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Illustrations of Irreducibility and Tops of Umbrellas in the
PostScript Methodology
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Sierpiński carpets and similar objects, irreducible and indecomposable continua are
visually realized based on the PostScript language. Algorithmic problems associated with
rendering effects and the presence of tops of umbrellas and irreducible points have been
solved within the PostScript language methodology.
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The problem of effectiveness of computations
is a most important for nonlinear dynamic and
geometric models realizations.

The PostScript interpreter controls actions
of the output device according to instructions
provided in the PostScript program generated by
an application [1]. The proposed in what follows
approach was not intended by the authors of
PostScript.

1. Introduction: aesthetics and
effectiveness of computations problem

PostScript aesthetics is formed by short
code without loss of functionality of high level
programming languages. At the same time the
direct recourse to the stack are appeared due to
PostScript is an interesting hybrid of high and
low level programming languages. This leads to
a reduction of algorithmically complex pieces of
code.

The main elements of Postscript are stack,
back polish notation (BPN)

operand1 . . . operandn operator

and dictionary structure. Thus it is possible to
create operators on one’s own initiative.
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Although the number of built-in operators is
large, the names that represent operators are not
reserved by the language. A PostScript program
may change the meanings of the operator names.

A form geometric complexity of the dynamic
system action (on the plane, for instance)
produces the algorithmic process complexity.
It is clear that a computational complexity
grows exponentially for fractal sets. Ad hoc
the geometric (qualitative) illustrations of the
dynamic system action realization lead to
algorithmic complexity that grows exponentially
too.

PostScript allows to produce the plane
construction on the delivery plane immediately
from algorithm avoiding the increase of
algorithmic complexity. IN this way complex
geometric constructions can be algorithmically
implemented especially easy.

Bill Casselman [2] established the
foundations of the methodology for basic features
of the PostScript language and showed how to
apply it for producing mathematical graphics in
a good style of mathematical illustration. Further
we put the following problem for ”bad” topogical
situations.

Effectiveness of computations problem:
Every step of the algorithm depends on the state
of the stack defined by the previous steps. The
PostScript algorithm is effective in the sense of
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direct work with the stack.

2. Tops of umbrellas and
irreducible points

The n-dimension umbrella is said to be an
arc and n-dimension ball union, such that their
intersection is one point being the center of the
ball (e. g. see [4]).

The continuum C is called irreducible
between points a and b if a, b ∈ C and two points
can be joined only by the set. If continuum C is
irreducible between every points pair then it is
called irreducible continuum.

Example 1. 1-dimension umbrella. Let us
consider a numeric function with unique
irreducible point.
1◦ Let the sequence of functions

upn(x) = An
x2p

(x2 + εn)2p
, ∀p ∈ N,

is such that max
|x|<1

upn(x) = 21−n, ∀n ∈ N, p>2 and

m are odd numbers;
2◦ and sequences defined by the formulae

σp
n+1 = σp

n + (−1)nαn+1u
m
n+1,

σp
1(x) = um1 (x), α > 0, such that

∀max
|x|<1

σp
n = 1 and ∀ min

|x|<1
σp
n = −1.

defined by the condition |x|6 1 is the irreducible
continuum between points (−1, σp

∞(1)) and
(1, σp

∞(1)).
”Half” of the graphics consisting of

points with the positive (negative) abscissa
is irreducible between the point (1, σp

∞(1)) (the
point (−1, σp

∞(1))) and the point (0, 0).
It is clear that the limited set of the

σp
∞(x) contains only irreducible points between

the points (1, σp
∞(1)) and (−1, σp

∞(1)):

limited set σp
∞(x) = Clos grσp

∞(x).

But only the point (0, 0) is contained in the plot
of σp

∞(x) because it is a single internal point!

FIG. 1: Functions σp
n(x), for p = 8 and different n.

Proposition 1 The point (0, 0) is the top of 1-
dimensional umbrella.

Proof Let us consider sequence of unions of arcs
on the plot with ends in the points

(x2k,−1) and (x2k+1, 1), k>1,

such that σp
n(x2k) = −1 and σp

n(x2k+1) =
1 and lengths of tangents in the points
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(o(σp
n)(k), 0) being end point and other end

points with identical negative or positive ordinate.
{o(σp

n)(k)}k>1 is a nill function sequence.
Topological limit of the sequence is 1-dimension
umbrella with top in the point (0, 0). Moreover,
point (0, 0) is the top of two umbrellas from right
and from left. �

Remark 1. Every irreducible point is the top
of umbrella but not every top of umbrella is the
irreducible point.

It is clear that there subsist irreducible
continua containing only tops of umbrellas.

Remark 2. It seems that all planar nowhere
dense fractals contain only the tops of the 1-
dimensional umbrellas (as for instance ”Sierpiński
Sieve”). However, this is not true (see example
”rectangular snowflakes”).

Why is it silly to write fractal programs in
PostScript? (see [3], p. 7)

Because the interpreter engine eliminates the need
for explicit recursion.

Example 2. Sierpiński carpet (Sierpinski
(universal plane) curve).

Let us consider the square in the first
quadrant, such that 06x, y6 0, and coordinates
x and y are represented as symbols sequences
in triple numerical system (alphabet symbols:
{0, 1, 2}). Sierpiński carpet is the set contains
only (x, y) points, such that two coordinates are
the sequences free of symbol ”1”.

The algorithm of its construction is based on
the points screening from the symbol ”1” by the
Monte-Carlo method.

It is the nowhere dense fractal example
containing only tops of umbrellas.

Executable code for Fig. 2.

%!

/N 5 def 100 dup scale 3 3 translate

/B# 2 31 exp 1 sub def 1879 srand

4000000 {

/X rand B# div def /Y rand B# div def

/A X def /C Y def /BlackFlag true def

N {/B A 3 mul truncate def

/D C 3 mul truncate def

B 1 eq D 1 eq and

{/BlackFlag false def exit}

{/A A 3 mul B sub def

/C C 3 mul D sub def} ifelse} repeat

BlackFlag

{newpath X Y 1E-4 0 360 arc fill} if} repeat

FIG. 2: Sierpiński carpet (fifth iteration).

3. Sierpiński sieve

For instance the Sierpiński Sieve (or
Sierpiński triangle curve) is realized by
assemblage on the stack of three arrays all
elements. The construction algorithm proofs the
follow.

Proposition 2 Sierpiński Sieve contains only
tops of umbrellas.

Executable code for Fig. 3.

%!

/n 3 def /Ang 180 n div def

/construct { mark [0 0 2 0 -1 g]

N { counttomark { aload pop /Z exch g def

/Y1 exch def /X1 exch def /Y0 exch def

/X0 exch def /XC X0 X1 add 2 div def

/YC Y0 Y1 add 2 div def

Y0 YC sub X0 XC sub 2 copy atan

/Phi exch def dup mul exch dup mul add

sqrt /r exch def X0 Y0
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1 1 n {/I exch def /Phi1 Phi Ang Z mul add

def newpath XC YC r Phi Phi1 arc

currentpoint 2 copy Z -1 I exp mul 1 mul

3 1 roll 7 2 roll 5 array astore

count 1 roll /Phi Phi1 def} for

pop pop } repeat

count 1 roll} repeat

} def

/draw {translate construct counttomark

{aload pop pop newpath moveto

lineto stroke } repeat

pop} def

0 130 translate 50 dup scale

.002 setlinewidth

/g {} def

/N 1 def 4.7 3.5 draw

/N 8 def -1 3.85 draw

/N 2 def -.4 -2 draw

/N 3 def 3 0 draw

/g {neg} def

/N 2 def -1.6 -3.5 draw

/N 3 def 0 -1.8 draw

/N 8 def 0 -2 draw

Some program transformations deliver
random Sierpiński sieves.

Executable code for Fig. 4.

%!

/n 3 def /Ang 180 n div def

/vse {counttomark {aload pop /Z exch g def

/Y1 exch def /X1 exch def /Y0 exch def

/X0 exch def /XC X0 X1 add 2 div def

/YC Y0 Y1 add 2 div def

Y0 YC sub X0 XC sub 2 copy atan

/Phi exch def dup mul exch dup mul add sqrt

/r exch def X0 Y0

1 1 n{/I exch def/Phi1 Phi Ang Z mul add def

newpath XC YC r Phi Phi1 arc currentpoint

2 copy Z -1 I exp mul 1 mul 3 1 roll 7 2 roll

5 array astore count 1 roll

/Phi Phi1 def} for

pop pop}repeat count 1 roll} def /g {} def

/construct { % init_srand

srand mark [0 0 2 0 -1 g] vse

FIG. 3: Regular Sierpiński sieves.

N {/V rand 2 31 exp 1 sub div .5 gt {1}{0}

ifelse def /g {V {neg} repeat} def vse

} repeat

} def

/draw { % initsrand X,Y_translate

translate construct counttomark {aload pop

pop newpath moveto lineto stroke} repeat

pop} def

/nshow { % numb -->

1. add exch 2.5 add exch

newpath moveto (n=) show 4 string cvs show} def
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50 dup scale .001 setlinewidth

/N 7 def

/Symbol findfont 0.26 scalefont setfont

163 3 2 3 copy nshow draw

167 0 2 3 copy nshow draw

168 0 2 3 copy nshow draw

169 0 2 3 copy nshow draw

170 0 2 3 copy nshow draw

180 0 2 3 copy nshow draw

4. Rectangular snowflakes

Let us consider a similar fractal
construction. Barely, the trapetional element of
the Sierpiński sieves plotting

is exchanged on the square ”element” of the
Rectangular Snowflakes

On the analogy of Sierpiński sieves, the
construction algorithm proofs the following

Proposition 3 Rectangular Snowflakes contain
only tops of umbrellas.

Executable code for Fig. 5.

%!

/alop {aload pop} def

/sum { % point0 point1 --> pointsum

alop 3 -1 roll alop 3 -1 roll add

3 1 roll add exch 2 array astore} def

/vec { % point0 point1 --> vector

exch alop 3 -1 roll alop 3 -1 roll sub

ν=163

ν=167

ν=168

ν=169

ν=170

ν=180

FIG. 4. Random Sierpiński sieves. ν is an ”initial
srand” parameter.

3 1 roll exch sub exch 2 array astore} def

/kvec { % k vector --> [kx ky]

alop 2 index mul 3 1 roll mul exch

2 array astore} def

4 dup scale .01 setlinewidth

/Gr {

N {

counttomark {alop /Z exch def /P1 exch def

/P0 exch def /V P0 P1 vec def

/L V alop abs exch abs add def

/VAng V alop exch atan def
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/l L 3 div def /v 1 3 div V kvec def

/CurP P0 v sum def

[P0 CurP Z ngizn] /P0 CurP def

P0 alop l VAng dup 90 Z mul add arc

currentpoint 2 array astore /CurP exch def

/Tvec P0 CurP vec def

[P0 P0 Tvec sum Z ng] /P0 P0 Tvec sum def

[P0 P0 v sum Z ngizn] /P0 P0 v sum def

[P0 P0 -1 Tvec kvec sum Z ng]

/P0 P0 -1 Tvec kvec sum def

[P0 P1 Z ngizn]

count 5 roll} repeat count 1 roll} repeat

alop pop newpath alop moveto alop lineto

counttomark {alop pop pop alop lineto}repeat

stroke pop} def % Gr

/source {mark [[1 1] [50 1] 1]} def

/ng {neg} def /ngizn {} def

source

/N 1 def 36 1 translate Gr

-36 0 translate

2 1 5 {/N exch def

source 0 32 translate Gr} for

/ng {} def /ngizn {neg} def

70 -128 translate

2 1 5 {/N exch def

source 0 32 translate Gr} for

-11.6 -126 translate

gsave 18 dup scale

/Helvetica findfont 0.2 scalefont setfont

0 1 4 {/N exch def

newpath 0 1.8 N mul moveto

(n=) show N 3 string cvs show

} for

grestore

In this way one can build many similar
examples of sets containing only the tops of
umbrellas.

5. Irreducible continua

On the other part, the algorithmic
realizations problem of irreducible continua

being Cantor set and interval [0, 1] direct product
is solved as the following two ”children” records
is replaced by one ”mother” record.

Executable code for Fig. 6.

%!

/Eps .01 def

/daught0 {aload /Mom exch def 1 sub abs 3 1

roll 3 div dup 4 1 roll 2 mul sub 3 1 roll

3 array astore} def

/daught1 {aload /Mom exch def 1 sub abs 3 1

roll 3 div dup 4 1 roll 4 mul add 3 1 roll

3 array astore} def

/building {aload /Mom exch def /Y exch def

/BS exch def /BC exch def

newpath BC 0 moveto BC 1 lineto stroke

newpath BC BS add 0 moveto BC BS add 1

lineto stroke newpath BC Y moveto BC BS add

Y lineto stroke} def

/Mom 3 array def

/P {/Mom exch def Mom building Mom daught0

dup 1 get Eps lt {pop} if Mom daught1 dup 1

get Eps lt {pop} if} def

150 dup scale 1 1 translate

.003 setlinewidth

[1 3 div dup 0]

{count 0 ne {P}{exit} ifelse} loop

If α and β are closed sets without common
points and the continuum C contains one or more
points of both sets, then C is irreducible between
α and β if no proper sub-continuum of C contains
points of both sets [5].

Executable code for Fig. 7.

%!

/Pick 1 def

150 dup scale 2 2 translate

.001 setlinewidth

/takecoords {aload pop /B1 exch def

/B0 exch def /T1 exch def /T0 exch def} def

/draw { newpath T0 Pick moveto B0 0 lineto

stroke newpath T1 Pick moveto B1 0 lineto

stroke}def

/build {[T0 T1 T0 sub 4 div T0 add B0 B1

B0 sub 4 div B0 add]
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n=0

n=1

n=2

n=3

n=4

FIG. 5: Rectangular Snowflakes.

FIG. 6. The irreducible continuum example (from [5],
Vol. II, fig. 3 left).

[ T1 T0 sub 4 div T0 add T1 T0 sub 2 div

T0 add B1 B0 sub 2 div B0 add B1 B1 B0

sub 4 div sub]

[ T1 T1 T0 sub 4 div sub T1 B1 B1 B0 sub

4 div sub B1 ]} def

[0 1 0 1] mark 4{{count -1 roll dup mark ne

{takecoords draw build}{exit} ifelse} loop}

repeat clear

Executable code for Fig. 8.

%!

/Eps .003 def

/daught0{aload/Mom exch def 1 sub abs 3 1

roll 3 div dup 4 1 roll 2 mul sub 3 1 roll

3 array astore} def

/daught1{aload/Mom exch def 1 sub abs 3 1

roll 3 div dup 4 1 roll 4 mul add 3 1 roll

3 array astore} def

/building {aload /Mom exch def /Y exch def

/BS exch def /BC exch def newpath BC 0

moveto BC 1 lineto stroke newpath BC BS

add 0 moveto BC BS add 1 lineto stroke

newpath BC Y moveto BC BS add Y lineto

stroke} def
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FIG. 7. The irreducible continuum example (from [5],
Vol. II, fig. 3 right).

/psi{ % coord shift spin

aload /Mom exch def /SP exch def

/SH exch def /CRD exch def SP 0 eq

{/pasta{}def}{/pasta {neg 90 add}def}

ifelse newpath CRD SP moveto

CRD .00001 add .00001 CRD SH add

{dup CRD SH 2 div add sub 2 SH div mul dup

5 exp 1 add exch 5 exp 1 exch sub atan

pasta exec 90 div lineto} for stroke} def

/Mom 3 array def /P {/Mom exch def Mom

%building

psi Mom daught0 dup 1 get Eps lt {pop} if

Mom daught1 dup 1 get Eps lt {pop} if} def

150 dup scale 1 1 translate

.001 setlinewidth

[1 3 div dup 0] {count 0 ne

{P}{exit} ifelse} loop

FIG. 8: The irreducible tan-continuum example.

6. Knaster indecomposable
continua

Knaster proposed the indecomposable
continua prime examples (see i. g. [5], vol. II).

Executable code for Fig. 9.

FIG. 9: Knaster bucket handle.

There exists another faster topological
algorithm for Knaster bucket handle:

%!

.1 dup scale 540 1250 translate

.01 setlinewidth

/W{/B A def/C A def}def

/semiarcs {0 1 C {/R exch def

/S R B 2 div add def /A B def

/A B 3#10 idiv def/O R A idiv def O 1 ne

{{/R R O A mul sub def/A A 3#10 idiv def

/O R A idiv def A 1 eq O 1 eq or{exit}if

} loop} if

O 1 ne{C D .5 add mul 0 S F newpath

arc stroke} if} for} def

/A 3#10000000 def W /F {0 180} def

/D 1 def semiarcs

/D 7 def /F {180 360} def

1 1 5 {/I exch def /A 3#10000000 def

/A A 3 I exp cvi idiv def W semiarcs}for

which leads to more simple result.

As a final point, we mention that topological
algorithms also allow the construction of one
another Knaster bucket poker example [5].

Executable code for Fig. 10.
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%!

100 100 translate .018 dup scale

.000001 setlinewidth

/semiarcs {0 1 C {/R exch def

/S R .5 C mul add def /A B def

/A B 5 idiv def /O R A idiv def

O 1 ne O 3 ne and {{/R R O A mul sub def

/A A 5 idiv def /O R A idiv def

A 1 eq O 1 eq or O 3 eq or {exit} if}

loop} if

O 1 ne O 3 ne and

{C D mul 0 S F newpath arc stroke} if

} for} def

0 1 3 {/I exch def /A 3125 def

/A A 5 I exp cvi idiv def

/B A def /C A def

/D 3.5 def /F {180 360} def semiarcs

/D 5 I 1 add exp 3.5 sub def

/F {0 180} def semiarcs} for

FIG. 10: Knaster bucket poker.

7. Conclusion

In the paper the PostScript visualization
algorithms for some concrete ”bad” topologic
situations due to the tops of umbrellas presence
and/or irreducible points have been developed,
namely:

1◦ an algorithm based on the points screening
from the symbol ”1” by the Monte-
Carlo method on the Sierpiński carpet is
dynamically realized;

2◦ regular and random fractal sets upon
the Sierpiński carpets and rectangular
snowflakes are constructed by the ”method
is broken”;

3◦ irreducible continua realizations on examples
from [5] are constructed;

4◦ Knaster indecomposable continua examples
(Knaster bucket handle and bucket
poker) [5] are constructed in two forms,
both in metric and topologic (or symbolic)
sense.

It has been shown that application of the
PostScript language for visualization of some
nonlinear dynamics problems could be very
convenient.
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