## Magnetic and photoluminescent properties of La<sub>1-x</sub>Nd<sub>x</sub>InO<sub>3</sub> solid solutions $(0.007 \le x \le 0.05)$ with perovskite structure

L.A. Bashkirov<sup>1</sup>, E.K. Yukhno<sup>1</sup>, N.A. Mironova-Ulmane<sup>2</sup>, A.G. Sharakovsky<sup>2</sup>, P.P. Pershukevich<sup>3</sup>, L.S. Lobanovsky<sup>4</sup>, S.V. Truhanov<sup>4</sup>, E.I. Bogdanov<sup>1</sup>

<sup>1</sup>Belarusian State Technological University, Minsk

<sup>2</sup>University of Latvia Institute of Solid State Physics, Riga

<sup>3</sup>B. I. Stepanov Institute of Physics NAS of Belarus, Minsk

<sup>4</sup>Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk

e-mail: bashkirov@belstu.by

For La<sub>1-x</sub>Nd<sub>x</sub>InO<sub>3</sub> (x = 0.007, 0.02, 0.05), La<sub>1-x</sub>Nd<sub>x</sub>In<sub>1-y</sub>Cr<sub>y</sub>O<sub>3</sub>, La<sub>1-x</sub>Nd<sub>x</sub>In<sub>1-y</sub>Mn<sub>y</sub>O<sub>3</sub> (x = 0.05, y = 0.005) solid solutions magnetic susceptibility in the temperature range of 5–300 K in a magnetic field of 0.86 T was measured and effective magnetic moment of Nd<sup>3+</sup> ions was calculated (Fig. *a*). Magnetization dependences of these solid solutions on the magnetic field up to 14 T were investigated at 5 K and 300 K.

X-ray diffraction patterns showed that the samples were single-phase and had the structure of orthorhombically distorted perovskite.

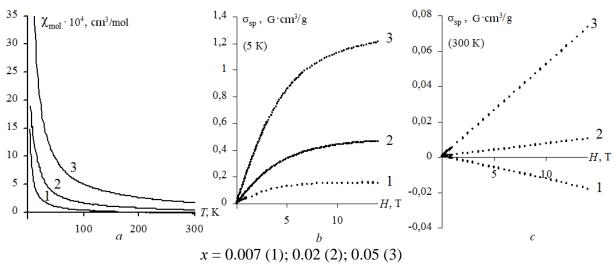



Fig. 1 Magnetic properties of  $La_{1-x}Nd_xInO_3$  solid solutions: a – the temperature dependence of the molar magnetic susceptibility, b, c – the field dependence of the specific magnetization at 5 K and 300 K

The effective magnetic moment of the  $Nd^{3+}$  ion for  $La_{1-x}Nd_xInO_3$  solid solutions with  $x=0.007,\ 0.02,\ 0.05$  was significantly smaller than its theoretical value (3.62  $\mu_B$ ). The magnetic moments of  $Nd^{3+}$  ions for  $La_{1-x}Nd_xInO_3$  solid solutions with  $x=0.007,\ 0.02,\ 0.05$  calculated from their magnetization value at 5 K in a field of 14 T (Fig. b) were equal to 1.18  $\mu_B$ , 1.26 $\mu_B$ , 1.31  $\mu_B$ , respectively.

With an increase in  $Nd^{3+}$  ions content in  $La_{1-x}Nd_xInO_3$  from x=0.007 to 0.05 there was a significant increase in photoluminescence intensity at infrared wavelengths. The intensity of the photoluminescence band at  $\lambda=860$ –960 nm for  $La_{0.95}Nd_{0.05}In_{0.995}Cr_{0.005}O_3$  sample was higher than that for  $La_{0.95}Nd_{0.05}InO_3$  sample due to the superposition of  $Nd^{3+}$  and  $Cr^{3+}$  ions photoluminescence bands.