals and orbit equation under the
same initial conditions for Eqs. (2) and (7) (see
[22]).

(v∗)2 = γ (M −A)

(

2

r∗
− 1

a∗

)

, r∗2
dϕ

dt
=

√

γMp

(9)

1/r∗ = (1 + e∗ cosϕ) /p∗, p∗ = a∗
[

1− (e∗)2
]

.

(10)
When integrating, we have identified the following
relationships (see [13, 14]):

p∗

p
=

M

M −A
=

1 + e∗

1 + e
, e∗ =

Me+A

M −A
> e,

(11)
taking into account (3), (4), (10) we find that
p∗ > p, e∗ > e, a∗ > a also r∗ ≥ r at identical
ϕ, i.e. ellipse (3) under the light pressure has
increased in size and turned into the ellipse (10)
(or potentially into parabola with e∗ = 1 or
hyperbola with e∗ > 1 regardless of value of light
pressure and “windage” of the test body)(see the
figure 1). We will further analyze the ellipses and
require the conditions 0 ≤ e < 1, 0 < e∗ < 1
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to be hold. As it follows from (11), the condition
0 < e∗ < 1 will be fulfilled if A < M(1 − e)/2,
which provides M − A > 0 (gravitational field).
We will call the ellipse (3) as unperturbed, and
the ellipse (10) as perturbed. If e = 0 than at
A < M/2 there is always 0 < e∗ < 1, i.e. an
unperturbed circumference turns into an ellipse
(cf. [13] where it is claimed that circumference

remains circumference).

3. Integration of the equations of

motion in the case 1DA

We have the equations of motion (see [21],
[22]):

d2x̃

dt2
+

γ (M −A)

r̃3
x̃ = F x

1 =
γAv∗

r∗3c
(−2x∗ cosα∗ + y∗ sinα∗) ,

d2ỹ

dt2
+

γ (M −A)

r̃3
ỹ = F y

1
=

γAv∗

r∗3c
(−2y∗ cosα∗ + x∗ sinα∗)

(12)

where apart from the light pressure (taking into

account ~F0(F
x
0
;F y

0
)) we take into account also

~F1(F
x
1
;F y

1
) which arises due to the influence

of the Doppler effect and the aberration of
light; α∗ is the angle between the vectors ~v∗ =
(dx∗/dt, dy∗/dt) and ~r = (x, y) (see the figure
1). Notice also that tilde sign “∼” appears in
the equation of motion (12) due to the terms
of order v/c, which generalize the equation of

motion (7) and therefore modify the solutions of
the equations of motion (12) in comparison with
the solution of the equation of motion (7).

We apply the same procedure as for finding
the first integrals of the equation of motion (7)
and after long calculations, which are described in
details in the paper [22], we compute the integral
of the energy

ṽ2 =
2γMp

r̃p∗
+

γMp

(p∗)2
(

(e∗)2 − 1
)

− 2γA

c (p∗)2

√

γMp

[(

1 +
3

2
(e∗)2

)

ϕ+ 2e∗ sinϕ− 1

4
(e∗)2 sin 2ϕ

]

(13)

and the integral of the orbital momentum of the
test body (area integral)

L ≡ r̃2
dϕ

dt
=

√

γMP − γA

c
ϕ. (14)

Computed integral of the energy and the area
integral (13) and (14) enable us to derive the
orbit equation of the test body. The procedure
of obtaining this equation is described in details
in the paper of the authors [22]. We will not
repeat these calculations here and immediately
give the orbit equation in polar coordinates (with

the accuracy to the terms of order v/c):

1

r̃
=

1 + e∗ cosϕ

p∗
+

2γAϕ

cp∗
√
γMp

(

1− e∗

4
cosϕ

)

.

(15)
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FIG. 2. Possible trajectories of the test body in the
photogravitational field (gravity field) of the star with
focus F and periastron Π:
1 – spiral trajectory taking into account longitudinal
Doppler effect and aberration (PNA SRT of order
v/c);δ is the angle of aberration, i.e. angle between

~̃v and the direction of the ray of light ( in the solar
system for the Earth orbit on the average 1 year
δ ≈ 20, 5′′);
2 – trajectory in PNA SRT–GRT of order v2/c2.

4. Discussion of the results of

integration of the equations of motion

in the case 1DA

From (15) it immediately follows that if ϕ
increases, then 1/r̃ also increases, i.e. r̃ decreases.
It means that the orbit of the test body is indeed
a spiral, which twists approaching the star (see
the figure 2). The translational velocity ṽ of the
motion of the test body is defined by the integral
of energy (13). Using (11) and (15) we will change
(13) by canceling insignificant terms which are
divisible by c. Then

ṽ2 =
γMp

(p∗)2
(

1 + 2e∗ cosϕ+ (e∗)2
)

+
γA

c(p∗)2

√

γMp
(

2− e∗ cosϕ− 3(e∗)2
)

ϕ. (16)

The last term of order v/c in (16) is positive for
0 < e∗ < 2/3, ṽ increases following the increase
of ϕ. The transformation of electromagnetic
radiation into increasing kinetic energy of the test
body occurs. For 2/3 < e∗ < 1, the term of order
v/c periodically changes the sign, which with the
growth of ϕ leads to the fluctuations of ϕ with
increasing amplitude.

According to the area integral (14), areal
velocity (1/2)r̃2(dϕ/dt) of the test body should

go to zero and become zero at ϕ = ϕ0 =
c
√
γMp/(γA) when ϕ increases. Then the

equality r̃2(dϕ/dt) = 0 should hold for r̃ = 0 or
dϕ/dt = 0.

When making calculations in the framework
of 1DA we have to take into account only
the terms of (v/c)0 and v/c. Using the
expressions (10, 14, and 15) we find that for
0 ≤ ϕ ≤ ϕ0

dϕ

dt
=

1

r̃2

(

√

γMp− γA

c
ϕ

)

=
1

(r∗)2

(

√

γMp− γA

c
ϕ

)

+
4γAϕ

cr∗p∗

(

1− e∗

4
cosϕ

)

> 0. (17)

From (15) and taking into account that for e∗ ≪ 1 we have p∗ ≈ r∗ (see (10)) it follows that

r̃ =

[

1

r∗
+

2γAϕ

cp∗
√
γMp

(

1− e∗

4
cosϕ

)]−1

≈ r∗
(

1− 2γAϕ

c
√
γMp

)

. (18)
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An increase of ϕ from 0 to ϕ0/2 decreases r̃
to zero. Consequently, actual spiral trajectory
ends at ϕ0/2 (see figure 2). Taking into account
the terms with e∗ leads to a small variation of
function r̃(ϕ) near the value ϕ0/2. According to
(16) for e∗ ≪ 1 we can believe that

ṽ =

√

γM

p

(

1 +
2γAϕ

c
√
γMp

)

. (19)

At the moment of the test body falling on the
star, that is when ϕ = ϕ0/2, the velocity of the
body is ṽ ≈ 2v0 where v0 =

√

γM/p is the initial
velocity of the test body. If, for example, the test
body has started its motion on the Earth orbit
with initial velocity v0 = 30 km s−1, then at the
moment it reaches the Sun on spiral its velocity
is ṽ ≈ 60 km s−1. Consideration of the terms with
e∗ does not change this estimate significantly.

The number of test body revolutions on
spiral n1 around the star until it falls on the star
we find using the formula:

n1 =
ϕ

2π
=

ϕ0

4π
= c

√

γMp/(4γAπ). (20)

In the above example the spiral around the Sun,
on which the micrometeorite moves with the most
prevalent characteristic A ≈ 0.1M⊙, will make
n1 ≈ 8000 revolutions (we have used the formula
(20) where p = 1.5 · 1013 cm).

5. Integration of the equations of

motion in the case 2DA

In the equation of motion we add to the
right side the terms ~F2� = (F x

2�
;F y

2�
), ~F2g =

(F x
2g; F

y
2g),

~F2ρ = (F x
2ρ; F

y
2ρ), which have the form

of (see proof in [5, 20, 21]:

F x
2� =

γv∗2A

2r∗3c2
[(

3− 5 sin2 α∗
)

x∗ − 3y∗ sinα∗ cosα∗
]

,

F y
2�

=
γv∗2A

2r∗3c2
[(

3− 5 sin2 α∗
)

y∗ − 3x∗ sinα∗ cosα∗
]

(21)

and arise due to the transverse Doppler effect, the
Lorentz contraction of the midship section of the
particle and increase in its mass (see [21]);

F x
2g =

γ(M −A)

c2

([

4
γ(M −A)

r∗
− (v∗)2

]

x∗

(r∗)3
+

4

(r∗)2
dr∗

dt

dx∗

dt

)

,

F y
2g =

γ(M −A)

c2

([

4
γ(M −A)

r∗
− (v∗)2

]

y∗

(r∗)3
+

4

(r∗)2
dr∗

dt

dy∗

dt

)

(22)

and due to the space-time curvature caused by the reduced mass of the star (see [19]);

F x
2ρ = −3

4
πργx∗ +

4πργ

3c2

[

4
dx∗

dt

(

x∗
dx∗

dt
+ y∗

dy∗

dt

)

− x∗(v∗)2 + γ(M −A)x∗
(

− 11

2r∗
+

3

R
+

3R2

(r∗)3

)]

,

F y
2ρ = −3

4
πργy∗ +

4πργ

3c2

[

4
dy∗

dt

(

x∗
dx∗

dt
+ y∗

dy∗

dt

)

− y∗(v∗)2 + γ(M −A)y∗
(

− 11

2r∗
+

3

R
+

3R2

(r∗)3

)]

.

(23)

Additional F x
2ρ, F

y
2ρ describe the acting on the

particle of the forces when accounting the reduced
mass A of the gravitational field of gas-dust ball
with radius R. The center of the ball is in the
center of the star and the density of the ball is

ρ = const (see [5]).
Due to the approximation method of

integration of the equation of motion (1) we
should take into consideration that on the left
side of the equation instead of ~r(x; y) we have
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˜̃
~r(˜̃x; ˜̃y), on the right side in ~F0 instead of

~r∗(x∗; y∗) (see Eq. (7)) we write
˜̃
~r(˜̃x; ˜̃y), and

in F x
1
, F y

1
(see the equations of motion (12))

instead of x∗, y∗, r∗, v∗, α∗, we have x̃, ỹ, r̃, ṽ, α̃
which are already computed in the previous
approximations.

Taking all this into account and applying
to the equation of motion (1) the method of

integration of the equations of motion (12) after
long calculations, which are described in details
in the paper [27] we compute the integral of the
energy with the accuracy to the terms of order
v2/c2 :

(˜̃v)2 ≈ ṽ +
γA2ϕ2

c2(p∗)2

(

3− 1

4
e∗ cosϕ+ 3(e∗)2

)

−
[

2γA2ϕ2e∗

c2(p∗)2
(1 + e∗ cosϕ) +

2πρ(p∗)2e∗

M −A

]

ϕ sinϕ (24)

and compute the area integral

(˜̃r)2
dϕ

dt
=

√

γMp− γA

c
ϕ−

(

4γ(M −A)

c2r̃
− 8πγρ

3c2
r̃2
)

√

γMp. (25)

Then we find the orbit and write its equation in polar coordinates leaving only the terms of order v2/c2:

1
˜̃r
=

1
˜̃p

(

1 + ˜̃e cosΦ
)

, ˜̃p = p∗
(

1− 2γAϕ

c
√
γMp

+
γA2ϕ2

c2Mp

)

, (26)

˜̃e = e∗
(

1− 5γAϕ

2c
√
γMp

− 15γA2ϕ2

8c2Mp
+

3πγρp2e

c2e∗
ϕ2

)

, (27)

Φ =

[

1 +
2πρp3

M −A
− 3γ(M −A)

c2p
+

21πρp2

c2
− 6πρp3

c2R

]

ϕ. (28)

6. Conclusion

Analysis of the integrals (24), (25) and
their solutions (26)–(28) shows that the spiral
can be seen as deforming and decreasing in size
ellipse, for which the limit equalities lim

ϕ→ϕ0/3

˜̃p ≈

5p∗/9, lim
ϕ→ϕ0/3

˜̃e ≈ 0.15e∗ are held. When taking

into account the terms of order v2/c2 the test

body falls on the star faster than when taking
into account the terms of order v/c. When taking
into account the terms of order v/c the process
is finished approximately for ϕ0/2. If additionally
taking into account the terms of order v2/c2 then
the test body at ϕ0/3 approaches the minimal
ellipse with parameter ˜̃p ≈ 5p∗/9 and eccentricity
˜̃e ≈ 0.15e∗. Therefore the body will make n2 ≈
5330 revolutions.
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