ON CIRCULAR DISARRANGED STRINGS OF SEQUENCES

F. Beggas ${ }^{1}$, M. M. Ferrari ${ }^{2}$, H. Kheddouci ${ }^{1}$, N. Zagaglia Salvi ${ }^{2}$
${ }^{1}$ University of Lyon, LIRIS UMR5205 CNRS, Claude Bernard Lyon 1 University
43 Bd du 11 Novembre 1918, F-69622, Villeurbanne, France
\{fairouz.beggas, hamamche.kheddouci\}@liris.cnrs.fr
${ }^{2}$ Dipartimento di Matematica, Politecnico di Milano
P.zza Leonardo da Vinci 32, 20133 Milano, Italy
\{margheritamaria.ferrari, norma.zagaglia\}@polimi.it

Two sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, sharing $n-1$ elements, are said disarranged if for every subset $Q \subseteq[n]$, the sets $\left\{a_{i} \mid i \in Q\right\}$ and $\left\{b_{i} \mid i \in Q\right\}$ are different. In this paper we investigate properties of these pairs of sequences. Moreover we extend the definition of disarranged pairs to a circular string of n-sequences and prove that, for every positive integer m, except some initials values for n even, there exists a similar structure of length m.

Introduction

Let n be a positive integer, $R=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $S=\left(b_{1}, b_{2}, \ldots, b_{n}\right) n$-sequences of distinct elements, sharing exactly $n-1$ elements.

We associate with R and S the bijection f defined by the relation $f\left(a_{i}\right)=b_{i}, 1 \leq i \leq n$, and represented in two line notation by the $2 \times n$ array

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right) .
$$

Let u and v be the different elements which belong to the first and the second line respectively. The function f is formed by the linear ordering $l(f)=\left(u, f(u), f^{2}(u), \ldots, f^{k-1}(u), v\right)$, where k is the minimum positive integer such that $f^{k}(u)=v$, and a permutation $\pi(f)$ on the remaining elements. In [2] a similar function, called widened permutation, is investigated in the context of the theory of species of Joyal. We say that R and S are disarranged if for every set $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \subseteq\{1,2, \ldots, n\}\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}\right\} \neq\left\{b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{r}}\right\}$.
The sequences R and S are called 1-disarranged if there exists an index $i \in[n]$ such that $a_{i}=b_{i}$ and the sequences, obtained from R and S after deleting a_{i} and b_{i}, are disarranged. In this case we say that the pair (R, S) is 1-disarranged.

We extend the definition to a string of n-sequences.
Definition 1. Let $n, m \in \mathbb{N}$; an m-string $\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ of n-sequences, is called disarranged if:
(A1) S_{i} is disjoint from S_{i-1} and S_{i+1},
(A2) S_{i-1} and S_{i+1} are disarranged.
for every $i=2, \ldots, m-1$.
A disarranged m-string of n-sequences is circular when the properties (A1) and (A2) are satisfied for every $i=1,2, \ldots, m$ (taking the indices modulo m).

Main results

The notion of circular disarranged string of n-sequences has application in relation to an edge coloring problem of graphs [4]. In this paper we investigate properties of disarranged pairs of sequences and circular disarranged string of n sequences. In particular we prove that the n sequences R and S, sharing exactly $n-1$ elements are disarranged if and only if the linear ordering
$l(R, S)$ contains all the elements of R and S. Moreover we prove that, for every positive integer m, there exists a circular disarranged string of n sequences of length m, except some initials values for n even.

The following theorem is a consequence of some Lemmas and Propositions.
Theorem 1. Let m, n be positive integers. For n odd and every $m>2$ or for n even and $m>6$ even $(m \neq 14)$ or for $m \geq 2 n+1$ odd $(m \neq 2 n+7)$, there exists a circular disarranged m-string. For the remaining cases, there exists a circular 1-disarranged m-string.

References

1. Baril J.-L., Kheddouci H., Togni O. Vertex distinguishing edge- and total-colorings of Cartesian and other product graphs // Ars Combinatoria. 2012. Vol. 107. P. 109-127.
2. Beggas F., Ferrari M. M., Zagaglia Salvi N. Combinatorial interpretations and enumeration of particular bijections // submitted.
3. M. Bona. Combinatorics of Permutations. Chapman and Hall/CRC Press, Boca Raton, FL, 2004.
4. Horňák M., Mazza D., Zagaglia Salvi N. Edge colorings of the direct product of two graphs // Graphs and Combinatorics. 2015. Vol. 1. No. 18.
5. Imrich W., Klavžar S. Product Graphs: Structure and Recognition. Wiley-Interscience, New York, 2000.
6. Munarini E., Perelli Cippo C., Zagaglia Salvi N. On the adjacent vertex distinguishing edge colorings of direct product of graphs // Recent results in designs and graphs: a Tribute to Lucia Gionfriddo. 2013. Vol. 28. Quaderni di Matematica, Aracne Ed. P. 369-392.
