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Based on variables doubling procedure the extremals flow immersion into the trajectories
bunch has been considered. The conditions for existence of extremals have been obtained.
The Lyapunov function for a doubled linearized system has been constructed.
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1. Introduction

Let f = (f1, . . . , fm) ⊂ U(x0) : Em → Em

be a C1-vector field, i. e. f ∈ C1(U(x0)) and
moreover f ∈ Liploc(U(x0) is a function being
an endomorphism of the neighbourhood U(x0) on
Em.

A system of differential equations ẋ = f(x)
is canonic iff div f(x) = 0 (Liouville’s condition)
[1]. It is evident that in general this condition is
not fulfilled. In what follows we will consider a
system with additive perturbation y of the vector
field f(x) of the form ẋ = f(x+ y) where x+ y ∈
U(x0) ⊂ Em.

2. General consideration

The doubled system for the system ẋ = f(x),
x, y ∈ Em has been introduced in [1] as

ẋ = f(x+ y), ẏ = f(x)− f(x+ y). (1)

It is clear that there exists a map Ψ: U(x0) → R,
such that f(x) = ∇Ψ. Then the system (1) is a
canonic one, and the function

E(x, y) = Ψ(x+ y)−Ψ(x), E(x, 0) = 0

plays the part of the Hamiltonian.
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As far as it is known, for the first
time the doubling variables procedure as a
Hamiltonian system constructing method has
been proposed by Yu.G. Pavlenko [1] exactly
in terms of perturbation. This technique was
successfully applied to solve problems of the
variation calculus, for inversion of series, maps
and others (see also [2]).

For system (1) it is clear that:

(i) if x(0)−x0 = y(0)−y0 is an initial conditions
for (1) and y0 = 0 then y = 0 ∀ t ∈ T ⊂ R;

(ii) if f ∈ Liploc(U(x0)) and one is monotone
non-decreasing function then ∀ y0 ∈ U(x0),
such that y(t, y0)−→

t∈T
0;

(iii) if ||y|| ≪ ||x|| then second equation of the
system (1) coincides with the equation in
variations.

System (1) in the last case becomes

ẋi = fi(x), ẏi = −(y,
∂f(x)

∂xi
), i = 1,m (2)

and one has a non-degenerated Hamiltonian

E(x, y) = (y, f(x)).

The function being dual to E(x, y) (in terms
of Jung-Legendre) is the distribution density of
the field on T

Λ(x, ẋ) = sup
y
((y, ẋ)− E(x, y)).
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Then, in real motion

δS(x)
def
=

∫
T

δΛdt = 0

is faithful, where δ is isochronic variation and
S(x) is the action (the field function limited
value).

The value δK
def
= (y, δx) − Eδt along the

extremals is invariant in respect to the action
(Cartan invariant) and δK = 0 on the ends of the
extremals (transversability condition). Let y → 0.
Then the equality(

∂E

∂y

)
y=0

=

(
dx

dt

)
y=0

is faithful along the flow of the system ẋ = f(x).
Thus, it is proved the following

Proposition 1 If the Hamiltonian E(x, y) is
non-degenerate then the system (1) delivers the
necessary conditions of the extremum for S(x).

Ad hoc it is clear that

Λ(x, ẋ) = (ẋ, φ(ẋ)− x)−Ψ(φ(ẋ)) + Ψ(x).

It is also clear that φ = f−1 : Em → U(x0)
and let us define a map Φ: Em → R, such that
φ = ∇Φ. The Lagrange equation being necessary
extremum condition has the form

ẍ
∂φ(ẋ)

∂ẋ
= f(x)

or

ẋ = u, u̇ = f(x)

(
∂φ(u)

∂u

)−1

with the initial conditions

x(0)− x0 = ẋ(0)− u0, u0
def
= f(x0 + y0).

The Cauchy problem first integral reads

(u, φ(u))− (u0, φ(u0)) =

Ψ(x)−Ψ(x0) + Φ(u)− Φ(u0).

Let y0 = 0 and y(t, y0) = 0. It is evident
that Λ = 0 in this case. Then u0 = f(x0), φ(ẋ) =
x and the first integral is a partial integration
identity

(x, f(x))− (x0, f(x0)) =

Ψ(x)−Ψ(x0)− Φ(f(x)) + Φ(f(x0)).

Theorem 1 There exists the extremals field for
non-degenerate positive functional such that one
contains the original equation characteristics.

Proof The theorem statement is a corollary
of the proposition 1. Moreover monotonic
nondecreasing of f(x) ensures convergence
y(t, y0) to zero on T and extremal concerns the
characteristics at the point (x, 0) of the phase
space (x, y). �

Otherwise characteristics is ”envelope curve”
of the extremals field.

3. Example: linear system [3, 4]

Let us consider the linear system with a
constant coefficient matrix

ẋ = a · x.

It is evident that the system can be transformed
to the Jordan form by a non-singular
transformation

ξ̇ = j · ξ

where j-matrix consists from Jordan cell. Let the
number of Segre matrix a is equal to (m,m, 1)
for brevity. This means a coincidence full and
algebraic multiplicities

dimker(a− λE)m = m.

Otherwise the matrix j is reduced to one
maximum Jordan cell and the matrix a
characteristic polynomial coincides with its
minimal polynomial.

Procedure of additive doubling allows
two options. In the first variant the partial
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(diagonalizable) doubling is executed by the
scheme

ξ̇i = λ(ξi + ηi) + ξi+1, i = 1,m− 1,

ξ̇m = λ(ξm + ηm)

where η = (η1, . . . , ηm) is a perturbations vector.
Hamiltonian is defined by the formula

E(ξ, η) = λ(ξ, η) +
λ||η||2

2
+

∑
16 i6m−1

ξi+1ηi

for the doubling system

colon(ξ̇, η̇) = α · colon(ξ, η)

with the matrix α given as

λ 1 0 . . . λ . . . . . . 0
0 λ 1 . . . 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −λ . . . . . . 0
0 0 0 . . . −1 −λ . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . . . . −1 −λ


.

It is clear that

α =

(
j diagλ

0 −jT

)
.

The momentum components on the
coefficient matrix main diagonal and on the top
border of the diagonal with full doubling are
added, i.e.

ξ̇i = λ(ξi + ηi) + ξi+1 + ηi+1, i = 1,m− 1,

ξ̇m = λ(ξm + ηm)

in which connection

Ẽ(ξ, η) = E(ξ, η) +
∑

16 i6m−1

ηiηi−1

where

E(ξ, η) = λ(ξ, η) +
λ||η||2

2
+

∑
16 i6m−1

ξi+1ηi

Otherwise, the full and partial doubling
Hamiltonians differ by the allocated sums amount
containing only gyroscopic terms. It is clear that

one does not affect the recording of the canonical
equations for the components of the perturbation
vector η, such that only the top-right block
matrix α first coefficients of the double system
is deformed. In this case the system coefficients
matrix reads

α̃ =



λ 1 . . . λ 1 . . . . . . 0
0 λ . . . 0 λ 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . . . . −λ 0 . . .
0 0 . . . . . . . . . −1 −λ . . .
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . . . . 0 −1 −λ


Therefore the following assertion is faithful

Theorem 2 If the matrix trace is zero equation
of system ẋ = ax then quadrics

L(x) =
∣∣||x||2a∣∣ def= |(ax, x)|

is the system Lyapunov function in the point
(0, 0).

To the Hamiltonian cases belong also the systems
with the matrix a for incomplete and full
doubling. The role of the Lyapunov function plays
the absolute value of square α-norm of the vector
x

L(x)
def
= |(αx, x)|.

4. Conclusion

1◦ The dynamic system trajectories space
is weakly dense immersed in the bundle of
extremals. Based on variables doubling procedure
the extremals flow immersion into the trajectories
bunch has been considered.

2◦ If a perturbation vector is small then
the double system coincides with the equation in
variations and the same as the original system
with a vanishing variations.

3◦ It turns out that every ordinary
differential equation (system of equations) is
generated by some condition of an extremal
problem.
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