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Distortion and spreading models
in modified mixed Tsirelson spaces

by

S. A. ARGYROS (Athens), I. DELIYANNI (Heraklion) and
A. MANOUSSAKIS (Chania)

Abstract. The results of the first part concern the existence of higher order ¢; spread-
ing models in asymptotic £1 Banach spaces. We sketch the proof of the fact that the mixed
Tsirelson space T[(Sn,0n)n], Ontm = 0nbm and lim, 9}/” = 1, admits an ¢7 spreading
model in every block subspace. We also prove that if X is a Banach space with a basis,
with the property that there exists a sequence (6n)n C (0,1) with lim, 9}/” = 1, such
that, for every n € N, || 30" zgll > 00 Y pe ||lzg|l for every Sp-admissible block se-
quence (zp)j, of vectors in X, then there exists ¢ > 0 such that every block subspace of
X admits, for every n, an 7 spreading model with constant c. Finally, we give an example
of a Banach space which has the above property but fails to admit an ¢§ spreading model.

In the second part we prove that under certain conditions on the double sequence
(kn,0n)n the modified mixed Tsirelson space Tar[(Sk,,0n)n] is arbitrarily distortable.
Moreover, for an appropriate choice of (kn,60n)n, every block subspace admits an ¢f
spreading model.

1. Introduction. A Banach space X with a basis (e;); is an asymptotic
41 space if there exists a constant C' > 0 such that for every n € N and for
every block sequence (x;)!"_; supported after n,
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Tsirelson’s famous space [33] was the first nontrivial example of such a
space. Mixed Tsirelson spaces, introduced in [5], and their variants offer a
large class of examples of asymptotic ¢; spaces.

This paper consists of two independent parts. The first part concerns the
existence of higher order ¢; spreading models in asymptotic ¢; spaces. The
second part concerns the problem of distortion on these spaces. In particular,
we prove the following.

THEOREM A. For an appropriate sequence (kj, 9]’)30‘117 the modified mixzed

Tsirelson space Tar[(Sk;,07)524] is arbitrarily distortable.

2000 Mathematics Subject Classification: 46B20, 46B03.

[199]


https://core.ac.uk/display/38441023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

200 S. A. Argyros et al.

We recall that a Banach space (X, ||-]|) is said to be \-distortable, A > 1,
if there exists an equivalent norm || - || on X such that

inf sup{[lz[l/llyll : .,y € Sy} = A

where the infimum is taken over all infinite-dimensional subspaces Y of X.
Moreover, X is said to be distortable if it is A-distortable for some A, and
arbitrarily distortable if it is A-distortable for every A > 1. R. C. James
[18] proved that ¢y and ¢; are not distortable. V. D. Milman [24] showed
that if a Banach space X does not have a distortable subspace then it
contains an almost isometric copy of either ¢y or £, for some 1 < p < oo
(see also [28]). Much later E. Odell and Th. Schlumprecht [26] settled the
famous Distortion Problem, by proving that the spaces £,, 1 < p < oo,
are arbitrarily distortable. It remains an open problem whether there exists
a distortable but not arbitrarily distortable Banach space. In view of the
results of B. Maurey [23], V. Milman and N. Tomczak-Jaegermann [25] and
N. Tomczak-Jaegermann [32], the search for such a space has focused on
asymptotic £ spaces with an unconditional basis. It is unknown whether
Tsirelson’s space is such an example.

The first example of an arbitrarily distortable asymptotic /1 Banach
space was a mixed Tsirelson space [5]. We recall the definition of this class
of spaces and their modified versions. Let (M, )nen be a sequence of com-
pact families of finite subsets of N, and (6,)nen a sequence of numbers in
(0,1) decreasing to 0. The mized Tsirelson space T[(My, 0p)n] and its mod-
ified version Ths[(My, 0y)r] are the Banach spaces whose norms are defined
implicitly as follows: For x € ¢y (the space of finitely supported sequences),

P
el = max { 2]l oc, supsup 6 > | Bl }
" i=1

where the inner supremum is taken over all families {E,..., Ep}, p € N, of
finite subsets of N such that:

(i) In the case of the mixed Tsirelson norm,

Vi=1,...,p—1 maxFE; <minE;; and (minFE;)?_; € M,.

Such a family (E;)Y_; is said to be M,,-admissible.

(ii) In the case of the modified mixed Tsirelson norm,

E,,..., E, are pairwise disjoint and (min Ei)le e M,.

We call such a family (E;)!_; M,-allowable.

Not all spaces included in this general definition are asymptotic £;. This
depends on the sequence (M,,),. There are two sequences (M,,), which give

the fundamental examples of mixed Tsirelson spaces: the sequence (A, )nen
where A, = {F C N : #F < n}, and the sequence (S,)nen of the gener-
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alized Schreier families. A typical representative of mixed Tsirelson spaces
defined by (Ap)nen is Schlumprecht’s space S = T[( Ay, 1/logy(n + 1))22,]
[31], while for the spaces defined by the Schreier sequence, typical repre-
sentatives are the spaces T'[(Sp,0,)02 ] with the sequence (6y,), satisfying
the Androulakis—Odell conditions [2]. It follows immediately from the defi-
nition that all mixed Tsirelson spaces defined by the Schreier sequence are
asymptotic £;.

In the literature, the term “mixed Tsirelson spaces” is often used ex-
clusively for the spaces defined by the Schreier sequence (S,), (or, more
generally, (S¢,)n for some sequence (&), of countable ordinals). However,
the main results concerning these spaces are completely analogous in the two
cases T'[(Ap, 1/logy(n+1))5 ] and T[(Sy, 0r)221]. This justifies putting all
these spaces in the same class. This similarity disappears when one looks
at the modified versions of these two main classes. Indeed, as was shown by
Th. Schlumprecht, the modified space Thr[(An,1/logy(n + 1)) ] contains
isomorphically the space ¢; (unpublished result, see also [21] for related re-
sults). On the other hand, if for some n € N, M,, contains the Schreier
family S, then the space Ths[(Mpy,0,)52 ] is reflexive [6]. This fact is not
easily explained, since in the second case the local #; structure of the space
is richer than in the first case.

Let us also recall that the modified version of Tsirelson’s space, defined
by W. B. Johnson [19], is isomorphic to the original one [13]. On the other
hand, the spaces T'[(Sp, 0n)n] and Tar[(Sn, On)n] are totally incomparable in
the case lim,, 65/" = 1; this can be seen by the fact (shown in [6]) that co
is finitely disjointly representable in every block subspace of T[(Sy, 0n)n],
which clearly is not true in the modified space.

In [6] a “boundedly modified” version of mixed Tsirelson spaces was
considered. It was proved that for appropriate sequences (n;) and (6;), the
boundedly modified mixed Tsirelson space defined by (S, 0;); is arbitrarily
distortable. The proof presented there was rather complicated.

We proceed to describe the contents of this paper. Theorem A is pre-
sented in Section 4. Its proof is along the same lines as that of the corre-
sponding result for ordinary mixed Tsirelson spaces [5]. As in that case, we
prove that the space Thr[(Sk;,0;)72,] has an asymptotic biorthogonal sys-
tem. We recall that (C}, Aj)?; is an asymptotic biorthogonal system in the
Banach space X if C; C Sx, A; C Bx~ for every j € N, and there exist a
constant ¢ > 0 and a sequence (g;); decreasing to 0 such that for every j:

(i) (Cj+eBx)NY # 0 for every € > 0 and every infinite-dimensional
subspace Y of X.
(ii) For every y € Cj there exists y* € A; such that y*(y) > c.
(iii) For every i # j, every x € C; and y* € Aj, |y*(2)| < emingi j)-
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In the space Xa = Tw[(Sk;.05)72,] each set C; consists of normalized
(9]2-, k;)-rapidly increasing special convex combinations. These classes of vec-
tors played a similar part in the corresponding result of [5]. The set A;
consists of functionals of the form f = 0; Zle Jr, where f, € Bxx for all
r=1,...,d and (supp f,)%_; is Sp;-allowable.

The key point that distinguishes the behavior of Th/[(Sy, 05)n] from that
of Th[(An, 1/logs(n + 1)),] is the following (Lemma 4.9).

LEMMA. Let X = Ta[(Sn,0n)nl, j € N, € < 0; and let >°}" | apxy be
an (g,7)-special convexr combination with ||xg|| < 1 for all k = 1,...,m.
Then, for every l < j and every finite sequence (fi)glzl in Bx+ such that
(supp fi)L, is Sj-allowable, we have

d m 1
=1 k=1

This is a variation of a result holding for both S = T[(A,, 1/logy(n+1)),]
and T[(Sp,0n)n). However, in the modified Schlumprecht space Ths[(Ap,
1/logy(n + 1)),], an analogous result is no longer true.

In Section 3 we study asymptotic £; Banach spaces with respect to their
higher order ¢; spreading models. We start with the following:

DEFINITION. Let (x); be a seminormalized sequence in a Banach space

X and let £ be a countable ordinal. The sequence (xj); has an ﬁ spreading
model if there exists ¢ > 0 such that for every F' € S¢ and (Ap)rer C R,

keF kel

It is easy to see that every subspace of an asymptotic ¢ space admits
an ¢} spreading model for every & € N. We prove here that the spaces
T[(Sn,0n)n) with (6,,), satisfying the Androulakis-Odell conditions admit
an /¢ spreading model in every subspace with the same constant c. We
obtain this as a consequence of the fact that cg is finitely representable in
every subspace. This result, as well as its proof, should be compared to the
result of D. Kutzarova and P. K. Lin [20] that Schlumprecht’s space admits
an f; spreading model.

A recent result of I. Gasparis [15] includes another method for construct-
ing sequences which have an ¢4 spreading model, without the use of the fi-
nite representability of ¢g. This depends on a careful choice of the sequence
(kn,6pn)n. Using this method we show in Section 4 that if the sequence
(kn, 0p)n satisfies what we call the Gasparis conditions, then every block
subspace of the modified mixed Tsirelson space Tar[(Sk,,0n)n] admits an
¢y spreading model with constant ¢ > 1/64. We note (see Remark 3.2)
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that cg is not finitely representable in the modified mixed Tsirelson spaces
TM[(Sk:na en)n]

In Proposition 3.3 we show that if X is an asymptotic ¢; space with
a basis and there exists a sequence (6;)72, with limy, 9;/ ¥ — 1 such that,
for all n < w and all S,-admissible block sequences (7;)L,, | Zle xil| >
O, 2?21 ||z:||, then there exists ¢ > 0 such that every block subspace of X
admits, for every k, an Elf spreading model with constant c.

Then we proceed to give an example of a Banach space X falling in the
previous class which does not admit any ¢{ spreading model. The norm of
the space X is defined implicitly in the following manner. For appropriate
sequences (n;)32; in N and (6;)72; in (0,1), the norm || - || of X satisfies the
following equation: For x € ¢,

n
Joll = max { @loo,sup { D elmoo)lli i1 € N, G <. <n}

k=1
where ||z|[; = 6; sup{Z:;i:1 |Ez| : d € N, (E)f, is Sy,-admissible}. Our
construction is similar to the example of E. Odell and Th. Schlumprecht
[27] of a Banach space with no £, (1 < p < c0) or ¢y spreading model. A
construction of this type was first employed by W. T. Gowers [16] to provide
an example of a Banach space which does not contain cg, £1 or a reflexive
subspace.

The structure of asymptotic £; Banach spaces has been studied in [29],
where some results which relate the distortion problem with spreading mod-
els are included. In this direction the third named author has recently ob-
tained the following result [22]: Let ¢ > 0 and let X be a Banach space
with a bimonotone shrinking basis (e;) such that X does not admit any ¢¢
spreading model, but every block subspace of X admits, for every k < w, an
E’f spreading model with constant c. Then every subspace of X contains an
arbitrarily distortable subspace. This implies in particular that the space X
of our last mentioned example has an arbitrarily distortable subspace.

Although the present work concerns mainly Banach spaces with an un-
conditional basis, let us mention that spreading models have also been used
in the study of hereditarily indecomposable (H.I.) Banach spaces. It is well
known that if a Banach space X does not contain ¢; then there exists a
unique £ < wyp such that X admits an E% spreading model for all { < &,
but does not admit any ﬁ spreading model. This is used in [10] to show
that every separable Banach space Z not containing ¢; is a quotient of a
hereditarily indecomposable asymptotic £; Banach space X, and moreover
Z* is complemented in X*.

In another direction, spreading models are employed for the construc-
tion of strictly singular noncompact operators on H.I. spaces. Recall that
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W. T. Gowers [17] first established the existence of a strictly singular non-
compact operator from a subspace of the Gowers—Maurey space to the whole
space. Next S. Argyros and V. Felouzis [7], using interpolation techniques,
proved that there are H.I. spaces admitting strictly singular noncompact op-
erators. Also G. Androulakis and Th. Schlumprecht [4] proved that a strictly
singular noncompact operator exists on the Gowers—Maurey space, using the
fact that the spreading model of the unit vector basis of this space is the unit
vector basis of Schlumprecht’s space. Another result in this direction which
is related to our work was obtained by I. Gasparis [15]. He proves that, un-
der certain conditions on the H.I. space X, the existence of a ¢ spreading
model in X* implies that X admits a strictly singular noncompact operator.
See also [3] for related results.

2. Preliminaries

NOTATION. Let (e;)?2; be the standard basis of the linear space cop of
finitely supported sequences. For @ = Y >°, a;e; € coo, the support of x is
the set suppx = {i € N : a; # 0}. The range of x, written range(z), is the
smallest interval of N containing the support of x. For finite subsets E, F’
of N, EF < F means max F < min F' or either F or F is empty. For n € N
and E C N, n < E (resp. E < n) means n < min E (resp. max E < n).
For z,y in cgp, ¢ < y means suppz < suppy. For n € N and = € cyg, we
write n < z (resp. x < n) if n < suppz (resp. suppx < n). We say that
the sets F; C N, i =1,...,n, are successive if 1 < ... < E,. Similarly, the
vectors x;, ¢ = 1,...,n, are successive if x1 < ... < xy,. For x = Z,Loil a;e;
and £ C N, we denote by Ex the vector ), a;e;. For an infinite subset
M of N we denote by [M] the class of infinite subsets of M, and by [M]<¥
the class of finite subsets of M.

The proofs of the first part of the paper rely essentially on the infinite
Ramsey theorem (F. Galvin and K. Prikry, J. Silver, E. E. Ellentuck). We
recall the statement of this theorem. Here [N] is endowed with the topology
of pointwise convergence.

THEOREM 2.1. Let A be an analytic subset of [N]. For every M € [N]
there exists L € [M] such that either [L] C A or [L] C [M]\ A.

The generalized Schreier families (S¢)¢<y, , introduced in [1], are defined
by transfinite induction as follows:
So={{n}:neN}U{0}.
Suppose that the families S, have been defined for all o < £. If £ = ( + 1,
we set

ng{FE[NF“’:F:UFi,nEN F,e S fori=1,...,n and
=1 n§F1<...<Fn}U{(Z)}.
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If £ is a limit ordinal, let (£, 4+ 1),, be a sequence of successor ordinals which
strictly increases to £&. We set

Se={F e [N]*¥:forsomen € N,n <minF and F € S, 1}
For £ <wy and M = (m;)52; € [N], we denote by S¢(M) the family
Se(M) = {(my)icr : F € ).
We next pass to the definition of the repeated averages hierarchy intro-

duced in [9]. We let (e,,) denote the standard basis of cy. For every countable

ordinal ¢ and every M € [N], we define a convex block sequence (¢M)%2,

of (ey) by transfinite induction on ¢ in the following manner: If £ = 0 and
M = (my)2,, then &M = ¢, for all n € N. Assume that (n})°° | has been
defined for all n < £ and M € [N]. Let £ = ( + 1. We set

1 &
M_ - M
61 - my ZCZ )
=1
where m; = min M. Suppose that M < ... < ¢M have been defined. Let

M, ={m € M :m > maxsupp&M},  k, = min M,.
Set

k
I M M

= D G =4
" =1

If ¢ is a limit ordinal, let (&, + 1), be the sequence of ordinals associated
to €. Define

where m; = min M. Suppose that ¢ < ... < ¢M have been defined. Again,
let M,, = {m € M : m > maxsupp &)} and k, = min M,,. Set

eM = (&, + 11"

The inductive definition of (¢))°°,, M € [N], is now complete. We note
that supp &M € S¢ for all M € [N], £ <wy and n € N.

DEFINITION 2.2. Let £ < w; and 6 > 0. A seminormalized sequence (zy,)
in a Banach space has an €§ spreading model with constant o if

H Zaixi > 52 |cvi

iEF i€EF

for every I’ € S¢ and all choices of scalars («;);cr. We say that (z,,) has an
Ef spreading model if it has an €§ spreading model with constant § for some
0> 0.

A family F of finite subsets of N is called hereditary if, for every G € F
and F' C G, we have F' € F.
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For every vector x = > | a;e; € coo and every finite subset F' of N, we
set (z, F) =) ;cp i

We next state the definition of large families and a result from [9] (see
also [8]) which is the main tool for our proof of Proposition 3.3.

DEFINITION 2.3. Let M € [N], £ < wi, 6 > 0 and n € N. A hereditary
family F is called (M, &, d)-large provided that for all N € [M] there exists
F € F such that (&), F) > 6.

PROPOSITION 2.4 ([9] and [8]). Let F C [N|<¥ be a hereditary family,
M € N, ¢ <wy ande > 0. If F is (M,&, e)-large then there exists N € [M]
with Se(N) C F.

DEFINITION 2.5. (a) Let & € N. A finite sequence (E;)!", of successive
subsets of N is said to be Sg-admissible if (min E;), € Si. A finite block
sequence (z;)", in cgp is said to be Sg-admissible if (suppz;)/*, is Sp-
admissible.

(b) Let (k) be an increasing sequence of integers and (6,) C (0,1)
such that 6, \, 0. The mized Tsirelson space X = T[(Sk,,0n)o>,] is the
completion of cgy under the norm which satisfies the implicit equation

m
Joll = max { oo sup 0 { sup > 1 Biall } |
" i=1

where the inner supremum is taken over all Sy, -admissible families (E;)™ ,,
m € N.

An essential role in our proofs is played by the following special vectors.

DEFINITION 2.6. (a) Let n > 1, ¢ >0 and F C N, FF € §,. A convex
combination ZjeF aje; is called an (e, n)-basic special convex combination
(basic s.c.c.) if }-;cqa; < e for every G € Sp1.

(b) Let € > 0, n € N and suppose that (zj);-”zl is a finite block sequence
in cgp with the property that there exist integers (lj)gnzl with 2 <z <1 <
29 <log < ... <lpm-1 < Zm < I, such that a convex combination Z;n:1 ajey,
is an (e,n)-basic s.c.c. Then the corresponding convex combination of the
zj's, x =1 ajz;, is called an (g,n)-s.c.c. of (2;)}L;.

An (g,7)-s.c.c. » = YU, a;2; of unit vectors (z;)7.; in a Banach space
is said to be seminormalized if ||x| > 1/2.

It is proved in [5, Lemma 1.6] that for every € >0, n€ N and M € [N], there
exists an (g, n)-basic s.c.c. 3 aje; with F' C M. In fact, it is not hard to
see that the average nl" is a (3/min L, n)-basic s.c.c. for every L € [M].

LEMMA 2.7. Let (0y)n, 0 < 0, < 1, be a decreasing sequence. Let X be a

Banach space with a basis with the following property: For everyn and every
Sn-admissible block sequence (x;)%, we have || Zle zi|| > O, Zle |-
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Suppose that for somen € N, xz = Z;nzl ajx; is an (e,n)-s.c.c in X, where
€ < 0. Let i < n and suppose that (E,)>_, is an S;-admissible family of
intervals. Then

D lIEz] < (1+¢</6;)

<2 il
> ey < 2 max [

max
1<j<m
The proof is the same as that of [6, Lemma 1.13], so we omit it.

3. ¢y spreading models. In this section we present an example of a
Banach space X with the following properties:

(1) There exists a constant 6 > 0 such that for every k < w, every block
subspace of X admits an E'f spreading model with constant 4.
(2) The space X does not admit any ¢4 spreading model.

As we shall show in Proposition 3.3, (1) is true in a large class of asymptotic
f1 spaces. On the other hand, our next proposition shows that the original
mixed Tsirelson spaces admit in addition ¢{ spreading models.

PROPOSITION 3.1. Let (6y,)n be a sequence in (0,1) such that Oty >
Ombn, 0, \, 0 and lim, 93/" =1, and let X = T[(Sn,0n)nen] be the corre-
sponding mized Tsirelson space. Then there exists a constant K > 0 such
that every block subspace Y of X has a block sequence which has an (¢
spreading model with constant 1/K.

The proof of this fact is influenced by the result of [20] that Schlump-
recht’s space has an ¢; spreading model. To present a complete proof of the
proposition we would have to almost copy some proofs from [6], so we only
give an outline of the proof.

Sketch of the proof. A refinement of the proof of [6, Theorem 1.6] implies
that there exists a lacunary sequence (ji)ren of positive integers such that

O+ ; 1
O+

and with the following property: in every block subspace Y of X there exists
an infinite block sequence (z;); of seminormalized s.c.c.’s such that for every
n € N, we can choose a finite nested sequence (z7)7_, = (v2/llvill)iey
satisfying:

1) yp = Zing oz is a j1 + ... + jg-rapidly increasing s.c.c. (r.i.s.c.c.)
of (z;); for every k =1,...,n ([6, Definition 1.14] and our Definition 4.11).

(2) F < anﬂ foralln € N, k <n and j < n-+1. That is, the sequence
(> "p_q x})n is a block sequence.

(3) 1> op—yxpll <2 foralln eN.
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It follows from [6, Proposition 1.15] that there exists a constant C' > 0
such that %0j1+,,,+jk+1 < lypll £ COj,+...4j, for all n and k. We set w" =
Y op_qxp. Then (w")nen is an ¢f spreading model with constant 1/(4C).
Indeed, let £ € N and G € S with min G > k. Then, for all (8,)neq,

(3.1) H 3 Buur
neG

By the definition of a j; + ... 4+ jp-r.i.s.c.c., it follows that for all n the
family {z; : i € FJ'} is ji1 + ...+ jx + l-admissible. Also {min F}} : n € G}
is Sp-admissible, so {z; : i € U,cq FI'} is kK +j1 + ... + ji + 1-admissible.
Together with (3.1) and the fact that ||y7|| = || Zing a;zi|| < COj1. 4
this implies that

> icrn ollzill
H Z an H > 9k’+]1+ A+l Z |ﬁn k—n

2 A

1 9k+31+ Al
>
> 55 an _4CZ|ﬁn| .

j1+ Ak neG

REMARK 3.2. The proof of Proposmon 3.1 is based on the fact that
co is finitely disjointly representable in the spaces T[(Syn,0n)nen] with
limy, o0 91/ " = 1. Note that, on the contrary, ¢g is not finitely representable
in the modified spaces Ths[(Sn, 0 )nen]. However, in Section 4, we shall show
that under certain conditions on the sequence (ky,, my,)n, the modified mixed
Tsirelson space Thr[(Sk,,1/mn)n] contains an ¢4 spreading model in every

block subspace.

The fact that ¢y is not finitely representable in the modified spaces is
implied by the following theorem of A. Pelczynski and H. Rosenthal [30], as
stated in [19].

THEOREM (see [30]). For every n € N there is an N = N(n) with the
following property: Let X be a Banach space with a 1-unconditional ba-
sis (e;), and F an n-dimensional subspace of X. Then F is contained in
an N-dimensional subspace of X which is 2-isomorphic to the span of N
disjointly supported vectors.

A proof of this theorem can be found in [12]. Let us see how this result
implies that cg is not finitely representable in Xy = Th/[(Sp, 05)n]. Suppose
that ¢ is finitely representable in X ;. Then there exists C' > 0 such that for
every n € N there exist n normalized vectors (y;)_; in X with suppy; >
N = N(n) for all i = 1,...,n, which are C-equivalent to the unit vector
basis of £2,. It follows from the theorem that there exist /N vectors disjointly
supported after NV, (zz)l 1, and an into 2-isomorphism S : span{y; : 1 <
i < n} — span{z; : 1 < i < N}. Since the vectors (z;)Y, are disjointly
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supported after N we find that span{z; : 1 < i < N} is 1/6;-isomorphic
to V. For i = 1,...,n let x; = S(y;). Then |z;]] > 1/2, and since ¢; has
cotype 2, it follows that

= 2n Z HZSZ‘%

5 3 YIS
2” i2ZZZ

‘M%me)zﬁmwa

where A; is the cotype-2 constant of ¢;. This yields a contradiction for
large n. m

PROPOSITION 3.3. Let X be a Banach space with a basis (e;); satisfying

the following: There exists a sequence (0 )ken Such that limy 61/ =1 and,
for every k € N, every Si-admissible block sequence (z]) _, of (ez)i satisfies

d d
|35 = 0 s
pst =1

Then there exists ¢ > 0 such that for every k € N, every block sequence (x;);
of ()i has a further block sequence which has an f’f spreading model with
constant c.

Proof. We shall use the repeated averages hierarchy. Let k£ € N and let
Z = ()72, be a normalized block sequence in X. For each i € N, let

[; = minsupp x;

and set L = (1;)%2,. For P € [N], weset S = {l, : p € P} C L. Let k7 be the
first k-average with respect to the set S and suppose that kf =5 jea el
where G C P, a; >0 and ZJEG aj = 1. Then we set o(k, 2, P) = ZJEG a;x;.
Since supp kf € Sy, it is clear that the family (z;);cc is Sp-admissible.
Since a(k, Z, P) is determined by an initial segment of P, the set A= {P €
N] : ||a(k, @, P)|| > 1/2} is open. Therefore, applying the infinite Ramsey
theorem, we see that either

(i) there exists M € [N] such that ||«(k, Z, P)||>1/2 for all Pe[M], o

(ii) there exists M € [N] such that ||a(k z P)|| <1/2forall P € [M]

Suppose that (i) holds. We shall show that (x;); has a subsequence (y;);
which has an ¢} spreading model with constant ¢ = 1/4 if (z;) is uncondi-
tional, and ¢ = 1/512 in the general case. Let

Fija ={F C L : 3xF € By~ with x(z;) > 1/4 for every I; € F'}.
Set N = {l;,: m &€ M} C L. Then F, is (N, k,1/4)-large.
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Indeed, by our assumption, for every N’ = {l,, : m € M’} € [N],
a(k, @, M)|| = || 3 ;e @izl = 1/2, so there exists 2* € Bx» such that
(e ajxy) = 1/2.8et F ={l; : j € G and z*(x;) > 1/4}. By definition,

F e F1/4. AISO,

ljeF l;eF

1 1 1
= ot (L) —o (L aw) 25-5=7
jeG lj¢F
So, Fi/4 is (N, k, 1/4)-large. It follows from Proposition 2.4 that there exists
Q € [N] such that Sx(Q) C Fy4. Suppose first that the basic sequence
(x;) is unconditional. Let @ = {ls,,ls,,...}. Weset y; = x5, 1 =1,2,... We
claim that the sequence (y;)3°, has an ¢} spreadlng model with constant 1/4.

Indeed, if A € Sy, then {l5, :i € A} € §(Q), and so {ls, : i € A} € F 4.
It follows then there exists * € Bx+ such that 2*(y;) = x*(xs,) > 1/4 for all
i€ A.So || > icaBiyill > 1/4 for every (3;)ica with 8; > 0and ) . 4 i = 1,
which proves our claim.

If (2;); is not unconditional then the existence of an ¢} spreading model
with constant ¢ > 1/512 is a consequence of the following result [8, Corollary
3.6]: For a normalized weakly null sequence (z;); and £ < wy, the following
are equivalent:

(a) There exists M € [N], M = (m;), so that (x,,,); has an ﬁ spreading
model.
(b) There exist N € [N] and 0 > 0 such that S¢(N) C Fs.

Suppose now that (ii) holds. We shall show that also in this case, (z;)32,
has a block sequence which has an E'f spreading model.

Set N = {l,, : m € M} and consider the sequence kY = > ik, Qe
n=12...Forn = 12..., wesetyl = >jer, 4z = a(k, T, My),
where M7 = M and M,, = {m € M : m > suppkM |}, n = 2,3... By
our assumption, ||yl|| < 1/2 for every n. We now set w} = yl/|jyl| for
n € N. We note that for every Sp-admissible sequence (w});cq, the family
{zj:j € Ujeq Fi} is Sap-admissible. So, for any choice of convex coefficients

(Bi)ica we have
|3 i = H >y > | S IPIEE
i€G ieG "It

We again apply the mﬁmte Ramsey theorem, th1s time to the sequence
W = (w})$°,, to conclude that there exists M € [N] such that either

(1) ||a(k, @, P)|| > 1/2 for all P € [M], or

(2) ||a(k, @, P)|| < 1/2 for all P € [M].

> 205;..

Hyz
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If (1) holds, then as in case (i) above, we obtain a subsequence of (w});
which has an E’f spreading model with constant c.

So suppose that (2) holds. Then, as before, we find a block sequence
(y?)22, of (w})2, where, for every i = 1,2,..., y? is a convex combination
of an Sg-admissible sequence (wjl-)jeJi, and ||y?]| < 1/2. Set w? = y2/||v2||;
then for every Sy-admissible sequence (wiz)ieg and every choice of convex
coefficients (8;)ica, || > e Biw?| > 2263,. Once more we pass to a set
M € |N] such that for the sequence W = (w?)°; either (1) or (2) holds. If
(1) is true then we are done. If (2) holds, then we proceed in the same way

to construct a sequence (w3)$2; and so on.

CrLAM. Letn € N be such that 2”+19(n+1)k > 1. Then there exists some
J < n such that (1) holds for the sequence W = (w!)2,.

7

Proof of the Claim. Suppose not. Then we can continue the previous
construction up to a normalized block sequence (w!")°; with the following
property: For every Sp-admissible family (w]');cq, and every choice of convex
coefficients (8;)ieq, we have || Y ;o Biwi'|| = 2041y > 1/2.

On the other hand, by our assumption, there is a set M € [N] for which
(2) holds for @ = (w})$2,. So ||a(k, @, M)|| < 1/2, a contradiction. This
completes the proof of the claim. m

We have already seen that the claim yields the existence of a block
sequence which has an E'f spreading model with constant c. =

We proceed to give an example of an asymptotic ¢; Banach space X
satisfying the assumptions of Proposition 3.3, which does not admit any ¢¢
spreading model.

Definition of the space X. We choose a decreasing sequence §; € (0,1),
j=1,2,..., with the property Z;";l 6; < 1/100. We also choose a sequence

(nj)52, of integers with ny = 1 and such that lim; . 0]1./nj‘1 =1.

Inductively, we construct a sequence (K;); of subsets of coo(N) as follows:
Let Koy = {£e, : n € N}. Suppose that for some j > 0, K; is defined. For
r=1,2,..., set

Ajpy =0 (fit. . fa) (f)L; is S, -admissible and f; € K; for all i < d}.
We set Ljy1 = ;2 A7y and

n n
MjH:{ZfﬁnEN,nﬁmin(UsuppfO, Vi=1,...,n, fi€ Lj1
i=1 i=1

and f; € A;j_l for some r1,...,r, with m < ... < rn}.

Note that there is no requirement of disjointness on the supports of the f;’s,



212 S. A. Argyros et al.

i=1,...,n. Finally we set K11 = K; U Lj;1UMj;q. We define

oo o0 oo
L=Jr;, M=JM;, K=K,
j=1 j=1 j=0

The norm || - || of X is defined on ¢gp(N) by

|z = sup(z, f).
fekK
X is the completion of coo(N) under this norm. The following properties are
easily established:

(1) (e); is a 1-unconditional basis of X.
(2) If z1 < ... < my is a block sequence of (e;); which is S,,,-admissible,

then || 520, @il > 6, 1, il
(3) || - || is dominated by the ¢;-norm.

REMARKS 3.4. 1. The space X is reflexive. This follows from the fact
that it is an asymptotic £; Banach space with an unconditional basis which
does not contain /1, since, as we shall show, it does not have any ¢{ spreading
model.

2. A characteristic property of the dual of the space X is that we can
add functionals which belong to different classes A" = U]oil A7 and get
a functional in the unit ball. A similar property holds in the space con-
structed by W. T. Gowers [16] which does not contain cg, ¢1 or a reflexive
subspace, and also in the example of E. Odell and Th. Schlumprecht [27]
of a space X without any cy or £, spreading model. In our case, this prop-
erty does not allow a construction of a bounded sequence similar to the
sequence (wy,), which had an ¢ spreading model in the space T[(Sy,, 0 )n]
(Proposition 3.1).

It follows from Proposition 3.3 that for every k < w, every block sequence
in X has a further normalized block sequence which has an E’f spreading
model with constant 1/4. The rest of this section is devoted to the proof
that X does not admit any ¢{ spreading model. Assume on the contrary
that there exists a sequence (x;)$°; in X which has an ¢ spreading model
with constant ¢ > 0. We may also assume that (x;)?°, is a block sequence.
The next lemma shows that, by passing to a further block sequence, we may
add the assumption ¢ = 1/2.

LEMMA 3.5. Let (z1)32; be a normalized block sequence which has an
Y spreading model with constant 6 < 1. Then, for every ¢ > 0, there exists
a block sequence (yx)72, of (vx)72, which has an 5 spreading model with

constant 1 — €.
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Proof. Suppose that 6 < 1—e. Assume that the following property holds:
() There exists a strictly increasing sequence (my)32, of integers
such that for every k, if F' € S and F' > my, then || Y. p oz >
(1 —¢) > icp |l for all real numbers (o;)icr.
Then it is easily seen that (2, )ken has an ¢ spreading model with constant
1—e.
Assume now that property (x) does not hold. Then there exists k € N
such that for every m € N there exist F' € S§; with m < F' and real numbers

(o) jer such that
H Za]:c]H <(l1—-¢) Z la].
jeF
Then inductively we choose k < F; < Fy < ... (successive elements of Sj)
and real numbers (a;)jep, such that || >0, p ajz;l| < (1—¢€) 3 ;cp |y for
every ¢ € N. Set
>_jer, O5T;

122 5e 55l
Then the sequence (y;); has an ¢ spreading model with constant §/(1 — ¢).

Indeed, let G € S,,, and G > m for some m € N. Then the set Uz’eGFi
belongs to Sy, and | J;c; Fi > k-+m. Since (z;); has an £{ spreading model
with constant ¢, it follows that

Yi = fori=1,2,...

F, 05T
b = | o |
H ZGZG s Z “ Z]GF CVEA
|
> 6 ’/81 JEF ey |ﬁ’t
; I Z]eF 0‘]%” 1- zeZG

for all real numbers (5;)icq-
Let n € N be such that §/(1 — &)"*! > 1. Repeating the above argument
at most n times we obtain the result. m

PROPOSITION 3.6. Suppose that the normalized block sequence & = (1)
in X has an {5 spreading model with constant 0. Set

Fsjo={F € NI~ :3dzp e KVie F xp(x;) > 0/2}.
Then Fs/o is (N,w, d/4)-large (see Definition 2.3).
Proof. Let L € [N]. We set A = suppw! € S, and v = wf -7 =
> ke QkTk, Where (o) are nonnegative numbers and ), -4 ap = 1.
By our assumption, || ;.4 arzi| > §, so there exists * € K such
that (D", 4 ontr) > 36/4. Let F = {k € A : x*(x)) > §/2}. Then, by
definition, F' € Fj/5. We shall show that (wh, F) > §/4, which will prove
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that Fs/5 is (N,w, /4)-large. We have
(Wi F) =) ar > o™ ()

keF keF
X . 30 & 4
:Zakx(xk)— Zakw(xk)zz_§:1'.
keA keA\F

Suppose now that (z;)7°; has an ¢{ spreading model in X with constant
1/2. Combining Propositions 2.4 and 3.6 we find that there exists a set
N = {ni1,n2,...} C N such that, for y; = z,,, i = 1,2,..., the following
holds:

(3.2)  For every F €S8, there exists y € K such that yp(y;) >1/4 Vie F.

NOTATION. For every r = 1,2,..., we set A" = U(;i1 A; C K. Let
r,s € N with r < s. We set

d d
A[T,s]:{quK:qS:Zfi,dEN,d§m1n<Usuppfi) and

i—1 i=1
Vi=1,...,d, fie A" Withr§r1<...<rd§s}.

Note that A? C A[r, s] for all r < g < s.

PROPOSITION 3.7. Let jo € N and (y;); be a normalized block sequence
in X satisfying (3.2). Then there exist ig € N and so > jo such that for all
1 > 19, there exists ¢ € K with

¢ € Aljo+1,50] and ¢(y;) = 1/8.

Before presenting the proof of the above proposition, we show how it
implies that X does not admit an ¢{ spreading model.

THEOREM 3.8. The space X does not admit an {5 spreading model.

Proof. Suppose that X admits an ¢{ spreading model. Then we can
assume that for some normalized block sequence (y;)5°;, the conclusion of
Proposition 3.7 is true. For jo = 2 there exist ¢; and s; such that for every
i > i1, there exists ¢ € K with ¢ € A[3,s1] and ¢(y;) > 1/8. In the same
way, there exist i9 > i1 and s9 > s1 such that for every i > iy there exists
¢ € K with ¢ € As; + 1, s2] and also ¢(y;) > 1/8.

Continuing in this manner we find positive integers s1 < ... < sg and ig €
N such that for all ¢ > 49, there exist ¢1, ..., ¢9 € K with ¢; € A[s;j—1+1, s;]
and ¢;(y;) > 1/8 for every j = 1,...,9. It only remains to choose ig > ig
such that minsupp y;, > s9. Then by replacing ¢; by ¥j = @}|(min supp Yig:00)?
Jj=1,...,9, we see that ¢ + ... + ¢p9 € K. Indeed, this is the sum of a
sequence (f;)%_, of elements of L, with f; € A" where r; < ... < ry < s9,

which yields d < sg < min(Uff:1 supp fi)-
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Furthermore, (11 + ...+ v%9)(yi,) > 9/8, which leads to a contradiction,
and the proof of the theorem is complete. u

Hence it remains to prove Proposition 3.7.

Proof of Proposition 3.7. Suppose that the result is false. We may assume
that jo > 3. Then for all 7o € N and any s > jy there exists ¢ > ig such that
for all ¢ € K, if ¢ € Aljo + 1, s] then ¢(y;) < 1/8.

Let 41 = 1. We choose j; > jo such that

( > 9r) iy lle, < 1/100.

r2J1
Then there exists i3 > 41 such that for all ¢ € K, if ¢ € A[jo + 1, j1] then

¢(y12) < 1/8'
We choose j2 > ji such that

( ) ‘9r) 19ix e, < 1/100

r>j2
and then i3 > ig such that for all ¢ € K, if ¢ € A[jo+1, j2] then ¢(yi;,) < 1/8.
Continuing in this way we construct a subsequence (y;, )72, of (v;)72; and
(Jk)72, € N with jo < ji < ... with the following properties:

(P.1) For all k > 2, if ¢ € K and ¢ € A[jo+ 1, ji—1] then ¢(y;,) < 1/8.
(P.2)  Forallk>1, (3 .5, 0:)llyille < 1/100.
(
|

P.2) implies that if fi € A™, i =1,...,n, with j <71 <... <7y, then
(0 fi)(yi )| < 1/100.

We now set
lp, = maxsuppy;, fork=1,2,...,

and choose (kp)0%, with nj, +2 <, <lpy < ... <lg, | <ig, <lg,

Let (Ig,)sec € Sp;,+1 be the support of a (1/(10]0) nJO +1)- basm spe-
cial convex comblnatlon Y sca asey,_, such that maxgas <1 / l2minG Then
(ik,)seq € Snj0+2 and nj, + 2 < iy, so (ik,)sec € Su-

This shows that there exists a (1/(10j0),nj, + 1)-s.c.c. > cp aryi, of
(vi, )k such that {iy : k € F} € S, and maxj oy < l/lmmF By property
(3.2) of the sequence (y;), we deduce that there exists 7}, € K such that

zp(yi,) >1/4  Vk e F.

We will show that this leads to a contradiction.
Let F' = {ki,...,kn}. There are two cases for z7..

CASE 1: 23, € L. Let 23 € A". Suppose r < jg. Then, by Lemma 2.7,
|25 (X per axyiy,)| < 20, < 1/50, a contradiction. Now suppose jo < r < ji, -
Then, by (P.1), 2% (yi,) < 1/8, a contradiction. Finally, suppose ji, < r.
Then it follows by (P.2) that |z} (yi, )| < 1/100, a contradiction again.
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CASE 2: 2}, € M\ L. Then a7, = Zzzl fq where d < rnin(Uf]l:1 supp fy)
and for all ¢ = 1,...,d, f; € A" where r1 < ... <71y We set
Ay={q=1,....d:r¢<jo}, An={¢=1,....d:jk, , <714}
and fors=1,...,n—1,
AS = {q: 1,...,d:jk571 <7'q Sjks},
where kg = 0. Then

n—1
tr=2 2 Jo

s=0g€A;
We shall show that there are at least 2[, sets As which are not empty. This
implies that there are at least 2l different f,’s, therefore 2l;, < d. This
yields a contradiction, since x}(yzkl) # 0, and hence d < minsupp z7 < I, .
So, it remains to prove the following:

CLAM. The cardinality of the set {s: As # 0} is greater than or equal
to QZkl .

Proof of the Claim. Consider the set Ag ={¢=1,...,d:74 < jo}. Then
obviously, # Ay < jo. For each ¢ € Ay, f, = 0%(2:7;:1 gs), where g; € K for
all s =1,...,p, the family (gs)’_; is rg-admissible and 7, < jo. For k € F,
we say that f, splits y;, if

supp gs Nsuppy;, # 0  for at least two different gs.
We set J, = {k € F': y,, is split by f;} and note that {l, : k € J;} € S;,.
50, 3 kes, @k < 1/(10jo). We now let J = (J,c 4, Jq be the set of indices
k € F such that y;, is split by some f;, with r, < jo. We get
Soes Y Yoes1/0
keJ q€Ao ke,
Letting now
I ={k € F :y; is not split by any f, with r; < jo},
we get Y o ax > 9/10. So,
1
9/10 <) ar < maxay - (#1) < 5~ (F#1).
kel k1
Thus #I > 17 > 21y,
We can now prove that for each ks € I, the set A; is nonempty. Indeed,
let ks € I. Since y;,_ is not split by any f, with ¢ € Ay,

(D 1) wa)| X 6, < 1/100.

q€Ap rq<jo
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Also,

(X &)w)<twen (35 4)o

t=1 ge A, t>s+1q€A;

_m bY( )

Since (Zgzl fa)(i,,) > 1/4 it follows that there exists ¢ € As with f,(y;, )
# 0, hence As # (). m

4. Distortion of modified mixed Tsirelson spaces. The modi-
fied Tsirelson space Ths was introduced by W. B. Johnson [19]. Later,
P. Casazza and E. Odell [13] and S. Bellenot [11] proved that T}, is naturally
2-isomorphic to T'. The situation is different with mixed Tsirelson spaces.
The modified mixed Tsirelson spaces Ths[(Sy, 0n)n] were introduced in [6],
where it was proved that these spaces are reflexive, and totally incomparable
to the original ones in the case lim 91/ = 1. In this section we prove that if
we choose a sequence (6,),, of reals with 6,, \, 0 and 6,11 < 63 and an appro-
priate subsequence (Sk, ), of the Schreier sequence (Sy,)n, then the modified
mixed Tsirelson space Xyr = Tar[(Sk,,0n)n] is arbitrarily distortable. This
is established by proving the existence of an asymptotic biorthogonal system
in X,y.

Moreover, assuming some additional properties for the double sequence
(kn, 6n)n, which we call the Gasparis conditions (Definition 4.14), we prove
that every block subspace of Xj; admits an ¢{ spreading model.

Before we give the definition of the space X let us recall the definition
of the modified sequence (SM),, and state a lemma.

LEMMA 4.1. Forn < w define the family SM inductively as follows:
S =8y = {{n} :n e N}U{0}.

k
sty ={UAikeN A eSY fori=1,... .k Ain4;=0
=1
fori#jand k<minA; <... <minAk}U{(D}.

Then SM = S, for all n.

The proof can be found in [6, Lemma 1.2].
DEFINITION 4.2. Let M be a family of finite subsets of N.

(a) A finite sequence (E )k_, of finite subsets of N is said to be M-
allowable if the set (min E;)%_; belongs to M and E; N E; = () for all i,j =

ki

(b) A finite sequence (;)%_; of vectors in cqg is M-allowable if the se-
quence (supp xi)le is M-allowable.
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We now pass to the definition of the space Xj;. We choose a sequence
(m;)52, of integers such that my = 2 and m; > m?_l for j =2,3,..., We
choose inductively a subsequence (Sg; )72 of (Sn)n as follows: We set kq = 1.
Suppose that k;, j = 1,...,n — 1, have been chosen. Let ¢,, be such that
2in > m2. We set ky, = t,(kn_1 + 1), M;j =S, for j =1,2,..., and

X = Ta[(My, 1/mj)724].
The norm of X is defined by the following implicit equation:
1 d
Iz = maX{HmHOO, Sup — sup { SO IE| < (B, is Mj—allowable}}.
i My i=1

We shall also make use of the following alternative definition of the norm
of Xpr. Inductively, we define a subset K = J;~ , K" of B xz, as follows: For
j=1,2,..., we set KJQ = {+£e, : n € N}. Assume that K?, j=12,...,
have been defined. We set K™ = U;’il K7, and for j =1,2,...,

KM =EKPu{m;' (fi+...4+ fa):deN, fie K" fori=1,...,d,
and (f;)%, is M-allowable}.
Let K =J,~, K" Then K is a norming set for X/, that is,

lz|| = sup(x, f) for x € Xy.
fexK

For j = 1,2,..., we set Aj = UpZ (K} \ K°). If f € K\ K° and we
have fixed a j with f € A;, then we write

It is not hard to see that the space X is an asymptotic £; Banach space
and the natural basis (e;), is a 1-unconditional basis for X ;.

REMARK 4.3. All our results about this space remain valid, with the
same proofs, if we replace the condition k,, =t,,(k,—1+1) by ky, >t (kp—1+1),
where 2" > m2. This remark will be used in the proof of Theorem 4.15.

In what follows, by a tree 7 we shall mean a finite set of finite sequences
of positive integers, partially ordered by the relation

a <[ iff «is an initial segment of 3,

and with {8 : 0 < a} C 7 for every a € 7. The elements of 7 are
called nodes. 7 has a unique root, the empty sequence, which we denote
by 0. The length of a sequence a € 7 is denoted by |a|. The height of T
is the maximum length of the maximal nodes of 7. If & € 7 we define
Sa={f€T:a<pand|f|=|al+1}.

DEFINITION 4.4. Let m € N and ¢ € K™. An analysis of ¢ is a subset
(fa)aeTr of K indexed by a tree 7 of height m such that:
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(1) ¢ = fo.

(2) For every 0 < s < m, the elements of {f, : « € T and |a| = s} are
disjointly supported and U| al=s SUPP fa C supp ¢.

(3) For every 3 € 7, either fg = ey, for some kg € N, if 3 is a maximal
element of 7, or for some j € N, fz = 'mj_1 Zaesg fa, and the set {fy :
a € Sg} is Mj-allowable.

It is easy to see that every ¢ € K has an analysis, not necessarily unique.
For example, consider ¢ = mj_l(zkeA1 er + Dked, my ! dier, €) € K2,
where, for each k € Ag, F € S and the family {{k} : k € A1} U {F} :
k € Ay} is Sj-allowable. Then an analysis of ¢ consists of the following three
levels:

{0}, {eZ:k‘EAﬁU{m;lZef:k‘EAg}, {ef:ie U Fk}.

i€ Fy, keAs

Let j €N, e >0, and . = ) ;_; arzi be an (¢, kj)-s.c.c. in Xj; (Defini-
tion 2.6) where ||z;|| =1 for all k = 1,...,n. Then ||z|| > 1/(2m;). Indeed,
if fx € Bx;, are chosen so that fi(z) = [|2]| = 1, supp f1 C (2,1], and
supp fx C (lg—1, k] for k = 2,...,n, then the family (fy )y is Sk;+1 = S1[Sk,]-
allowable. This implies that the functional ¢ = (2m;)~! >°1_, fi belongs to
Bx:,, hence ||z| > ¢(x) > 1/(2m;).

Recall that an (e, kj)-s.c.c. z = Y )_; agzy of unit vectors (zx)7_; is said
to be seminormalized if ||z| > 1/2.

The following lemma states that every block subspace Y of X contains,
for every € > 0 and j > 2, a seminormalized (g, k;)-s.c.c. Its proof is com-
pletely analogous to the proof of the corresponding result proved in [5] for
mixed Tsirelson spaces.

LEMMA 4.5. Let j € N, e > 0 and let (z5)72, be a block sequence in X.
There exists n € N and normalized blocks yi, k = 1,...,n, of the sequence
(z1)72, such that a convex combination x =y ;_, apyy is a seminormalized
(e,kj)-s.c.c.

Proof. We may assume that the vectors z, k = 1,2, ..., are normalized.
Choose an infinite block sequence (z7)%°; of (2;)2, such that, for each [,
xll = ZkeAl a2k is an (g, kj)-s.c.c. of (2x)kea, -

If ||z}|| > 1/2 for some [, then we are done. If not, we set y! = z} /| z}||
and as before, choose an infinite sequence (z7); of (e, kj)-s.c.c.’s of (y} ).

Notice that for each I, the family {zj, : suppz; C suppa?} is So(k;+1)"
allowable (since Sy, 11y = Sk;+1[Sk;+1]), and so z? is a combination of the
form a7 = > by(urzk) where > by = 1, py > 2, and (2) is an Sok; 1)
allowable family. This gives ||z7|| > 2/m;41. If |27 > 1/2 for some I, then
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we are done. If not, then 1/m;1; < H%:UIQH < 1/22,1 = 1,2,... We set
y? = 22 /||2?| and continue as before.

Repeating the procedure ¢, times (recall that the sequence (¢;); is given
in the definition of Xy), if we never get some (e, k;j)-s.c.c. zf with [|zf|| >
1/2,1 < k < 41, then we arrive at a xfj“ of the form a:;j“ =D e Cillizi
where (supp zi)ies is Mjt1 = 8, (k;+1)-allowable, >, g a; =1, and p; >
2ti+1=1 for all 4 € S. Then

1 1

mjyp — 20+l

1

tir1
| < St

This leads to a contradiction which completes the proof. =

NOTATION. Let X(n) = TM[(M]', 1/mj)?:1] and let K(n) be the norm-
ing set of X(,). We denote by || - |, the norm of X,y and by || - ||}, the
corresponding dual norm.

Let us briefly outline the arguments which we shall use to prove the
existence of an asymptotic biorthogonal system (C;,.A;); in Xjs. For ev-
ery j, the set C; is the asymptotic set consisting of vectors of the form
z =y/||yll, where y is a (1/ m?, k;)-rapidly increasing special convex combi-
nation (r.i.s.c.c., Definition 4.11) and A; = ;2 (K7 \ K9).

In order to estimate the action of the different functionals of K on an
(e, kj)-ri.s.c.c., we reduce it to the action of analogous functionals on a cer-
tain (e, k;j)-basic s.c.c. So, our first step is to estimate the action of the dif-
ferent functionals on (e, k;)-basic special convex combinations (Lemma 4.8).

Our next step is to prove the following useful result (Lemma 4.9), about
modified mixed Tsirelson spaces Tas[(Sn, 0n)n]: If z is a (0}, j)-s.c.c. of nor-
malized vectors and (E,), is any S;-allowable family of sets where i < 7,

then 1
S IBx]| < o 41,
r 91

This lemma is crucial for our estimates. The analogous lemma for mixed
Tsirelson spaces T'[(Sp, 0 )n) Was also very useful in dealing with the problem
of distortion on these spaces ([2], [5], [14]).

In Lemma 4.10 we prove that if x = """ | bx; is a (1/m]2-,k:j)—s.c.c. of
normalized vectors in X and ¢ € K(;_y), then [¢(x)| < 5/m;. This result
is used in the proof of Proposition 4.12 where we estimate the action of the
functionals of K on a (1/mj2, kj)-r.i.s.c.c. y. We get the following bounds:

lp(y)] < < 8/mi ifope A, i=y57+1,
8/m? ifpe Ay, i>j+2.

In particular, 1/(4m;) < |ly|| < 8/m;. These estimates imply that the se-
quence (Cj,.A;); is an asymptotic biorthogonal system.
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Estimates on the basis. Before we estimate the action of the functionals
on (g, j)-basic s.c.c.’s we prove an auxiliary lemma.

LEMMA 4.6. Letn € N, ¢ € K and (fo)acT be an analysis of ¢. Let

F = {a e7: H w(fg) > 1/m2 and w(fz) > 1/mp_1 for all B < a}
B=<a
and let G be a subset of F' consisting of incomparable nodes. Then the set
{fa:a € G} is Sk, _1-allowable.

Proof. We recall that from the definition of the space X; we have k,, =
tn(kn_1 + 1), where t, is such that 2t > m2.

Since w(f) < 1/2 for f € K\ KV, it follows that if a € G and |a| = k
then 1/m? < [Isz0w(fs) < 1/2F1. Hence 2¥=1 < m2 < 2'». Therefore,
la| < t,, for every a € G.

The result will be an immediate consequence of the following

SUBLEMMA 4.7. Let ¢ € K and (fa)acT be an analysis of ¢. For a € T,
a not mazwimal, let f, = my* Z'yGSa [, where the sequence (fy)yes, is
Sk, -allowable. If G is a subset of T consisting of incomparable nodes, then
the set {fo : o € G} is Sj-allowable, where | = max{} 5, kg : o € G}.

Proof. By induction on j < height(7") we shall show that the set A; =
{a € G:lal <j}is §;-allowable, where [; = max{}_5_, kg : o € A;}.

For j = 1 this is trivial. Assume that it holds for some j < height(7).
We write Aj11 = U|a\:1 Gq, where G, = {# € Aj{1 : a = [}, with some
G, possibly empty. It is evident that the sets GG, consist of pairwise incom-
parable nodes. Therefore, since the height of each 7, = {# € 7 : |3] <
j+ 1, a <X B} is less than or equal to j, it follows from the inductive hy-
pothesis that each family {f3 : 5 € G} with |a| =1 and G, # () is at most
max{} .~ gky : B € Ga}-allowable. Therefore |, ._1{fg : B € Ga} is at
most k0+max{zajw<ﬁk‘ 1B € Gaq, laf =1} =max{} 5, kg € Aj1}-
allowable. u

To complete the proof of the lemma, we observe that » B=a kg < tpnkn 1
< k,, for every node o € G. n

REMARK. Sublemma 4.7 is taken from [14]. Our original proof of the
above lemma without the use of the sublemma was less elegant.

LEMMA 4.8. Let j > 2,0 < e < 1/m?, and let © = Y )" bren, be an
(e, kj)-basic s.c.c. Then:

(a) For ¢ € ooy As,
‘ (Zbke )‘ {1/ms if p€As, 527,
n )| < . ‘

2/(msmyj) if ¢ € Ag, s < J.
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(b) 11 32521 brenyllj—1 < 2/m3.
Proof. (a) If s > j then the estimate is obvious. Let s < j and ¢ =
my ! 25:1 fi- We may assume that ¢(ey, ) > 0 for all k. We set

d
D:{nkal(enk)>1/mJ}v glzfz|D7 i=1,...,d
i=1

Then m; ! Z?Zl 9i € K(j1 ) and for every n € D we have

—E gzen >——> 5
Ms 53 Ms Mj 1

Therefore, by Lemma 4.6, D = supp(m; * Zl 19i) € Sk;—1- So

—Z;QZ(Zbkenk> < Z b, < mijg

On the other hand,

1 d m 1
R E c b ) < —
ms fip (Z_ € ms m;
=1 k=1
Hence
1 1 2

(zbkenk) <Ll 1.
ms mj - m; msmj

(b) We let ¢ € K(;_;) and assume again that ¢ is positive. We set
L = {ng : ¢(en,) > l/mf} Then ¢rc(d_ bren,,) < l/mf On the other
hand, Lemma 4.6 shows that supp @1, € Sk;-1, 80 @1 (D ) bren,) < 1/mj2
Therefore, |¢(> . bren, )| < 2/mj2 n

Estimates on block sequences. Our first lemma is true in any modified
mixed Tsirelson space Th[(Sk, ,n)n)-

LEMMA 4.9. Let X =T [(Sk,, ,0n)n] be a modified mized Tsirelson space,
JEN,0<e<0;, and let (x)]", be a normalized block sequence in X such
that © = Y ;' by is an (g,kj)-s.c.c. Then, for every q¢ < k; and every
Sy-allowable family (f;)%_, in Bx-,

‘Zfl(zbkxkﬂ < —+1

Proof. We may assume that supp ¢ Nsupp zy # 0 for every 1 < k < m.
Let
Ay ={ke{l,...,m} : minsupp f; & range(zy) for all 1 <i < d},
A2 = {1,...,771}\./41.
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CLAIM 1.
€
< — .
DOIOENIEESY
=1 keAs
Proof of Claim 1. Let k € Ay and [, = maxsupp xi. Then there exists
at least one 1 <14 < d such that minsupp f; € range(zy). We set
i = max{i € {1,...,d} : minsupp f; € range(xy)}.
Then minsupp f;, < [ for k € As. The correspondence k — iy, k € Ag, is
one-to-one. It follows that {lj, : k € A2} € Sy, 80 Y g, b <€
On the other hand, the family (f;)%, is S,-allowable, so Sy, -allowable,
and ||zy|| < 1 for all k. It follows that | 2%, fi(xx)| < 1/6; for all k € As.

So
SOl IUPRIFRS S

i=1 keAs J keAy
CLAIM 2.
d 1
‘Zfz( Z bkzﬂk)‘ < o
=1 keAq
Proof of Claim 2. Let k € Ay. If supp fiNsupp xy # () for some 1 < i < d,
then min supp f; < minsupp xx. Hence, for every k € A1, the set
I, = {i < d:supp f; Nsuppay, # 0}

has less than min supp zy, elements. It follows that { f;|{min suppay,00) : ¢ € Ik}
is S-allowable for every k € Aj, and therefore 01 ) ;. I Jil [min supp z,00) €
Bx+. Hence

}zd:fi( > bkiﬂk)} = ‘ > bk(ifi)?%‘

=1 keA; ke Aq =1
< Z%‘(Zfz) wk‘<—zbkéa—-l
keAy i€l 1

Combining the two estimates above we obtain

‘;ﬂ(Zbkm’f)‘ < —+1 .

Our next lemma refers to the particular space X, that we consider.

LEMMA 4.10. Let j € N and let (z);", be a normalized block sequence
in Xpr such that x = Y " bxy is a (1/m?,kj)—s.c.c. If ¢ € K(j_1) then
|62 k=1 ber)| < 5/m;.
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Proof. Let (fg)ger be an analysis of ¢. In order to estimate ¢ on ) _, byxy,
we give the following definition: Let 8 € 7, and let f3 be the corresponding
functional. We say that fg partially covers xj, if the following hold:

(1) supp f3 Nsupp z # 0.
(2) supp fz Nsuppz; = 0 for all j # k.
(3) If B € S, then supp fo Nsuppx; # 0 for some j # k.

We set

= {ﬂ € T : fg partially covers some zj, and H w(fo) > l/m?},
a<p

B = {ﬂ € 7 : fa partially covers some z;, and H w(fa) < l/m?}.
a=p
Note that if both fg and fg partially cover xj and [ # 3’ then supp fg N
supp fg = 0. Also AN B = () and supp ¢ N suppxy = UﬁeAUB supp fg N
supp z for each k. We set ¢4 = ¢\UﬂEA supp f and ¢p = ¢|U3e3 supp f3-
Note that ¢(xr) = (¢pa + ¢B)(zk) for every k =1,...,m. We denote by Ty

(resp. 7p) the subtree of 7 which has as maximal nodes the elements of A
(resp. B).

CrAlM 1.

= 1
)| =
’¢B(Z KTk )| < m;
k=1
Proof of Claim 1. Let $ € B and let ag < 3 be such that H7<a w(fy)
> 1/m and [ w(fy) < 1/m2 Note that if 8, 3’ € B then either ag, ag

are incomparable nodes or ag = ag. Let R = {ag : § € B} be the set of
such different nodes. For every 3 € B there exists ag € R with ag < 3, hence
supp fz C supp fa,- Also, since ¢ € K(j_l), we have w(fa;) > 1/m;_1, so

H w(fy) = m2

y=ag 7<aﬁ J

v=Zag W

W% 1

Therefore,

‘GZ)B < zm: bkﬂﬁk) <
k=1

£ (IS
o (0|

mJ 1 Z
By Lemma 4.6 the family {fa, : ag € R} is Sy, 1-allowable. Therefore, by

OthR
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Lemma 4.9,

2

aﬁE'R

s (3 bue) <3
k=1

We conclude that

” 3m; 3
(4.1) ‘¢B<Zbk$k>‘ e
- mi o omy
k=1 J
For k=1,...,m, let [ = maxsupp z;. Then we have

CLAIM 2.

J—1

’¢A ( i bk$k> ’ < ij i brey,
k=1 k=1

Proof of Claim 2. For each o € Ty, we set hy = fa|UﬁeA5uppfﬁ.
hg = fg for B € A, and for o € Ty \ A with f, = m;l ZﬂeSa 13,

That is,

For every a € T4 we set
Dy ={1 <k <m:38 > asuch that § € A and fs partially covers z}.

Inductively we define, for every a € T4 with D, # (), a functional g, with
the following properties:
(1) supp go = {l : k € Do} where I, = maxsuppxy for k =1,...,m.
(2) ga € K(jfl)-
(3) lha(zk)] < (Xra,vea lfr(@k))galer,) for every k € Dq.

Assume that g, has been defined for all v € T4 with |y| = s and let o € T4
with |a| = s — 1. Let hy = m* >_pes, hp and suppose that Do # (). We set

I={B3€S,:Dsg#0}, R={B€S,:p0€A}l

Then I N R = (. Also, for every § € I, gg has been defined. For every
1<k <m,weset I}, = {8 € R: fz partially covers z;}. Then the sets I},
1 < k < m, are disjoint.

Let G = {k € D,, : I, # (0} be the set of all k for which zj is partially
covered by some (3 € R. For every k € D, \ G we choose a node 3 € I such
that

964 (6lk) = max{gg(elk) 1B el}.
For every 8 € I we define g5 = gsl(, .keDs\Gand p=p,}- It follows that the
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functionals gi;, B €1, and ¢, k € G, are disjointly supported. We now set

ga=mi<Zezk+Zg£;>-

1 kea Bel
We need to show that g, € K(;_1). By the inductive hypothesis g’ﬂ € K-
for all § € I. Also ¢ < j — 1, since ¢ € K(;_).

It remains to show that the family {e;, : k € G} U{gy : B € I} is Sg,-
allowable. Since supp g’ﬂ C {ly : k € Dg} for B € I, we have minsupp hg <
min supp g’ﬂ. Also, min | J{supp f3 : B € I},} <} for k € G. It follows that
{l : k € G} U {min suppg/’g : B e} €8y, This establishes property (2)
for g. Property (1) is easily checked. It remains to show that property (3)
holds.

CASE 1: k € G. Then
(e = | 3 falew) + 3 o)

Ma ' et gel
< (S 1+ XX I @)
4 perns Bel v
yEA
= mi< 2 ’fﬁ(f”k)‘)efk(elk) =Y fs(an)lgales)-
¢ Bra B-a
,BGA BEA

CASE 2: k € D, \ G. Then by the inductive hypothesis
1 1
halen)l = —| Y- ha(@n)| < — > Ihglan)

1" ger 7 ger

i 3 < > ’f'y(xk)’gﬁ(elk)>

m
9 Bel ~EA

IN

=B
1
< m—rgggﬁ(ezk) SO ()]
a Bel veA
-8
1
= —ghe) Y @0l = (X 1 @0l )galer,).
g YEA yEA
e0ate’ Yo

since fg(xp) =0 for B € R.
This completes the proof of property (3) and the inductive construction.
It follows that for every k,

9ale)] < (3 1 @0l )golen,):

YEA
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Using Lemma 4.6 and the definition of the set A, we find that the family
{fy = v € A} is S, _1-allowable. Tt follows that m;l dyeatfy € K for
every choice of signs, so Y 4 | fy(zk)| < m; for every k. Hence |p4(xk)| <
mjgo(ey,) for all k, so

’¢A ( Z bk$k> ‘ < ij Z brer,
k=1 k=1

This completes the proof of Claim 2.

Using Lemma 4.8(b) we get [¢p4(> p_; bxxx)| < 2/mj. Combining this
with Claim 1 we get [¢(> p_; brxr)| < 5/m;. =

DEFINITION 4.11. Let j > 2, ¢ > 0. An (e, kj)-special convex combina-
tion Y o' | bpay is called an (e, kj)-rapidly increasing special convex combi-
nation (r.i.s.c.c.) if there exist integers (j, ), with j +2 < j1 < ... < jm
such that:

YEA

j—1

(1) Each z,, is a seminormalized (l/m?n, kj,)-s.c.c.
(2) llznlle, £ myj,yy/my, foralln=1,...,m—1.

PROPOSITION 4.12. Let Y i1, by, be a (1/m3, kj)-r.i.s.c.c. and ¢ € K
with w(¢) = 1/ms. Then

14/(msmy) i s <3,

m
(D bran) | < § 8/m if s=J.j+1,
k=1 8/m> if j+2<s.

In particular, 1/(4my;) < || D700 bpagll < 8/my.

Proof. Let (fa)acT be an analysis of ¢. First we partition the support
of each xi, 1 < k < m, as follows: We set

T = Lk| J{supp fa :aGT,suppfaﬂsuppxk;é@andw(fa)gl/mijrl}.

Then the definition of the r.i.s.c.c. shows that
|p(Zr)| <

It follows that

(4.2) ’¢(§bk§k)’§; be 2 max by.

M mjy

Mt
M), ),

forall 1 <k <m.

— ||zl < —
Jk+1 Jk+1

We now set T, = x,, — ;. Abusing notation we denote by x;, the vector T,.
This means that from now on we assume the following;:

(x)  If supp g Nsupp fo # 0 for some o € T, then w(fy) > 1/my, ;.

We make the following definition: Let « € 7 and k = 1,..., m. We say that
fa partially estimates xj, if:
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(1) supp fo Nsuppy # 0.

(2) w(fa) < 1/m,.

(3) w(fg) > 1/m;, for all B < a.
Suppose that f, partially estimates xj for some 1 < k < m. The definition
of x, (which actually denotes Z,) shows that supp f, Nsuppz, = 0 for all
r < k. This implies that a given functional f, can partially estimate at
most one x. Also, if f, partially estimates x; and 3 > a then fg does not
partially estimate any x, with » < k. In particular, if f, and fg partially
estimate the same zj, then supp fo Nsupp fg = 0.

Once more, we partition the support of each vector xj as follows:

xllg = Lk| J{supp fa : fa partially estimates zy } » xi =Tk — .17]%3 forall 1 <k <m.
For 8 € T, if supp f3 Nsuppz; # () for some k, then w(fz) > 1/mj,.

Indeed, suppose that supp fg Nsuppz; # 0 and w(fg) < 1/m;,. Let yo
be the minimum element of {y € 7 : v < § and w(f,) < 1/m;, } under <.
Then supp f3 C supp f, and f,, partially estimates xj. Therefore, supp fzN
supp xx C supp a:,lg, which leads to a contradiction.

It follows that ¢\suppx§ € K(j,—1) and therefore, by Lemma 4.10, |¢(:pi)]
<5/mj, for all 1 <k < m. Hence

2
(4.3) ‘qb( E bkiﬂk)‘ < E by, m < ", m]?xbk.
k=1 k=1

It remains to estimate ¢ on . bk:ci,. For every k with a:i, = 0 there exists
o € T such that f, partially estimates xj. We partition the set of nodes
which partially estimate each xj into two sets Ay, By as follows:

A = {a € T : f, partially estimates x; and H w(fg) > 1/m§k},
B<a

By, = {a € T : f, partially estimates xj and H w(fg) < 1/m?k}
B=<a

As already noted, if @ € Ay and 8 € By, then supp fo Nsupp fz = (. For
every k=1,...,m, we set

1 _ .1 2 _ .1 1_ .1
Yk = Tk|Ufsupp fa:acArys Yk = Tk = Yk = Tk|U{supp fo:a€By}"

CLAIM 1. .
o( D bat)| <
k=1

Proof of Claim 1. We shall estimate ¢ separately on each yz, to show
that |p(y2)| < 3/mj,. The proof is similar to that of Lemma 4.10.

For every a« € By, let R, = {# € T : < a}. Choose B, € Rq
such that [[. 5 w(fy) > 1/m§k and [, <5 w(fy) < 1/m?k Note that

6
max by,.
mj, k
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since w(fg,) > 1/my,, we have [[, 5 w(fy) < 1/mj,. It is easy to check
that if o, € By, then either 3, = B4 or Ba, B« are incomparable. Let
R = {Ba : @ € By} be the set of all such different nodes. Since (3, < « for
all o € By, we have supp fo C supp fg,. Therefore,

oDl < Y (TT wl) sl
Ba€R  y=Ba

By Lemma 4.6, the family {fs, : 8o € R} is Sy, -1-allowable. Since yj, is a
(1/mj2-k, kj,)-s.c.c., by Lemma 4.9 we get >3 p|fs., (y2)] < 3. So

3
2 —_—
(4.4) o) < 3 T[ wir) < =
V= Ba
CLAIM 2.

m 6/m? if €A, s>j+2,
(45)  [o(Dbed)| < 6/ms A, =g+,

k=1

12/(mgmj) if ¢ € Ag, s <.
Proof of Claim 2. For k =1,...,m, we let [, = maxsuppxi. Fora € T,
we set
Dy ={1<k<m: 36 = a such that fg partially estimates z}, and G Ay}.

For every k = 1,...,m, we set Ti(a) = {8 = « : B € Ax}. Inductively,
for every a € T with D, # (), we define a functional g, with the following
properties:

(1) Ja € CO(K).

(2) suppga = {lx : k € Dy }.

(3) For every k € D,

Lol < (2D 1fs(ubl)galer,):

BET (ax)
(4) Either w(ga) = w(fa) or ga is of the form g, = (e + g)) where
w(ga) = w(fa)-
Assume that g, has been defined for v € T with |y| > s+1 and D, # 0.

Let a € T with |a| = s be such that D, # 0 and let f, = m,* > pes., 16
We distinguish two cases.

CASE 1: f, partially estimates some z,. Let I = {3 € S, : Dg # 0}.
Then, as we have noted, no k < kg is in Uﬁel Dg. Let k > ko with k € D,,.
By the inductive hypothesis,

il < —— S 1shl < 37 (2 32 1D )asten):

1 pger el ~NeT(B)
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For every k > ko with k € D, we choose (3, € I such that gg (e, ) =
maxges gp(ey, ). For every B € I we set g = g5|(1, :keDs and f=0y }-

Then, for k > ko, k € Da,
(4.6) | fa(yp)] ggk e)2> > 1wl
Bel vET,(B)

:mi(z > 1)) gl (er,).

1" yeTi(a)

| /\

It is clear that the functionals €l gb, 0 € I, are disjointly supported. Also
since {lx : k = 1,...,m} € S, and suppg’ﬂ CHAly : k=1,...,m} for all
B € I, it is clear that the family {gk : B € I} is Sg,-allowable.

Since fq partially estimates xy,, we have 1/mq = w(fa) < 1/my, , so
q > Jjk, > J + 1. It follows that the family {g’ﬁ :p €I} is S q-allowable.

We define .
go = 5 (ezko Z gg>

ﬁe]
Then g, € co(K) and for every k € D,

Faubl <2(0 D 1 wh)])galer).
YTy ()

CASE 2: f, does not partially estimate any zp. Let I = {8 € S,
Dg # 0}. We repeat the procedure of Case 1: For every k € D, = Uﬁe[ Dg,
we choose (B, € I such that gg, (e;,) = maxger gg(ey, ). For every g € I
we set gﬁ 98|{l) - keDg and f=F,,}- Then for every k € D, by the inductive

hypothesis,
bl < — S Uswhl < 37 (2 32 16h)gsten)
Ma et M Ber N T
1
< —ghle)(2 D 1A,
a VETk ()

The functionals g’ﬁ, B € I, are disjointly supported. Also, since minsupp f3
< minsuppgg < minsupp gy, the family {gz : B € I} is Sy, -allowable.
We define go = m* > per 9p- 1t is easy to verify properties (1)-(4). This
completes the inductive construction.

For the functional ¢ = fy we get, for k=1,...,m,

6(up)l <2 ) |fa(an)lgoler,)-
BeAL

The family {fs : § € Ay} satisfies the assumptions of Lemma 4.6 with
n = ji. Therefore, it is Skjk_l—allowable. It follows from Lemma 4.9 that
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> gea, |f3(zr)] < 3. We conclude that

m m
‘ﬁb(Zbkyl%)‘ < 690<Zbkelk)-
k=1 k=1
By the form of gg, using Lemma 4.8, we get
m 30k, +3/ms—1 <6/m7 if g€ Ay, 5> j+2,
oD busk)| < § 6/m, if 6 € Ay, 5= jj+1,
k=1 12/(mgm;) itpe A, s <j.
This completes the proof of Claim 2.
Combining Claims 1, 2 and relations (4.2), (4.3) we get the desired esti-
mate. m
Let C; = {z/||z]| : zis a (1/m?, kj)-ris.c.c.} for j € N. Then Lemma 4.5
implies that each C; is asymptotic, i.e., Sy NC; # 0 for every block subspace

Y of XM. Let
1 < .

Aj=<f= — Z fr: fr € K for all r and (supp f;);—; is Sg,-allowable ;.
J =1

From the definition, it follows that A; C Bxy,.

THEOREM 4.13. The sequence (Cj, Aj); is an asymptotic biorthogonal
system in X . In particular, the space Xy is arbitrarily distortable.

Proof. For every j € N let ¢; = 56/m;. The sequence (g;); strictly
decreases to 0. Since the sets Cj are asymptotic and A; C Bxy, for all j, it
suffices to prove that

(1) SUP e 4, f(y) > 1/32 for every y € Cj,
2) Ify) < Emin{i,r} foralli#£r, f € A; and y € C..

To prove (1), let z = >}, byxy be a (l/m?,kj)—r.i.s.c.c. and y = z/| 2|
Then, by Proposition 4.12, ||z|| < 8/m;. For every k = 2,...,n, we can
choose fi € K with fx(xx) > 1/3 and supp fr C (lx—1,lx]. Then the family
(fi)jp—s is Sg,-allowable, so ¢ =m " Y i, f € A; and

m; 3 P 4dm;
It follows that m; 1 1
My) = 5 am, 32

To prove (2), let y = z/||z|| € C, and f € A;. We distinguish two cases.

CASE 1: ¢ < r. Then Proposition 4.12 shows that |f(2)| < 14/(m;m,),
since z is a (1/m2, k,)-r.i.s.c.c. Dividing by ||z|| we get |f(z/||]))| < 56/m; =
€ = Emin{ri}-
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CASE 2: i > 7. Then Proposition 4.12 yields |f(z)| < 8/m?2. Dividing by
[2]] we get | f(z/l[2])] < 32/mr < emingr,}- =

We now prove that if the sequence (k;,m;); satisfies certain additional
conditions, then every block subspace of Th/[(Sk,,1/m;)i] admits an ¢
spreading model.

DEFINITION 4.14. Let (m;), (ki), (t;) be strictly increasing sequences of
positive integers satisfying the following Gasparis conditions:

(1) m1 = 2, and there exists an increasing sequence (s;)°; of positive
integers, with s; > 2, so that m; = Hj<l- mjj for every i > 2.

(2) t1 > 4 and 2% > m? for every i > 1.

(3) ti(ri+1) < k; for every i > 1, where (r;) is defined as follows: 1 = 1
and for every i > 2,

T = max{Zajk:j 1V <i, a; € NU{0} and Hm]a] < m?}
j<i j<i
We set Yy = TM[(Skiv 1/ml)l]

The above conditions appeared in an early version of [15], where it
was proved that the dual X* of the “conditional version” X of the mixed
Tsirelson space T[(Sk,,1/m;);| admits a ¢f spreading model in every sub-
space.

The sequence (m;, ki, t;); satisfies k; > t;(k;—1 + 1) and 2% > m? for all 4,
and this ensures that all the results of this section also hold for the space
Y in particular, Y,/ is arbitrarily distortable (see Remark 4.3). In order to
show that every subspace admits an /7 spreading model, we shall work with
(1/m2, p;)-r.is.c.c.’s, where p; = Zj<i sjk;, instead of (1/m2, k;)-r.is.c.c.’s
that we used for the distortion. We shall show the following.

THEOREM 4.15. Every block subspace of Y admits an {f spreading
model with constant ¢ > 1/64.

We shall need the following arithmetical lemma from [15].

LEMMA 4.16. Assume that (aj);;%) are positive integers satisfying
Hj<im?j <m;. Then 3, ozk; <3, 85k

Proof of Theorem 4.15. First we shall construct a sequence having an
¢ spreading model starting from the basis (e;);, and next we shall use the
estimates on rapidly increasing sequences to deduce the existence of an ¢
spreading model in every block subspace of Yj,.

For every i € N, we set p; = ZKZ- s;k;.

LEMMA 4.17. Leti > 2 and x =Y, Brex be a (1/m2, p;)-basic special
convex combination. Then 1/m; < ||z| < 2/m;.
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Proof. The lower estimate is obvious, since p; < k;. For the upper es-
timate, let ¢ € K. If w(¢) = 1/m, < 1/m; it follows immediately that
lp(z)| < 1/my. If w(¢) > 1/m;, let D = {k € suppz : |p(er)| > 1/m;}.
Then [¢pe(z)| < 1/m;.

CLAIM. supp ¢|p € Sp,—1.

Once we prove the Claim, it follows that |¢p(z)| < 1/m?, and this
completes the proof.

Proof of the Claim. Let (fa)aer be an analysis of ¢. Sublemma 4.7 shows
that the set {f, : o a terminal node} = {¢;, : @ a terminal node} is at most

{ = max{ Z kg : o a terminal node}—allowable.
B=<a

For each terminal node « of T, Zﬁ<a ks is of the form Zj<i oikj, 0; €
NuU{0} (j <), and

1 61 <H—

B=a j<Z

It follows from Lemma 4.16 that >_._; 0jk; < ZjQ- sjkj = p;. Therefore
supp ¢|p is at most Sp, —1-allowable, and the proof of the Claim is complete. m

The Gasparis conditions imply the following key property of the space
Yar. A (1/m?, p;)-basic special convex combination, r = > ker brer, can be
normed by a functional * which belongs to various different classes A;.

Indeed, the functional z* = mi_1 > rer €5, which obviously belongs to
A;, can also be written, for every j < ¢, in the form z* = mj_l > scc fs where
the family (fs)seq is Sp,-admissible. This is a consequence of the relations
m; = Hj<l- mjj and p; = ZKZ- s;jk;, and the fact that S,[Sn] = Spim for
every n, m € N.

Let (yl)l 1 be a block sequence such that y; = Qm,x, fori =1,2,.
where z; = > p e is a (1 /m?2,p;)-basic special convex comblnatlon
Then 1/2 < ||y;|| < 1. We claim that the sequence (y;); has an ¢{ spreading
model with constant 1/2.

Indeed, let F' € S, with » < min F'. Then (y;);er is S,-admissible. For
each k € I', we consider the norming functional of xy, x} = m,:l ZleFk e] =
m ! >ica, fi» where (fi)iec, is Sp.-admissible. Then the family {f; : i €
Uker G} is S¢[Sp,] = Spyp,-admissible. Since r + p, < k., it follows that
the functional f = m >, p Zz’eGk fi belongs to the norming set of Yj,.

Hence
f( > bk!/k) = Z > filbeyw) > Z by

keF kGF zEGk kEF
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Let now Z be a block subspace of Y3 and (y;)ien be a rapidly increasing
sequence of (1/m2_, kn,)-seminormalized s.c.c.’s in Z. Inductively we choose
a block sequence (zy) such that for every k, z;, = ZjeFk bjy; is a (1/m2, pg)-
rapidly increasing special convex combination of the sequence (y;). Quoting
step by step the proof of Proposition 4.12, and using Lemma 4.17 for the
estimate of the norm of a (1/m3, py)-basic s.c.c., we get 1/(dmy,) < ||z <
14/my.

We set yp = (my/14)zk, k € N. Using the previous estimates, in the same
manner as above we conclude that the sequence (yi)ren has an ¢4 spreading
model with constant ¢ > 1/64. m

REMARKS 4.18. 1. It is not clear whether in the general mixed Tsirelson
space T[(Sy, 0n)n] With Oty > 0,,0,,, one can find normalized functionals
which belong simultaneously to various different classes 4;, as it happens
when the Gasparis conditions are satisfied.

2. It is easy to see that if a block sequence (y;); in a Banach space

has a cg spreading model, then any sequence biorthogonal to it in the dual

space has an fﬁ spreading model. The dual of this statement is not always
true. For example, consider the sequence (w"), = (>_;_; '), in the space
T[(Sn,0n)n] which appeared in the proof of Proposition 3.1. Recall that
xp = yr/llypll and yp = ZieF’? bizi is an (e}, j1+. ..+ ji)-r.i.s.c.c. for every
k <n and n € N. As proved in Proposition 3.1, (w"),, has an ¢¢ spreading
model. Let (2]); be a normalized sequence in the dual with 2} (z;) > 1/2 and
supp z; C supp z;. Then, for fixed ko, the sequence of functionals fw;;’ko =
Oy 4.+ iy +1 ZieF,gLO z§ is almost biorthogonal to (w"), (recall that ||y;| ~

Oy +...+jx, ) However, (wy, ;) fails to have a ¢ spreading model in the dual
space. Indeed, for r e N, let y = > A, = Y oneF An ZieF’? b;z; be an
0

(e,7 4+ J1+ ...+ jg,)-ris.c.c. of (2z;). Then, by [6, Proposition 1.15], ||ly|| ~

0T+j1+m+jk0' It follows that ZneF w;,ko (y/llyll) ~ j1+~.+jk0+1/6T+j1+m+jk07
8O || 2 ,cr Yn ko |l tends to infinity with r.
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