ON SOME ARITHMETIC PROPERTIES OF FINITE GROUPS

A.N. Skiba

Francisk Skorina Gomel State University
104 Sovetskaya str., 246019, Gomel, Belarus
alexander.skiba49@gmail.com

We fix some partition \(\sigma = \{ \sigma_i | i \in I \} \) of the set of all primes \(\mathbb{P} \) (that is, \(\mathbb{P} = \bigcup_{i \in I} \sigma_i \) and \(\sigma_i \cap \sigma_j = \emptyset \) for all \(i \neq j \)). A group \(G \) is called \(\sigma \)-primary if \(G \) is a \(\sigma_i \)-group for some \(i = i(G) \).

We say that a finite group \(G \) is: \(\sigma \)-soluble if every chief factor of \(G \) is \(\sigma \)-primary; \(\sigma \)-nilpotent if \((H/K) \times (G/C_G(H/K)) \) is \(\sigma \)-primary for every chief factor \(H/K \) of \(G \).

Based on these concepts, we develop and unify [1–5] some aspects of the theories of soluble and quasinilpotent groups, of the subgroup lattices theory and of the theory of subnormal subgroups.

References