-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by BSU Digital Library

Nonlinear Phenomena in Complex Systems, vol. 17, no. 3 (2014), pp. 301 - 305

A Finite-State Model of Botnets’ Desinfection and Removal

D. P. Zegzhda and T. V. Stepanova
Saint-Petersburg State Polytechnic University,
29 Politechnicheskaya Str, 195251 Saint-Petersburg, RUSSIA
(Received 28 March, 2014)

Existing multi-agent systems (either for implementing distributed security threats or for
countering them in the Internet) either do not maintain agent graph connectivity or maintain
it with network redundancy, which significantly increases the overheads. The paper analyzes
a finite-state model of adaptive behavior in a multi-agent system. This model uses a d-regular
agent graph and some methods to maintain network connectivity, which provides sustainable
system performance in aggressive environment.

AMS Subject Classification: 05C80, 05C90
Keywords: multi-agent system, sustainable performance, adaptive behavior, random regular graph

1. Introduction

A multi-agent system is a system formed
with multiple interacting intellectual agents.
Generally, it consists of multiple organization
units (agents), multiple tasks,
multiple agent relationships, multiple agent
actions [1]. A multi-agent system can model an
attacking party as well as a defending one. Both
parties try to neutralize adversary’s actions and
maintain its own sustainability.

The paper represents the results of the
analysis of sustainability maintaining in multi-
agent systems countering distributed threats in
the Internet. Performance sustainability is a
complex aspect, and it describes the possibility
of a system failure [2].

Not only functional but also topological

environment,

system characteristics influence multi-agent
system sustainability. There are two key
parameters [3]:

1. Agent graph topology.

2. Protocol of agent interaction.

2. Topology analysis of multi-

agent systems

Agent graph topology must fulfil several
requirements, while creating a multi-agent

security system:

1. the graph must have high connectivity
parameters, while removing graph nodes
and graph edges;

2. the network redundancy must be low.

Table 1 analyzes the topology of existing
security systems and botnets from the point of
view of these requirements [4].

Consequently, high connectivity in existing
multi-agent systems (both attacking and
defending ones) is provided with the increasing of
network redundancy, which results in overheads
increasing and system flexibility decreasing.
There is an alternative approach, which suggests
that fewer connections should be maintained,
while wusing restore mechanisms for broken
connections. If every node maintains a fixed
number of d connections, the agent graph is
a d-regular graph. While creating a system
countering distributed threats in the Internet,
the usage of a random d-regular agent graph
is justified because the information available
to the adversary diminishes. Though it is
obvious that restore mechanisms are not able
to restore the connection immediately, which
results in unbalanced network distribution.
Restoring of failing agents, which are rebuilding
previous connections, will also contribute to it.
Consequently, it is necessary to analyze almost

301

https://core.ac.uk/display/38545281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

302 D. P. Zegzhda and T. V. Stepanova
Table 1: Topology characteristics of the existing security systems.
’ Topology \Connectivity Redundancy
Star Low Low
Star formed with other start Medium High
Scale-free graph Medium High
Smal world graph Medium High
Erdos and Renyi random graph High High
d-graph characteristics, where node degrees neighbor list and added to the “dead” neighbor

vary insignificantly, rather than d-regular graph
characteristics.

3. Methods to provide sustainable
performance

Some methods have been suggested to
maintain network connectivity. They involve
sending requests to get a new neighbor node
address, if neighbors become fewer than some
threshold number (regular graph vertex degree).
Also the operating of neighbor nodes is
periodically checked (node status check). While
executing the checking algorithm, the first stage
includes choosing an element from the list of
neighbor addresses and sending there a status-
checking message. The time of sending is fixed in
a local database. Then the next neighbor address
is chosen, and the process is repeated. The cycle
continues until the whole list of neighbors is
covered. If it is impossible to choose a neighbor
address, it means that all the messages have been
sent, and the algorithm competes itself.

The second algorithm is responsible for the
network connectivity analysis. It tries to restore
connectivity, if it is threatened. As a result, “dead”
nodes are removed from the neighbor list. The
algorithm tries to get the addresses of new nodes
in the network. It chooses an address from the
neighbor list. This address is then used as the key
to address the local database in order to get the
time of the request sending (node status checking
request). If the time that has passed since the
moment fixed in the database is more than some
specified time, such node is removed from the

list. Otherwise, the algorithm moves to the next
node. The information of the next node is checked.
This approach allows removing from the neighbor
list the nodes that have been disconnected for a
long period. At the same time, because of the
request algorithm those nodes that have some
temporary connection issues are not removed.
It happens because several messages are sent in
order to duplicate failing ones.

“Dead” elements are removed from the
neighbor list. After covering all the neighbors,
the algorithm moves on to getting new neighbors.
The number of the neighbors is calculated. If
the neighbors are fewer than a certain number,
the node needs getting new node addresses. If
it is necessary to get new neighbors, the next
neighbor is chosen, and a request is sent to
establish new connection. If the request fails, the
system tries to send it to the next neighbor.
If it is impossible to send the request to any
neighbor, the algorithm stops working. The next
time it starts, the system tries to recover network
connectivity. These algorithms are used to create
a model of the adaptive behavior in a system
shaped via a finite deterministic machine.

4. Finite-state machine of the
system behavior

One or several states can be active in the
active state configuration of an object’s finite-
state machine at any one time. If a state is
active, there may start outgoing transition, which
will result in an action and then activation of
some other state(s). If there are more than one

Henuneiinple gBiieHnst B CJI0XKHBIX cucTemax 1. 17, Ne 3, 2014

A Finite-State Model of Botnets’ Desinfection and Removal

303

Table 2: Agent states.

’ State Description
Disconnected A node is desconnected and it automatically starts connecting
Connecting A node is connecting. The code of every node includes a list if adresses to connect
Getting new connections A node is gettiong the adresses of new nodes
Enough connecting A node has enough neighbor nodes
Ready A node is ready to execute tasks
Reserved A node is reserved for computing
Computing A node is computing
Idle A node is not waiting or processing reservation and coputing results
Reserving Node computing powers are reserved
Waiting The system is processing reserving or computing results
Processing The system is processing reserving or computing results
Dispatching Tasks are distributed among neighbor nodes
Table 3: Finite-state machine alphabet.
Event \ Description
One of the following messages has been received or sent:
Compute task execution request
Compute result task execution result
Reserve Node reservation request
Reserve denied Reservation rejection
Info informative message
Change server status Change of master node status
Keep alive Neighbor node operating check

Get new server

New connection request

Sent new server

sending the adress of a new neighbor node

Disconnect

Disconnection

One of the following timers has started working:

Keep alive limit

Neighbor node operation check

Keep alive wait limit

Waiting for an operation confirmation

Reserved.timeout

a reserved node waiting for the task

idle.timeout

being idle

reserving,list[i].wait limit

waiting for the response for a reservation request

The value of one the following counters has become more or less than some threshold value :

neighbors.size

neighbor node list capacity

task.size

task size

status= reserver, ready, off

node status

server status=server, node

node master status

task|i].status=ready, waiting

task status

reserving.list[i].status=reserved, waiting

reservation status

active state, there is internal parallelism. Parallel
states have some limitations, defined by a finite-
state machine structure and its transitions. If
a sequential composite state is active, only one

disjoint substate can be active. If a parallel
composite state is active, each of its parallel
substates should be active.

The finite-state machine suggested in the

Nonlinear Phenomena in Complex Systems Vol. 17, no. 3, 201/

304 D. P. Zegzhda and T. V. Stepanova

disconnected

connecting

getting new

connections
enough

connections

dispatching

FIG. 1: Transition graph.

project involves parallel composite states. One of
them is responsible for network connectivity; the
other is responsible for computing. The agent can
be in one of the following states (see Table 2).

The machine thus is defined by the tuple
M = (Q,>.,0,q0, F). Multiple machine states
are () = {disconnected, connecting, getting new
connections, enough connections, ready, reserved,
computing, idle, reserving, waiting, processing,
dispatching}, the initial state is gy = disconnected,
multiple finite states F are empty, because,
while transiting into the disconnected state, the
system is trying to reconnect. An acceptable
input alphabet) includes possible transmitted
messages, counter edge states, node statuses,
tasks, and reservations (see Table 3).

The transition between the states is
activated either by a received message or by the
change of counter or timer state (e.g. counter
that checks neighbor node statuses). Machine
transition function ¢ Q x X — PQ) is
described by a transition graph in Fig 1. The
substates of composite states are united with a
loop (e.g. ready, reserved, computing). Several
parallel states are marked with dash-lines uniting
parallel states. If a transition between states is

marked with outgoing arrows, the transition takes
place from any state. An ingoing arrow means
returning to the state previous to the change. The
states marked with an asterisk (*) are multiple
composite ones. It means that a state is a set
of parallel equal composite states, each of them
describing the processing of one of the tasks given
to a node. The active substate of the composite
state is defined by the task state.

An agent graph vertex degree thus can
be expressed as o(v) = d £ e. This graph is
almost a d-regular one, and we can make some
suggestions in this case that are true for regular
graphs. Particularly we can introduce a concept
of extreme probability P.. It must be such that,
if p < (1—0), for every € > 0 there is no graph
component with minimal vertex number en with
probability 1 — o(1). This concept corresponds to
extreme probability concept in the percolation
theory. If p > P.(1 + ¢§), there is a graph
component containing minimum vertex ¢ for a ¢ >
0 with probability 1—o(1). For a random d-regular
graph it is true that Psite = pbond — d—il, where
Psite is the extreme probability of graph vertex
removing, and P?" is the extreme probability of
edge removing |5, 6].

Henuneiinple gBiieHnst B CJI0XKHBIX cucTemax 1. 17, Ne 3, 2014

A Finite-State Model of Botnets’ Desinfection and Removal 305

5. Conclusion

The finite-state model of adaptive behavior
in a multi-agent system countering distributed
threats in the Internet has been suggested. It
maintains d-regular agent graph characteristics

using the methods that maintain system
sustainability. It is an alternative approach
compared with existing multi-agent system
models that provide agent graph connectivity

using network redundancy.

References

[1] V.B. Tarasov. From multi-agent systems to
intellectual organizations. (Editorial URSS,
Moscow., 2002). 352.

[2] D.P. Zegzhda, T.V. Stepanova. Effectiveness
analysis of the security measures for botnet
neutralizing and eliminating. Problems of
Information Security, Computer Systems. 2,
21-27 (2012).

[3] D.P. Zegzhda, T.V. Stepanova. Effectiveness
analysis of the security measures against targeted
botnet attacks. In: The Proceedings of the XII

International Information Security Research and
Application Conference. Part 1. 2012.

[4] D. Dagon, G. Gu, C. Zou, J. Grizzard, S.
Dwivedi, W. Lee, R. Lipton. A Tazonomy of
Botnets. 2010.

[6] N. Fountoulakis. Percolation on sparse random
graphs with given degree sequence. 2007.

[6] M. Molloy, B. Reed. A critical point for random
graphs with a given degree sequence. 2000.
http://www.math.mcmaster.ca/tom/Research
Papers/MollReed95.pdf

Nonlinear Phenomena in Complex Systems Vol. 17, no. 3, 201/

