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Grain structure and the temperature dependences of resistivity,
magnetoresistance, Hall and Seebeck coefficients measured in
the range from 4 to 300K were investigated for polycrystalline
bismuth films obtained by the melt spinning (MS) and
electrochemical deposition (ECD) methods. Charge-carrier
concentration and mobilities were calculated assuming the
carrier scattering on acoustic deformation potential as the

dominant scattering mechanism, parabolicity of holes dis-
persion law, implying the Lax model for L-band electrons and
neglecting the influence of L-band holes on conductivity. The
experimental results and calculations have demonstrated that
the electrical properties of the Bi films studied are strongly
affected by the grain-boundary density.
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1 Introduction Thermoelectric materials (TEM) are
widely used nowadays for fabrication of thermoelectric
generators and Peltier coolers. Bi-based compounds and
alloys (together with Te, Sb, etc.) [1, 2] play an important
role among industrially used TEM intended for the
midtemperature range (up to �700K). In recent years,
there were also a lot of applications for microminiature film
type generators/coolers [3] that can operate not only at
elevated temperatures, but also at temperatures significantly
below room temperature. Such devices can be used for
temperature control and stabilisation in the electronic
circuits, microchips and other systems like spacecrafts and
aircrafts. The films of bismuth-based alloys and compounds
can be effectively used for such purposes. Moreover, owing
to Bi’s huge magnetoresistance, such films could also be
applied for creating various kinds of sensors (displacement
and magnetic field, etc.).

From a scientific point of view, Bi is of interest due to its
unusual band structure (nonparabolic dispersion law for
electrons and overlapping of conduction and valence bands,
see Fig. 1), and high mobility of electrons and holes in a
wide temperature range [4, 5].

Polycrystalline films are the most suitable form of
Bi-containing materials for practical applications that is
caused by their easier and cheaper fabrication. Currently,
however, the properties of the polycrystalline films of Bi and
its alloys are not so well understood in comparison with
single-crystalline ones.

The present work is focused on experimental exami-
nation of the carrier-transport properties (resistivity,
magnetoresistance (MR), Hall and Seebeck effect) of Bi
polycrystalline films grown by different methods, as well as
estimation of charge-carrier mobility and concentration
applying simplified theoretical models.

2 Experimental
2.1 Fabrication and structural characterization

Three types of samples were used in our research: (i) films
prepared by the melt spinning (MS); (ii) electrochemically
deposited films (ECD) and (iii) electrochemically deposited
films with subsequent annealing (AECD).

Bi of 99.9999% purity was used for preparing the MS
films. Bi was melted and then spilled on the cold surface of a
rotating cylinder made of polished copper. The estimated
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foil cooling rate was 106–107K s�1 [6] and their thickness
was about 30mm.

Electrochemical Bi deposition was performed from
aqueous electrolyte containing 0.174mol l�1 Bi(ClO4)3 and
3mol l�1 HClO4 onto rectangular plates made of a one-sided
flexible foil-coated laminate. For electrolyte preparation,
bismuth hydroxide powder (Sigma–Aldrich) was completely
dissolved in a concentrated perchloric acid solution (65%)
under intensive stirring. Then the solution was diluted to
obtain the required concentrations of Bi(ClO4)3 and HClO4.

Bismuth films with a thickness of about 70mm were
electrodeposited (at room temperature and electrolyte stirring)
under a galvanostatic regime with a current density of
2.5Adm�2 using a programmable power supply. Bi rod
(99.9%) was used as an anode in the bath. The deposition rate
was 65–66mmh�1 and the current efficiency was about 100%.
TheelectrodepositedBicoatingswere rinsedwithdistilledwater
andthenwerepickedoff fromthesubstratebymeansofsubstrate
bending. Annealing of as-deposited Bi films was carried out at
540� 0.5K for 5.5 h under an inert (He) atmosphere.

The surface morphology and grain structure of the Bi
films were characterized with a LEO 1455VP scanning
electron microscope and a PANalytical Empyrean diffrac-
tometer. Grain size identification was performed with
Oxford’s Tango software.

2.2 Electrical measurements The temperature and
field dependences of resistivity, magnetoresistance, Hall effect
and thermoelectromotive force (thermo-EMF) were measured
in the 4–300K temperature range and in magnetic fields up to
8T. Measurements were performed using a closed-cycle
measuring system produced by Cryogenic Ltd. (London).

Formeasurements of resistivityr, Hall coefficientRH and
MR, the rectangular samples (2� 12� 15mm) with two
current, two potential and two Hall contacts deposited by
ultrasound soldering of indium were fabricated. Movable
bronze clamping probeswere used for thermo-EMFmeasure-
ments. The sample was placed in a special measuring cell
involving thermometers, magnetic-field sensors and heaters
to control the temperature. The measuring probes were
inserted into a superconducting solenoid inside of the cryostat
and connected to the measuring circuit. Sample temperature
during measurements of electrical properties was controlled
with special Cernox sensors and a LakeShore 331 measuring
controller providing the temperature measurement and
stabilisation with an accuracy of 0.005K.

All measurements were done under a DC regime.
Resistivity and Hall effect were measured by the 4-probe
potentiometric method and 4 switching method, respec-
tively. Current through the sample was passed using a
Keithley 6430 SourceMeter, which allows to set current
with 0.05% precision and to measure sample resistance in
the range from 100mV to 20GV. Magnetoresistance (MR)
was measured in magnetic fields, perpendicular to the
current direction. The temperature difference on the sample
during thermo-EMF measurements was equal to 1.5K.

The relative error for DC measurements did not exceed
5% for resistivity (this was determined mainly by the error
of sample sizes and interprobe distance measurements),
0.1–0.2% for MR and 0.5–1% for RH. The measurement
error of Seebeck coefficient S depends on temperature and a
temperature gradient. As a result, the relative error of
measurement does not exceed 2% above 200K and 10% at
low temperatures (4–10K).

Electrical measurements were performed using three
samples from each type of film demonstrating a good
reproducibility (error within 5%) of the obtained data.

3 Results and Discussion
3.1 Structure Top-view SEM images (Fig. 2) dem-

onstrate that the linear size of Bi grains lG for the MS films
varies from 5 to 15mm, while for the as-prepared ECD films
the grains are much smaller (lG� 0.5–1.5mm).

The linear density of grain boundaries (number of
boundaries per unit length) determined from SEM images
was estimated as 0.11mm�1 for the MS films, 1.4mm�1 for
the ECD films and 0.04mm�1 for the AECD films.

X-ray diffraction studies show that the MS and ECD
films reveal pronounced h012i texture, whereas annealing
of the ECD samples leads to its disappearance (Fig. 3).

3.2 Electrical properties As can be seen from
Fig. 4a, the ECD and MS samples display completely

Figure 1 Bismuth band structure.

Figure 2 Grain boundaries according to SEM in (a) the MS, (b)
ECD and (c) AECD films.
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different behavior of r(T) dependences in the studied
temperature range. Typical r(T) curves for the ECD films
look similar to those for classical semiconductors (when
(dr/dT)< 0), whereas for the MS samples it is close to
metallic behaviour with a positive sign of dr/dT. After
annealing, the ECD samples demonstrate a r(T) dependence
practically coincident with that for the MS films.

The Seebeck coefficient for all types of the films studied
is negative and the modulus of S(T) shows a maximum at
T� 200K (Fig. 4b). At room temperature, the absolute
values of S for the MS films are slightly smaller compared
with those for ECD and AECD films. This difference could
be tentatively explained by the fact that the h012i texture
is less favourable to achieve high thermo-EMF values in
comparison to the case of randomly oriented grains [7], as
well as by a higher density of grain boundaries in the ECD
films compared to MS ones having the same texture [8].

The Hall coefficient is also negative and decreases with
temperature (Fig. 4c) that is in agreement with the results
obtained by other researchers [7, 9].

To investigate the carrier-transport properties
of the Bi films in more detail, we also measured
magnetoresistance in a wide range of temperatures and
magnetic fields. The experiments have shown that at 4 K
relative MR (Dr/ro¼ [r(B)� r(0)]/r(0)) values in a
magnetic field of B¼ 8 T reach about 4500 for the AECD
films, while for the MS films Dr/r0 is about 1600 and for
the as-deposited ECD films it is about 12. In addition,
MR(B, T) dependences in the low magnetic field range
were also studied to estimate the temperature depend-
encies of carrier concentration and mobility. As follows

from Fig. 5, for all temperatures the low-B MR(B) curves
are linear on a double-logarithmic scale; for the AECD
and MS large-grained films they lie very close to each
other, while the ECD films show a significantly lower MR
effect. The difference between the MR values for the
large- (AECD and MS) and fine-grained (ECD) films
increases with the temperature fall. In the context of the
above-mentioned grain-size difference, such behaviour
evidences a strong influence of grain-boundary density on
the MR effect.

Parallelism of the low-B curves in Fig. 5 with a tangent
close to 2 for all temperatures means parabolicity of MR(B)
dependences. Such behaviour (together with the MR
increase with decreasing temperature) can be easily
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Figure 3 X-ray diffraction patterns for the MS, ECD and AECD
films.
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Figure 4 Temperature dependences of (a) resistivity r(T), (b)
Seebeck coefficient S(T) in zero magnetic field and (c) Hall
constant RH(T) at B¼ 0.25 T for the Bi films prepared by different
methods.
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explained by the Lorentz mechanism of the magneto-
resistance effect. Actually, the Lorentz force leads to
significant curving of charge-carrier trajectories only if
electrons and holes are weakly scattered on phonons and
defects, i.e. when mean free path is high enough [10].
At high temperatures, phonons act as main mean free path
limiters determining a decrease in relative MR with
increasing temperature. At low temperatures, the role of
scattering on grain boundaries increases, leading to a more
pronounced dependence of the MR values on the grain-
boundary density in the films.

Note that the measuredMR values of theMS and AECD
films are not in contradiction with results reported in [11,
12], while the MR of ECD film is significantly smaller due
to the smaller grain size.

Below, the main equations and assumptions needed
for estimation of carriers concentrations and mobilities are

considered. In accordance with [13], in a low-field range the
MR(B) curves can be fitted by the known expression
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where B is the magnetic field induction, r is the scattering
factor, n and p are the electron and hole concentrations and
mn and mp are the electron and hole mobilities.

The conductivity in zero magnetic field can be
expressed as follows:

s ¼ sn þ sp ¼ enmn þ epmp: ð2Þ

In the vanishing field limit, the effective Hall coefficient
can be expressed through the Hall factor rH and the charge-
carrier mobilities and concentrations [14]:

RH ¼ rH
e

pm2
p � nm2

n

ðpmp þ nmnÞ2
: ð3Þ

The Hall factor is usually close to 1 and slightly depends on
the scattering factor r in Eq. (1) [13].

As pure Bi can be considered as an intrinsic semi-
conductor, the equality of concentrations

n ¼ p ð4Þ

can be applied for calculations.
The effective Seebeck coefficient can be expressed with

Matthiessen’s rule [5, 9, 15]

S ¼ Spsp þ Snsn

sp þ sn
; ð5Þ

where Sn and Sp are partial Seebeck coefficients for electrons
and holes, sn¼ nemn and sp¼ pemp are the electron and hole
contributions to conductivity, respectively. We calculated
the partial Seebeck coefficients in an isotropic approxima-
tion using a simple two-band model assuming that only T-
point holes contribute to conductivity. The partial coef-
ficient for holes with parabolic band dispersion law Sp can
be expressed as

Sp ¼ kB
e
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Figure 5 Field dependences of relative magnetoresistance
[r(B)� r(0)]/r(0) at (a) T¼ 300K, (b) T¼ 100K and (c) T¼ 25K.
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where Ep
f is the Fermi energy for holes (Fig. 1), kB is the

Boltzmann constant and Fj(Ef/(kBT)) is the Fermi integral
expressed as

Fj
Ef

kBT

� �
¼ 1

j!

Z1

0

xj

ex�
E
f

kBT þ 1
dx: ð7Þ

To take into account a nonparabolicity of the electron
energy dispersion law, the Lax model was used for
describing the partial Seebeck coefficient for elec-
trons [5, 15]
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where En
f is the Fermi energy for electrons (Fig. 1) and
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In our calculations we used the temperature dependence
of L-point bandgap Eg and Fermi energies for holes and
electrons reported in [5].

We have obtained the temperature dependences of
n (p), mn and mp using two different equation systems:
either Eqs. (1)–(4) (system A with the equation for Hall
coefficient) or Eqs. (1), (2), (4) and (5) (system B with the
equation for Seebeck coefficient). The scattering factor was
chosen equal to �1/2 (acoustic phonon scattering) in the
equation for Seebeck coefficient. Experimental measure-
ments of resistivity, magnetoresistance, Seebeck and Hall
coefficients are being used as input data for those equation
systems. The n(T),mn(T) andmp(T) dependencies calculated
on the basis of the A and B systems for different samples are
presented in Figs. 6 and 7.

As can be seen from Fig. 6, the concentrations of
electrons (holes) increase monotonically with temperature
and are very close to the values known from the literature for
non-doped Bi single crystals [7]. In so doing, the values of
concentrations calculated from the equation systems A and
B were matched with high precision (less than 0.1%). The
charge-carrier concentrations calculated for Bi films of
different types differ slightly. This fact proves the correct-
ness of the analysis because the concentration of charge
carriers should not vary for thick films of the same chemical
composition and crystalline structure.

The mobility of carriers for the fine-grained ECD films
is slightly dependent on temperature at T <100K, while for
the MS and AECD samples this dependence is much
stronger for the whole temperature range studied (Fig. 7).
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Figure 6 Temperature dependence of the charge-carrier concen-
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This difference can be understood taking into account the
fact that the linear density of grain boundaries is much
higher in the ECD films (Section 3.1) and, hence, at low
temperatures grain-boundary scattering may be considered
as a dominant scattering mechanism for these samples. The
slight temperature dependence of carriers scattering on
structural defects as compared with phonon scattering
[15, 16] explains the insignificant mobility variation with
temperature in the ECD films.

Also, note that for the ECD films the divergence
between mobilitiy values calculated using the equation
systems A (Hall coefficient) and B (Seebeck coefficient;
dominance of acoustic phonon scattering is supposed) is
significantly larger in comparison to that for the MS and the
AECD samples (Fig. 7). This fact is additional corroboration
of the phonon-scattering dominance in the MS and AECD
films, as well as the enhanced influence of grain-boundary
scattering in the ECD ones.

The obtained n(T), mn(T) and mp(T) dependencies allow
us to easily explain the difference in the temperature
behaviour of resistivity for the large- and fine-grained films
(Fig. 4a). Resistivity is known to be inversely proportional to
the concentration and mobility of charge carriers. The
concentration increases approximately eightfold in the range
from 25 to 300K for all samples (Fig. 6). For the fine-grained
ECD samples, the mobility decreases with temperature only
by 2–3 times, whereas for the large-grained MS and AECD
films—more than by one order of magnitude. As for the ECD
samples, mobility decreases slowly with increasing temper-
ature (because the efficiency of scattering on grain boundaries
is weakly sensitive to temperature), the temperature depend-
ence of resistivity will be determined mainly by the
temperature dependence of carrier concentrations. At
the same time, for the large-grained MS and AECD films
the carrier mobilities decrease rapidly with increasing temper-
ature, because scattering on grain boundaries plays a much
smaller role as compared with strong temperature-dependent
phonon scattering. Therefore, the temperature dependence of
resistivity for the large-grained samples is determined mainly
by the temperature dependences of mobilities.

4 Conclusions The experimental study of resistivity,
magnetoresistance, Hall and Seebeck coefficients in the
temperature range from 4 to 300K, as well as calculations
based on these data have shown a correlation between electric

properties and grain structure of the polycrystalline bismuth
films obtained by the melt spinning and electrochemical
deposition methods. Charge-carrier concentrations and mobi-
lities were calculated on the assumption of scattering on the
acoustic deformation potential as the dominant mechanism of
carriers scatteringandusing theLaxmodelwithanonparabolic
dispersion law for electrons. These estimations allowed
determination of the role of boundary scattering of carriers and
explained the temperature dependences of resistivity in terms
of the scattering on grain boundaries.

References

[1] D. M. Rowe (ed.), Thermoelectrics Handbook: Macro to
Nano (Taylor and Francis, Boca Raton 2006), pp. 30-1–
30-14.

[2] O. Caballero-Calero, P. D�ıaz-Chao, B. Abad, C. V. Manzano,
M. D. Ynsa, J. J. Romero, M. Rojo, and M. S. Mart�ın-
Gonz�alez, Electrochim. Acta 123, 117 (2014).

[3] M. Tan, Y. Deng, and Y. Hao, Energy 70, 143 (2014).
[4] G. Jezequel, J. Thomas, and I. Pollini, Phys. Rev. B 56, 6620

(1997).
[5] D. Nakamura, M. Murata, H. Yamamoto, Y. Hasegawa, and

T. Komine, J. Appl. Phys. 110, 053702 (2011).
[6] W. J. Boettinger, J. H. Perepezko, and H. H. Liebermann,

Rapidly Solidified Alloys: Processes, Structures, Properties,
Applications (Marcel Dekker, Inc, New York, 1993),
pp. 68–73.

[7] C. F. Gallo, B. S. Chandrasekhar, and P. S. Sutter, J. Appl.
Phys. 11, 268 (1963).

[8] K. Kishimoto and T. Koyanagi, J. Appl. Phys. 92, 2544
(2002).

[9] S. Kochowski and A. Opilski, Thin Solid Films 48, 345
(1978).

[10] M. H. Jeun, K. I. Lee, andW. Y. Lee, J. Korean Phys. Soc. 46,
S80 (2005).

[11] F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and
C. L. Chien, Science 284, 1335 (1999).

[12] J. Chang, H. Kim, J. Han, M. H. Jeon, andW. Y. Lee, J. Appl.
Phys. 98, 023906 (2005).

[13] K. Seeger, Semiconductor Physics: An Introduction
(Springer, Berlin, 1991), p. 65.

[14] J. N. Zemel, Nondestructive Evaluation of Semiconductor
Materials and Devices (Springer US, NewYork, 1979), p. 84.

[15] B. Lax, J. G. Mavroides, H. J. Zeiger, and R. J. Keyes, Phys.
Rev. Lett. 5, 241 (1960).

[16] J. Heremans and O. P. Hansen, J. Phys. C, Solid State Phys.
12, 3483 (1979).

Phys. Status Solidi B 252, No. 9 (2015) 2005

www.pss-b.com � 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Original

Paper


