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Abstract

Navigational control of avian migration is understood, largely from the study of terrestrial birds, to depend on either
genetically or culturally inherited information. By tracking the individual migrations of Atlantic Puffins, Fratercula arctica, in
successive years using geolocators, we describe migratory behaviour in a pelagic seabird that is apparently incompatible
with this view. Puffins do not migrate to a single overwintering area, but follow a dispersive pattern of movements
changing through the non-breeding period, showing great variability in travel distances and directions. Despite this within-
population variability, individuals show remarkable consistency in their own migratory routes among years. This
combination of complex population dispersion and individual route fidelity cannot easily be accounted for in terms of
genetic inheritance of compass instructions, or cultural inheritance of traditional routes. We suggest that a mechanism of
individual exploration and acquired navigational memory may provide the dominant control over Puffin migration, and
potentially some other pelagic seabirds, despite the apparently featureless nature of the ocean.
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Introduction

Masters of migration, birds have formed the core model for our

understanding of animal migration for decades [1], leading to an

orthodoxy that migratory patterns are dominated either by

genetically inherited compass information, or culturally inherited

routes. Whilst the navigational capacities of terrestrial birds have

been more intensely studied than those of any other animal group,

following the behaviour of individuals during natural migrations

has always proved difficult, leaving unanswered important

questions about how individuals actually control navigation over

very long distances [2]. The latter problem is especially acute for

seabirds, such as Atlantic Puffins, Fratercula arctica, that migrate

over open ocean, where available cues may differ from those over

land [3].

Puffins breed on relatively isolated cliff slopes and islands

around the North Atlantic in the northern summer, pursuit diving

for pelagic fish in local waters, then leave their dense colonies in

late summer on migration. The overwintering destinations of

Puffins (in common with many pelagic seabirds) have never been

pin-pointed clearly from recoveries of ringed birds that have died,

suggesting that they spend most of the time in the open ocean

(recently confirmed by Harris et al. [4]) probably distributed widely

around the North Atlantic, North Sea, and even the Mediterra-

nean (for UK breeders) [5]. There is little evidence of concentrated

overwintering areas, and relatively few, scattered winter sightings

at sea, suggesting that migratory routes may be highly variable.

Furthermore, fledglings leave at night, apparently alone, long

before adults normally abandon the colony for the winter [5], so

they cannot be following their parents. Together these facts

suggest that navigational control of migration in the Puffin may

not conform well to the established theories of genetic or cultural

inheritance. The aim of this study, therefore, was to characterize

the consistency of migratory behaviour, both between and within

individuals, by tracking them with miniature archival light loggers

(geolocators). In particular we aimed to determine whether an

individual’s migratory route was consistent from one year to the

next, since this would indicate that an individual’s decisions

involving navigational information were capable of remaining

consistent over very long time periods even if individual

destinations were variable.

Materials and Methods

Ethics Statement: All work was conducted after ethical approval

by the Countryside Council for Wales (Licence numbers: OTH/

SB/04/2007; OTH/SB/03/2008; OTH:SB-04-2009), the Sko-

mer Island Advisory Committee (no licence or permits are

required or issued), and the British Trust for Ornithology’s

Unconventional Methods Committee (BTO permits: Guilford,

5311; Perrins, 660).

We tracked birds using geolocators (Mk 13 or Mk14; British

Antarctic Survey, Cambridge) at a compact sub-colony of Puffins

at The Isthmus on Skomer Island, Wales, UK, (51 degrees 449N; 5

degrees 199W) where breeding success has been monitored for

many years [6,7]. Stored light level measurements are used to

derive dawn and dusk transition times from which it is possible to

estimate approximate location anywhere on earth except during
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periods of a few weeks around the equinoxes (see reference [8] for

analysis of position accuracy). Birds were caught on entry to, or

exit from, their breeding burrow during late chick rearing using

purse nets under constant surveillance and taken to a nearby

laboratory for weighing, ringing, and geolocator attachment using

a Darvic leg ring (which usually took less than 12 minutes).

Tagged birds were re-caught during the next or a subsequent

breeding season in the same way, and data downloaded from the

device in situ, or the device removed. The mass of device and

attachment was approximately 2 g, comprising a maximum load

of 0.6% body mass for birds of minimum mass 350 g. In 2007 we

conducted a pilot study of just 6 individuals in order to check for

potential deleterious effects. All birds returned to the colony the

following year. On this basis we expanded the study, with 18

devices deployed in 2008 (13 new birds and 5 birds that had been

tracked the previous year), and 26 in 2009 (8 new birds, and 18

previously tracked birds). In total, the deployments amounted to

27 birds over 49 bird-years. Details of the fates of birds and their

deployed geolocators are given in Table S1.

Geolocator light data were decompressed using BASTrack and

then processed using TransEdit and BirdTracker software (BAS)

and Matlab (Mathworks, Natick, Mass.), using a light threshold of

10 and an elevation angle that most closely matched estimated

locations during ground truthing periods to the known colony

position (usually 24.5). Sets of valid locations for each tracked

individual were extracted from the raw data in the following way.

Locations based on unclear day/night transitions in light curves

were identified during processing and removed, as were those

resulting from unrealistically short dark periods (,4 hours), or

proximity to the spring and autumn equinoxes. Remaining

locations were further filtered to remove unrealistic movements

(more than 2 degrees in 24 hours). Only months outside the

breeding season (August-March) were included in analyses: 1),

because we were interested in the migration period; and 2),

because timing of dawn and dusk is unavailable for birds in

burrows.

The error inherent in light-based geolocation tracking is often

too great [8] to provide accurate daily movements. We visualized

the overall movement patterns using monthly spatial medians of

the valid daily latitude and longitude estimates to provide each

bird’s approximate position during three selected months spaced

across the whole migration period. To gauge the levels of

combined movement and error within each month the reader is

referred to the raw plots of validated locations in figures S1, S2,

S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17,

S18, S19, S20, S21, S22, S23, S24, S25, S26, presented separately

for every bird, which also show the monthly positions not included

in Figure 1 summary visualization. However, to determine the

consistency of migratory routes either between or within

individuals required a more sophisticated analysis. We used a

novel technique, based on nearest neighbour analysis, which we

recently developed for analyzing route-fidelity in the GPS tracks of

flying pigeons [9], and which quantifies the spatial similarity

between a focal track and a comparison track. For each valid

location on the focal track, the distance to its nearest neighbour on

the comparison track is calculated within a window of 15 days

either side (to minimize the chance that apparent dissimilarity may

be generated by timing differences of otherwise similar routes).

The mean of these nearest-neighbour distances across the whole

track provides a metric of track similarity. The critical question

concerns whether individuals are faithful to their own routes

between years relative to the routes taken by others. To assess this

‘‘route fidelity’’ we used randomization tests to construct a null

distribution of route similarity amongst pairs of routes drawn from

the overall set of single migrations. Significance was assessed by

calculating how rarely the differences amongst a randomly drawn

set of route pairs were as extreme (two-tailed) or as small (one-

tailed) as those displayed by the set individuals’ own route pairs.

Results

26 of the 27 birds were seen back at the colony in the year

following deployment or subsequently, indicating that survival

over the winter immediately following deployment was at least

96%. Over a total of 49 bird-deployment-years, in only three cases

has a bird not been subsequently sighted suggesting that it may not

have survived the winter, indicating a minimum annual survival

rate of 94% (average survival rates at Skomer are usually high:

95% between 1972 and 1977 [6]; 93% between 1984 and 2001

[7]; 84% in 2007/8, and 92% in 2008/9). No immediate nest

desertions were observed. 38 out of 44 breeding birds for which

the fate was known were successful (86% fledging success). This

level of success was comparable to that in the colony as a whole

over this three year period (67% in 2008, 77% in 2009, 80% in

2010, Boyle, D. Personal Communication). Geolocator deploy-

ments therefore appeared to cause no measurable impact.

Migration data were obtained from 18 of the 27 study birds in at

least one year (missing data were due to device failure or inability

to recapture birds, detailed in Table S1). The first or most

complete migration recorded for each individual, summarized for

clarity as median positions for August, October, and February, is

plotted in Fig. 1 (complete plots of all valid winter locations for

each individual are provided in figures S1, S2, S3, S4, S5, S6, S7,

S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20,

S21, S22, S23, S24, S25, S26). Tracked birds showed a complex

pattern of migratory movements during the non-breeding months,

starting with highly dispersive movements into the Atlantic. In

August most birds migrate away from the colony, most in a NW-

W direction, some as far as Greenland, some more locally, whilst

some move southwards towards France and Biscay. In autumn

they move northwards or north eastwards into the North Atlantic,

and then later in the winter they move southwards, some as far as

the Mediterranean, before returning (from a variety of directions)

to the colony in spring.

Furthermore, our data show that despite the population

variability these are well directed migrations and not simple

dispersal movements. The monthly median positions for eight

birds tracked for two successive migrations (partial data in two

cases) are plotted in figure 2. In one case (EJ99355) data were used

from 2007/8 and 2009/10, with partial data from the intervening

year left unused. In every case the individual’s route is conserved,

despite the idiosyncratic nature of the bird’s movements. Most

dramatically, whilst one bird migrates north west each year to the

western Atlantic, another migrates south east each year to the

central Mediterranean after first spending the autumn south of

Iceland.

Figure 3 shows the distribution of median nearest neighbour

distances: (a), between all possible pairings of birds with just a

single recorded route (N = 289); (b), between all possible pairs of

routes of birds with two recorded migrations but excluding each

individual’s own subsequent route (N = 28); and (c), between each

individual’s own two recorded migrations (N = 8). The difference

of the distances between group (a) and group (c) was compared to

the difference between randomly generated groups of the same

size drawn from all possible route pairings. In 100 000

randomisations we found very few cases in which this value was

as large as that observed between (a) and (c)(p,0.018, two-tailed),

and no cases where the randomly generated pairs were as similar

Migratory Navigation in the Atlantic Puffin

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e21336



as in the set of dual migrations (c) (p<0, one-tailed). In contrast,

there was very little difference between the distances of groups (a)

and (b), indicating that the routes taken by dual migration birds

were as diverse as those taken by the tracked birds as a whole.

Discussion

Our data show that Puffins from Skomer have both a complex

and highly dispersive migration, a finding consistent with recent

results for conspecifics breeding in north east Britain [4].

Nonetheless, individuals are significantly more likely to follow a

migration similar to their own previous route than that of another

Puffin. Nearest neighbour analysis demonstrates that despite the

relatively small sample and the inherent noisiness of geolocator

data, this combination of dispersive migration and route fidelity

leads to individually idiosyncratic behaviour that is statistically

robust. Whilst much larger and longer studies would be required

to understand what controls variation between birds, or between

Figure 1. Dispersive migration in the Atlantic Puffin. Patterns of migratory movements for 18 Puffins tracked using geolocators are shown as
median individual position estimates during three months outside the breeding season: August (red); October (green); and February (blue). Lines join
each individual bird’s successive positions, but do not indicate the path travelled.
doi:10.1371/journal.pone.0021336.g001
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years, it is nonetheless clear that our finding cannot be an anomaly

due to the sample of birds that we tracked on multiple migration:

dual-tracked birds are statistically just as a diverse in their

migration routes as are the larger sample of singly tracked birds.

What kind of navigational control can account for this

combination of population dispersion and individual route fidelity?

Current understanding of the control of first migration suggests

either 1) that approximate movement direction, and distance, are

coded for genetically (so-called ‘clock and compass’), or, 2), that

traditional routes are learnt from parents or other conspecifics

during social migration [10,11,12]. Subsequent migrations may be

fixed by the learning of key landscape (or seascape) features, or

honed by acquired experience of navigational map factors en-route

(possibly magnetic [13–15] or olfactory [3,16]). Whilst individual

experience can lead to idiosyncrasies in the details of individual

routes, the core pattern is inherited either genetically or culturally.

This current understanding accounts poorly for Puffin migration.

Our results show a complex pattern which is both multi-

directional and changing through the non-breeding season. It is

possible that such behaviour may be under genetic control,

conforming to current theory, but this seems unlikely. Genetically

pre-programmed changes in orientation behaviour during the

migratory period have been found in some passerines apparently

providing appropriate control of their curved migratory routes

[17], and sometimes such changes may be triggered by

appropriate regional cues [1,18]. However, the complex sequence

of directional movements identified here would require consider-

ably more complexity in genetic control than has hitherto been

discovered for birds.

Nevertheless, the more striking finding is the Puffins’ individual

diversity of migratory movements, and this would also require an

unusual system of genetic control since there is limited consistency

between individuals. Where distinctly different migratory routes

have been studied in detail there is often a migratory divide, with

characteristic genetically encoded orientation tendencies in

populations either side [1,10]. We do not yet know whether there

is any genetic orientation tendency in Puffins, but their extremely

close breeding proximity in our study shows that there is no

migratory divide. Sympatric genetic polymorphism in directional

tendency is possible, as is some kind of conditional switch, but

neither has been investigated yet in any migratory species.

The alternative, that routes are culturally inherited, also seems

unlikely because Puffins are relatively unsocial away from the

colony outside the breeding season [5]. Off-shore surveys around

Britain indicate that between September and February the

majority of sightings involve solitary birds (81% of sighting events,

63% of birds sighted), with pairs or very small groups observed

infrequently. During August, aggregations are more common

(70% of sighting events solitary, 39% of birds), suggesting that

opportunities for following or joining conspecifics may in fact vary

through the migratory period (Webb, A., Unpublished Observa-

tions. See [19] for methods and extent of data collection). More

important, however, the young fledge at night without their

parents, apparently disappearing at least beyond sight of the

Figure 3. Migration routes are more similar within than between individuals. The Box-plots show average nearest neighbour distances
between points within a moving 30 day window along pairs of migratory tracks. Left (a) includes all possible pairs of tracks from birds for whom we
have just a single migration recorded. Centre (b) includes distances between pairs of tracks from different birds for whom we have two migrations
recorded. Right (c) is the set of distances between pairs of tracks completed by the same individuals.
doi:10.1371/journal.pone.0021336.g003

Figure 2. Migratory tracks of 8 individual Puffins in two successive years. Each individual is indicated in a different colour and position
estimates are given as monthly medians of available data, with the month indicated by a number (January = 1). Breeding season data are excluded,
and the colony location marked by C. Lines join each individual bird’s successive positions, but do not indicate the path travelled.
doi:10.1371/journal.pone.0021336.g002
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colony [5], making parental transmission of routes extremely

unlikely. Furthermore, most fledging occurs before adults

generally leave the colony on migration, so there is little

opportunity for systematic transmission of route information from

adult to young. Occasional or haphazard following of other birds

(conspecifics or otherwise) remains a possibility, but systematic

cultural inheritance of migratory routes is unlikely.

In common with many pelagic seabirds Puffins can stop

anywhere at sea, and feed if resources are available. Furthermore,

suitable overwintering habitat may be both spatially diverse and

relatively dynamic. These factors may favour selection of less

rigid migratory control, and allow more extensive exploratory

movements. One possible hypothesis therefore, which we call the

‘‘exploration-refinement hypothesis’’, is that Puffins have neither

strict genetic nor cultural control of migration, but instead rely on

a system of large-scale exploratory movements during the pre-

breeding years which become refined into an individual

migratory route and set of destinations through learning. For

Puffins, as for most seabirds, we are at a very early stage in

understanding the precise mechanisms of orientation, but

studying how patterns of movement develop between fledging

and first return to the colony, and investigating heritability of

migration routes, timing and destinations would be important

first steps in determining how widespread individually learnt

migration control is, and what navigational systems might be

involved.

The inadequacy of established hypotheses to account for

migratory orientation control in pelagic seabirds, and the

likelihood of a greater role for experience, has been hinted at

before, prompted by individual consistencies in the long distance

movements of albatrosses [1,20,21]. Fidelity even for distant

foraging areas located over shelf edges can be remarkably high

[22], suggesting similarities with the learnt migratory movements

implied here. Route-fidelity has also been noted in other groups

of oceanic migrants, such as Northern Elephant Seals Mirounga

angustirostris [23], although not yet in combination with complex

dispersive migration. Paradoxically (because our evidence for it is

individual route fidelity) learning may also help account for

apparent lack of fidelity in overwintering sites [24] if individuals

can learn to switch strategically between multiple destinations

and routes. Evidence for a greater role for learning may in fact

be quite widespread even though its role in shaping migration

strategies has not been widely appreciated or formally developed.

Especially in the light of emerging modern tracking technologies

we believe it is now time to consider explicitly whether

the ‘‘exploration-refinement’’ hypothesis could help explain

observed movement patterns in future studies of vertebrate

migration.

Supporting Information

Figure S1 Filtered (valid) geolocator position estimates
(small circles), and monthly spatial median positions
(large circles) for Puffin EJ99351, colour coded by month
during the 2007–2008 non-breeding season.

(TIFF)

Figure S2 Filtered (valid) geolocator position estimates
(small circles), and monthly spatial median positions
(large circles) for Puffin EJ99352, colour coded by month
during the 2007–2008 non-breeding season.

(TIFF)

Figure S3 Filtered (valid) geolocator position estimates
(small circles), and monthly spatial median positions

(large circles) for Puffin EJ99354, colour coded by month
during the 2007–2008 non-breeding season.

(TIFF)

Figure S4 Filtered (valid) geolocator position estimates
(small circles), and monthly spatial median positions
(large circles) for Puffin EJ99355, colour coded by month
during the 2007–2008 non-breeding season.

(TIFF)

Figure S5 Filtered (valid) geolocator position estimates
(small circles), and monthly spatial median positions
(large circles) for Puffin ET43490, colour coded by
month during the 2007–2008 non-breeding season.

(TIFF)

Figure S6 Filtered (valid) geolocator position estimates
(small circles), and monthly spatial median positions
(large circles) for Puffin EJ09593, colour coded by month
during the 2008–2009 non-breeding season.

(TIFF)

Figure S7 Filtered (valid) geolocator position estimates
(small circles), and monthly spatial median positions
(large circles) for Puffin EJ47617, colour coded by month
during the 2008–2009 non-breeding season.

(TIFF)

Figure S8 Filtered (valid) geolocator position estimates
(small circles), and monthly spatial median positions
(large circles) for Puffin EJ47622, colour coded by month
during the 2008–2009 non-breeding season.

(TIFF)

Figure S9 Filtered (valid) geolocator position estimates
(small circles), and monthly spatial median positions
(large circles) for Puffin EJ47623, colour coded by month
during the 2008–2009 non-breeding season.

(TIFF)

Figure S10 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ47624, colour coded
by month during the 2008–2009 non-breeding season.

(TIFF)

Figure S11 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ99351, colour coded
by month during the 2008–2009 non-breeding season.

(TIFF)

Figure S12 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ99411, colour coded
by month during the 2008–2009 non-breeding season.

(TIFF)

Figure S13 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ99424, colour coded
by month during the 2008–2009 non-breeding season.

(TIFF)

Figure S14 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ99427, colour coded
by month during the 2008–2009 non-breeding season.

(TIFF)
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Figure S15 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ43490, colour coded
by month during the 2008–2009 non-breeding season.
(TIFF)

Figure S16 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ09593, colour coded
by month during the 2009–2010 non-breeding season.
(TIFF)

Figure S17 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ47617, colour coded
by month during the 2009–2010 non-breeding season.
(TIFF)

Figure S18 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ47622, colour coded
by month during the 2009–2010 non-breeding season.
(TIFF)

Figure S19 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ47625, colour coded
by month during the 2009–2010 non-breeding season.
(TIFF)

Figure S20 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ60575, colour coded
by month during the 2009–2010 non-breeding season.
(TIFF)

Figure S21 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ99355, colour coded
by month during the 2009–2010 non-breeding season.
(TIFF)

Figure S22 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EJ99411, colour coded
by month during the 2009–2010 non-breeding season.
(TIFF)

Figure S23 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median

positions (large circles) for Puffin EJ99427, colour coded
by month during the 2009–2010 non-breeding season.

(TIFF)

Figure S24 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EL60571, colour coded
by month during the 2009–2010 non-breeding season.

(TIFF)

Figure S25 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EL60579, colour coded
by month during the 2009–2010 non-breeding season.

(TIFF)

Figure S26 Filtered (valid) geolocator position esti-
mates (small circles), and monthly spatial median
positions (large circles) for Puffin EL60648, colour coded
by month during the 2009–2010 non-breeding season.

(TIFF)

Table S1 Details of each individual Puffin used in the
study including geolocator deployment periods, recap-
tures, the fate of geolocator data, the supplementary
figure numbers containing displaying these data, and
the breeding success of the bird in the season following
deployment.

(DOC)
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