ON THE ISOMORPHISM PROBLEM FOR GENERALIZED BAUMSLAG-SOLITAR GROUPS

F.A. Dudkin
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences 4 Acad. Koptyug avenue, 630090, Novosibirsk, Russia
Novosibirsk State University, Ministry of Education and Science of the Russian Federation 2 Pirogova Str., 630090, Novosibirsk, Russia
DudkinF@ngs.ru

Call a finitely generated group G a generalized Baumslag-Solitar group or a $G B S$ group if G can act on a tree so that the stabilizers of vertices and edges are infinite cyclic groups. By the Bass-Serre theorem, G is representable as $\pi_{1}(\mathbb{A})$, the fundamental group of a graph of groups \mathbb{A} (see [1]).

Given a $G B S$ group G, we can present the corresponding graph of groups \mathbb{A} by a labeled graph (A, λ), where A is a finite connected graph and $\lambda: E(A) \rightarrow \mathbb{Z} \backslash\{0\}$ labels the edges of A. The label λ_{e} of an edge e with the source vertex v defines an embedding $\alpha_{e}: e \rightarrow v^{\lambda_{e}}$ of the cyclic edge group $\langle e\rangle$ into the cyclic vertex group $\langle v\rangle$. Using the notion of expansion for labeled graphs, we can easily see that every $G B S$ group can be presented by infinitely many labeled graphs.

Recently $G B S$ groups have been quite actively studied [2-4]. In particular, the isomorphism problem for $G B S$ groups has been discussed: to determine algorithmically when two given labeled graphs define isomorphic $G B S$ groups. Despite that, the isomorphism problem is solved only in several special cases [5-7], the general solution is not established.

If two labeled graphs \mathbb{A} and \mathbb{B} define isomorphic $G B S$ groups $\pi_{1}(\mathbb{A}) \cong \pi_{1}(\mathbb{B})$ and $\pi_{1}(\mathbb{A})$ is not isomorphic to $\mathbb{Z}, \mathbb{Z}^{2}$ or Klein bottle group then there exists a finite sequence of expansion and collapse (see fig.1) moves connecting \mathbb{A} and \mathbb{B} [8]. A labeled graph is called reduced if it admits no collapse move (equivalently, the labeled graph contains no edges with distinct endpoints and labels ± 1).

Fig. 1: Expansion and collapse moves.
Given a labeled graph $\mathbb{A}($ a $G B S$ group $G)$, denote the set of reduced labeled graphs with the fundamental group isomorphic to $\pi_{1}(\mathbb{A})($ resp. $G)$ by $R(\mathbb{A})$ (resp. $R(G)$).

Three types of transformations of labeled graphs plays an important role in studing GBS groups: slide (see fig. 2), induction, $\mathscr{A}^{ \pm}$-moves.

Fig. 2: Slide.

Theorem (Clay M., Forester M. [2]). Given $G B S$ group G and $\mathbb{A}, \mathbb{B} \in R(G)$, then \mathbb{A} and \mathbb{B} related by a finite sequence of slides, inductions and $\mathscr{A}^{ \pm 1}$-moves, with all intermediate labeled graphs reduced.

An edge e of a labeled graph \mathbb{A} is called mobile (see $[6])$, if there exists $t \in \pi_{1}(\mathbb{A})$ such that $G_{e}^{t} \subset G_{e}$. There G_{e} is an edge cyclic group, corresponding to the edge e. In [6] it is proved that there is an algorithm to decide if given edge e mobile or not.

The main result of this paper is another piece of the isomorphism problem for GBS groups:
Theorem. Given labeled graphs \mathbb{A} and \mathbb{B}. Suppose that \mathbb{A} has no more than one mobile edge. Then there is an algorithm to decide if groups $\pi_{1}(\mathbb{A})$ and $\pi_{1}(\mathbb{B})$ are isomorphic.

References

1. Serre J. P. Trees. Berlin-Heidelberg-New York: Springer, 1980.
2. Clay M., Forester M. Whitehead moves for G-trees // Bull. London Math. Soc. 2009. Vol 41. No. 2. P. 205-212.
3. Forester M. On uniquenes of JSJ decomposition of finitely generated groups // Comm. Math. Helv. 2003. Vol. 78. P. 740-751.
4. Clay M. Deformation spaces of G-trees and automorphisms of Baumslag-Solitar groups // Groups Geom. Dyn. 2009. No. 3. P. 39-69.
5. Forester M. Splittings of generalized Baumslag-Solitar groups // Geometriae Dedicata. 2006. Vol. 121. No. 1. P. 43-59.
6. Clay M., Forester M. On the isomorphism problem for generalized Baumslag-Solitar groups // Algebraic \& Geometric Topology. 2008. No. 8. P. 2289-2322.
7. Levitt G. On the automorphism group of generalized Baumslag-Solitar groups // Geometry \& Topology. 2007. Vol. 11. P. 473-515.
8. Forester M. Deformation and rigidity of simplicial group actions on trees // Geometry \& Topology. 2002. No. 6. P. 219-267.
