
GRAPHS WITH EQUAL DISTANCE PARAMETERS

Yury Kartynnik1, Andrew Ryzhikov2

1Belarusian State University, Faculty of Applied Mathematics and Informatics
4 Nezavisimosti Ave, 220030, Minsk, Belarus

kartynnik@bsu.by
2 United Institute of Informatics Problems, National Academy of Sciences, Belarus

6 Surganov str., 220072, Minsk, Belarus
ryzhikov.andrew@gmail.com

1. Introduction. The concepts of distance packing and covering in graphs was introduced by
Meir and Moon in [1]. We consider finite, simple, undirected graphs without loops and multiple
edges. A set P of vertices in a graph is called a k-packing (or a k-independent set) if the distance
between any two distinct vertices in this set is larger than k. The maximum size of the k-packings
in a graph G is called the k-packing number of G and is denoted by ρk(G). A set D of vertices in a
graph G is called a k-covering (or a k-domination set) if for any vertex v in V (G) there is a vertex
in D at a distance no more than k from v. The minimum size of the k-domination sets in a graph
G is called the k-domination number of G and is denoted by γk(G). A set I of vertices in a graph
is called a k-independent domination set if it is both a k-packing and a k-covering. The minimum
size of the k-independent domination sets in a graph G is called the k-independent domination
number of G and is denoted by ik(G). For every graph G, the inequality γk(G) ≤ ik(G) ≤ ρk(G)
holds.

The relation between the distance packing, domination and independent domination numbers
has been widely studied in the literature. In [1] it is shown that the equality γk(T ) = ρ2k(T ) holds
for any tree T . In [2] this equality is proved for a larger class of sun-free chordal graphs, which
includes line graphs of trees, interval graphs and powers of block graphs. In [3] the graphs with
equal k-packing and 2k-packing numbers are characterized. This characterization implies a simple
polynomial recognition algorithm for such graphs.

2. Recognition of k-equipackable graphs. A graph G is called k-equipackable if ik(G) =
ρk(G). For k = 1 such graphs have been widely studied under the name well-covered, see the
survey by Plummer [4]. In [5] it is shown that deciding whether a graph is not k-equipackable
is an NP-complete problem. Lesk and Plummer [6] obtained that the recognition of line 1-
equipackable graphs is a polynomially solvable problem. In [7] it is proved that recognizing
non-2-equipackable line graphs is an NP-complete problem. Our following result establishes the
computational complexity for the problem of recognizing k-equipackable line graphs for k ≥ 2.

Theorem 1. Deciding whether a given line graph is not k-equipackable is an NP-complete
problem for any fixed k ≥ 2.

Corollary 1. Let G be a line graph. Deciding whether Gk is not well-covered is an NP-complete
problem for any fixed k ≥ 2.

3. Subclasses of k-equipackable graphs. Let k be a positive integer and Rk be the class of
graphs with ρk(G) = ρ2k(G) for every G ∈ Rk. In [3] a simple characterization of the class Rk is
obtained. In [2] it is proved that for every sun-free chordal graph G the equality γk(G) = ρ2k(G)
holds. Using this results, we obtain the following characterization.

Theorem 2. The following statements are equivalent for a sun-free chordal graph G:
1) γk(G) = ρk(G);
2) G ∈ Rk.

Corollary 2. The problem of recognizing sun-free chordal graphs G having γk(G) = ρk(G) is
polynomially solvable.

Using the characterization of the graphs with equal k-packing and 2k-packing numbers from
[3], we obtain the following.

Theorem 3. Every graph in Rk is k-equipackable.
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Thus, all the sun-free chordal graphs with γk(G) = ρk(G) are k-equipackable. It is an open
question whether there are any other k-equipackable sun-free chordal graphs.

We thank Yury L. Orlovich for stating the question of recognizing the complexity of k-
equipackable line graphs and multiple useful comments and suggestions during the course of this
work.
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