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Throughout this paper, all groups are finite.
One of the most striking results in the theory of subnormal subgroups is the celebrated “join”

theorem, proved by H. Wielandt in 1939: the subgroup generated by two subnormal subgroups of
a finite group is itself subnormal. As a result, the set sn(G) of all subnormal subgroups of a group
G is a sublattice of the subgroup lattice.

The Wielandt’s theorem was developed in the formation theory using concepts of F-subnormality
and K-F-subnormality.

The first concept was proposed by R. Carter and T. Hawkes. Let F be a non-empty formation.
A subgroup H of a group G is said to be F-subnormal in G if either H = G or there exists a
maximal chain of subgroups

H = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G

such that HF
i ⊆ Hi−1 for all i = 1, . . . , n. The set of all F-subnormal subgroups of a group G is

denoted by snF(G).
It is rather clear that the N-subnormal subgroups of a group G for the formation N of all

nilpotent groups are subnormal, and they coincide in the soluble universe. However the equality
snN(G) = sn(G), does not hold in general.

To avoid the above situation, O.H. Kegel introduced a little bit different notion of F-subnormality.
It unites the notions of subnormal and F-subnormal subgroup.

A subgroup H of a group G is called F-subnormal in sense of Kegel (or simply K-F-subnormal)
in G if there exists a chain of subgroups

H = H0 ⊆ H1 ⊆ · · · ⊆ Hn = G

such that Hi−1 is either normal in Hi or HF
i ⊆ Hi−1 for all i = 1, . . . , n. We shall write H ∈

snK−F(G) and denote snK−F(G) the set of all K-F-subnormal subgroups of a group G.
Obviously, snK−N(G) = sn(G) for every group G.
Let F be a formation. One might wonder whether the set of F-subnormal subgroups of a group

forms a sublattice of the subgroup lattice. As simple exemples show, the answer is in general
negative.

Therefore the following question naturally arises:
Which are the formations F for which the set snF(G) is a sublattice of the subgroup lattice of

G for every group G?
This question was first proposed by L.A. Shemetkov in his monograph [1, Problem 12] in 1978

and it appeared in the Kourovka Notebook [2, Problem 9.75] in 1984.
In 1992, A. Ballester-Bolinches, K. Doerk, and M.D. Perez-Ramos [3] gave the answer to that

question in the soluble universe for subgroup-closed saturated formations. In 1993, A.F. Vasil’ev,
S.F. Kamornikov, and V.N. Semenchuk [4] published the solution of the Shemetkov’s problem
in the general finite universe for subgroup-closed saturated formations. The following important
result was obtained in 2002. A.F. Vasil’ev and the first author in [5] characterized the subgroup-
closed lattice formations which are soluble.

In 1978, O.H. Kegel [6] showed that if F is a subgroup-closed formation such that FF = F,
then the set of all K-F-subnormal subgroups of a group G is a sublattice of the subgroup lattice



of G for every group G. He also asks in [6] for other formations enjoying the lattice property for
K-F-subnormal subgroups:

Which are the formations F for which the set snK−F(G) is a sublattice of the subgroup lattice
of G for every group G?

In 1993, A.F. Vasil’ev, the first author, and V.N. Semenchuk [4] gave the answer to that
question in the general finite universe for subgroup-closed saturated formations.

This paper can be considered as a further great step of the programme aiming to the classification
of all lattice and K-lattice formations. We say that F is a lattice (respectively, K-lattice) formation
if the set of all F-subnormal (respectively, K-F-subnormal) subgroups is a sublattice of the lattice
of all subgroups in every group.

Here we solve the Shemetkov’s problem and the Kegel’s question for all subgroup-closed
formations.

Theorem. Let F be a subgroup-closed formation. The following statements are pairwise equivalent:
1. The set of all K-F-subnormal subgroups is a sublattice of the subgroup lattice of every group.
2. The set of all F-subnormal subgroups is a sublattice of the subgroup lattice of every group.
3. F = M × K × L for some subgroup-closed formations M, K and L satisfying the following

conditions:
(a) π(M) ∩ π(K) = ∅, π(K) ∩ π(L) = ∅ and π(M) ∩ π(L) = ∅.
(b) M = Sπ(M)M is a saturated formation, and it is an M2-normal Fitting class.
(c) Every non-cyclic M-critical group G with Φ(G) = 1 is a primitive group of type 2 such

that G/Soc(G) is a cyclic group of prime power order.
(d) There exists a partition {πj |j ∈ J} of π(K) such that K = ×j∈JSπj and |πj | > 1 for all

j ∈ J .
(e) L ⊆ Nπ(L).
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