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Two sequences (a1, as,...,a,) and (by,bs,...,by,), sharing n — 1 elements, are said disarranged if for
every subset @ C [n], the sets {a; | i € Q} and {b; | i € Q} are different. In this paper we investigate
properties of these pairs of sequences. Moreover we extend the definition of disarranged pairs to a circular
string of n-sequences and prove that, for every positive integer m, except some initials values for n even,
there exists a similar structure of length m.

Introduction

Let n be a positive integer, R = (a1, a9, ...,a,) and S = (b1, ba, ..., b,) n-sequences of distinct
elements, sharing exactly n — 1 elements.

We associate with R and S the bijection f defined by the relation f(a;) = b;, 1 <1i < n, and
represented in two line notation by the 2 x n array

ap ag ... Qp
<61 ba ... bn> '

Let v and v be the different elements which belong to the first and the second line respectively.
The function f is formed by the linear ordering I(f) = (u, f(u), f2(u),..., fF=(u),v), where k
is the minimum positive integer such that f*(u) = v, and a permutation 7(f) on the remaining
elements. In [2] a similar function, called widened permutation, is investigated in the context of
the theory of species of Joyal. We say that R and S are disarranged if for every set
{il,ig,...,l‘r} - {1,2,... ,n} {ail,aiQ,...,aiT} 7é {bilab’i27~- 'abir}-
The sequences R and S are called 1-disarranged if there exists an index i € [n] such that a; = b;
and the sequences, obtained from R and S after deleting a; and b;, are disarranged. In this case
we say that the pair (R, S) is 1-disarranged.

We extend the definition to a string of n-sequences.

Definition 1. Let n,m € N; an m-string (S51,952,...,5,) of n-sequences, is called
disarranged if:

(A1) S; is disjoint from S;—1 and Sit1,
(A2) S;_1 and S;;; are disarranged.

forevery i =2,...,m—1.
A disarranged m-string of n-sequences is circular when the properties (A1) and (A2) are
satisfied for every i =1,2,...,m (taking the indices modulo m).

Main results

The notion of circular disarranged string of n-sequences has application in relation to an
edge coloring problem of graphs [4]. In this paper we investigate properties of disarranged pairs
of sequences and circular disarranged string of n sequences. In particular we prove that the n-
sequences R and S, sharing exactly n—1 elements are disarranged if and only if the linear ordering
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[(R, S) contains all the elements of R and S. Moreover we prove that, for every positive integer m,
there exists a circular disarranged string of n sequences of length m, except some initials values
for n even.

The following theorem is a consequence of some Lemmas and Propositions.

Theorem 1. Let m,n be positive integers. For n odd and every m > 2 or for n even and
m > 6 even (m # 14) or for m > 2n + 1 odd (m # 2n + 7), there exists a circular disarranged
m-string. For the remaining cases, there exists a circular 1-disarranged m-string.
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