Magnetic and photoluminescent properties of La_{1-x}Nd_xInO₃ solid solutions $(0.007 \le x \le 0.05)$ with perovskite structure L.A. Bashkirov¹, E.K. Yukhno¹, N.A. Mironova-Ulmane², A.G. Sharakovsky², P.P. Pershukevich³, L.S. Lobanovsky⁴, S.V. Truhanov⁴, E.I. Bogdanov¹ ¹Belarusian State Technological University, Minsk ²University of Latvia Institute of Solid State Physics, Riga ³B. I. Stepanov Institute of Physics NAS of Belarus, Minsk ⁴Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk e-mail: bashkirov@belstu.by For La_{1-x}Nd_xInO₃ (x = 0.007, 0.02, 0.05), La_{1-x}Nd_xIn_{1-y}Cr_yO₃, La_{1-x}Nd_xIn_{1-y}Mn_yO₃ (x = 0.05, y = 0.005) solid solutions magnetic susceptibility in the temperature range of 5–300 K in a magnetic field of 0.86 T was measured and effective magnetic moment of Nd³⁺ ions was calculated (Fig. *a*). Magnetization dependences of these solid solutions on the magnetic field up to 14 T were investigated at 5 K and 300 K. X-ray diffraction patterns showed that the samples were single-phase and had the structure of orthorhombically distorted perovskite. Fig. 1 Magnetic properties of $La_{1-x}Nd_xInO_3$ solid solutions: a – the temperature dependence of the molar magnetic susceptibility, b, c – the field dependence of the specific magnetization at 5 K and 300 K The effective magnetic moment of the Nd^{3+} ion for $La_{1-x}Nd_xInO_3$ solid solutions with $x=0.007,\ 0.02,\ 0.05$ was significantly smaller than its theoretical value (3.62 μ_B). The magnetic moments of Nd^{3+} ions for $La_{1-x}Nd_xInO_3$ solid solutions with $x=0.007,\ 0.02,\ 0.05$ calculated from their magnetization value at 5 K in a field of 14 T (Fig. b) were equal to 1.18 μ_B , 1.26 μ_B , 1.31 μ_B , respectively. With an increase in Nd^{3+} ions content in $La_{1-x}Nd_xInO_3$ from x=0.007 to 0.05 there was a significant increase in photoluminescence intensity at infrared wavelengths. The intensity of the photoluminescence band at $\lambda=860$ –960 nm for $La_{0.95}Nd_{0.05}In_{0.995}Cr_{0.005}O_3$ sample was higher than that for $La_{0.95}Nd_{0.05}InO_3$ sample due to the superposition of Nd^{3+} and Cr^{3+} ions photoluminescence bands.