
C. Linnhoff-Popien and H.-G. Hegering (Eds.): USM 2000, LNCS 1890, pp. 310-317, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Experiences Building a Service Execution Node for
Distributed IN Systems

Menelaos K. Perdikeas, Fotis G. Chatzipapadopoulos, and Iakovos S. Venieris

National Technical University of Athens, 9 Heroon Polytechniou, 157 73 Athens, Greece
[perdikea|fhatz]@telecom.ntua.gr, ivenieri@cc.ece.ntua.gr

Abstract. We describe a Distributed Intelligent Network architecture.
By laying a distributed processing environment a more flexible
mapping between functional and physical entities is afforded. Mobile
code can in turn be employed to cater for performance or load
balancing considerations as well as to increase the overall flexibility
and manageability of the system. Changes in the physical locations of
the endpoints of a control relationship can be abstracted to higher layer
software by virtue of the location transparency properties of the
environment. We report on the development of an experimental
implementation and we demonstrate how the aforesaid technologies
improved its characteristics.

1 Introduction

The Intelligent Network (IN) approach for providing advanced services to end users
aims primarily at minimizing changes in network nodes by locating all service-related
(and thus likely to change) functionality in dedicated IN-servers, known as ‘Service
Control Points’ [1,2]. These servers are in a sense external to the core network which
in this way needs to comprise only a more or less rudimentary switching functionality
(Service Switching Points) and the ability to recognize IN call requests and route
them to the specialized service control points. The advent of Mobile Agent and
Distributed Object Technologies (MAT and DOT) can help unravel the full IN
potential. The IN, being a distributed infrastructure has much to gain from these
technologies in terms of flexibility, reduced times to develop, test and deploy new
services and an overall architecture that is easier to manage, maintain and extend.

The ACTS MARINE project [3] had the objective to investigate enhancements of
IN towards a distributed computational environment, which will model the
interactions between IN elements as distributed method invocations and will allow the
exchange of Service Logic Programs (SLPs) implemented as mobile agents. IN
elements in this context refer to those functional entities that correspond to the
endpoints of traditional IN flows as they are described in [4].

For comprehensive descriptions of DOT and MAT see [5,6]. This paper is
structured as follows. We first introduce the concept of Distributed IN and provide its
rationale. We then describe the architecture of a prototypical implementation. Having
employed extensively DOT and MAT in this context we present our experiences and
conclude with some thoughts on the applicability of these technologies in this and
similar contexts.

Experiences Building a Service Execution Node for Distributed IN Systems 311

2 What is Distributed IN?

In a traditional IN implementation, the Intelligent Network Application Protocol
(INAP) information flows are conveyed by means of static peer-to-peer protocols
executed at each functional entity. The static nature of the functional entities and of
the protocols they employ means that in turn the associations between them are
topologically fixed. An IN architecture as defined by [4] is inherently centralised with
a small set of service control points and a larger set of service switching points
engaged with it in INAP dialogues. The service control points are usually the
bottleneck of the entire architecture and their processing capacity and uptime in large
extent determine the number of IN calls the entire architecture can handle effectively.

Distributed object technologies can help alleviate that problem by making
associations between functional entities less rigid. This is a by-product of the location
transparencies that use of DOT introduces in any context.

Once a distributed processing environment has been in place, MAT can in turn be
employed to take advantage of object mobility. In MARINE, SLPs are implemented
as agents able to migrate to the switch and control its operations locally. This can be
justified on performance or load balancing grounds. For instance, having the SLP
interact locally with the switch avoids the larger remote communication costs and
economizes on network bandwidth. It also relieves a possibly overloaded service
control point.

3 The Architecture at Large

Based on the considerations expressed in the previous section, we are augmenting the
physical entities of traditional IN with distributed processing and code mobility
capabilities. In particular at each computing node that hosts a functional entity, a
CORBA ORB and a mobile agent platform are installed. The introduction of CORBA
allows a laxer mapping between functional and physical entities, which can in any
case change very easily so this mapping is not an intrinsic property of the architecture.
In effect, we define a CORBA interface for each endpoint of an INAP information
flow and implemented the appropriate CORBA objects for servicing these flows. So,
both the Service Control Function (SCF) and the Service Switching Function (SSF)
are CORBA objects, peers with each other. Java was used for the implementation of
the SCF since the later relied on MAT.

312 M.K. Perdikeas, F.G. Chatzipapadopoulos, and I.S. Venieris

The major physical entities of the system depicted in Figure 1 are:

1. The Service Execution Node (SEN). A workstation hosting – among others – the
SCF. A Java-based mobile agent platform (Grasshopper [7]) and a CORBA ORB
are installed at the SEN. The SCF agency provides the functionality for SLPs to be
introduced, initiated, executed, suspended or withdrawn. The term ‘agency’ refers
to the components that must be installed in a computer node and that provide the
necessary runtime environment for mobile agents to execute. SLPs are
implemented as mobile agents to take advantage of the mobility characteristics in
ways that are described later on in this section. Naturally, not all components of the
SCF need be mobile agents. A lot of infrastructure components are stationary
agents or simply Java objects having no relationship with MAT except for the fact
that they share the same process space. The SCF agency uses the ORB installed at
the SEN and so it appears connected on to the CORBA bus of the system. SLP
agents in the SEN can migrate to the switch using the agent bus (which is also used
when SLPs are initially deployed from a management workstation).

2. The Service Switching and Control Point (SSCP). It hosts a SCF identical with the
one at the SEN which caters for SLPs that have migrated locally to the switch. It
also hosts the SSF which is for the most part a typical SSF implementation. It is
usual for SSFs to be implemented in C++ to respond to stringent performance
requirements. Having mobile SLPs implemented in Java communicate with static,
C++ code would be a very cumbersome situation if it weren’t for CORBA.
CORBA’s implementation transparency means that language of choice is not
important and its location transparency implies that the SSF can behave the same
way whether the SLP it is engaged with is locally or remotely located (i.e. located
at the SEN’s or the SSCP’s SCF). Two workstations are shown attached to the
switch using bearer signalling. A Broadband Videotelephony and an Interactive
Multimedia Retrieval application were installed on each terminal and were used for
testing.

3. Finally, there is also the Service Management System node that is used for
management, supervision and bootstrapping of the system. The Management
System contains the agent repository which hosts a number of service agents (e.g.
Interactive Multimedia Retrieval service) that are at bootstrap or reconfiguration
time deployed in various agencies of the system. Service agents are originally
deployed to the SEN’s SCF. The CORBA Naming Service process also appears
running in the Management System node but clearly it can run on any other
CORBA enabled workstation. The same applies to the Region Registry process
which also appears running at that node. The Registry is a Naming Service-like
service that is for use within a agent environment and is used in connection with
the agent bus.

Experiences Building a Service Execution Node for Distributed IN Systems 313

6(1

*+

6&)

Physical node

Process

Mobile Agent
Platform runtime

Functional entity

IN flow

agent migration

6HUYLFH�0DQDJHPHQW
6\VWHP

1DPLQJ

6HUYLFH

66)

$JHQW

5HSRVLWRU\

66&3

66)

&&)

%($5(5
6,*1$/,1*

7HUPLQDO

6/3V

&25%$�%86

0$�%86

6&)

6/3V

5HJLRQ

5HJLVWU\

WR�RWKHU�IXQFWLRQDO�HQWLWLHV

&&$)

$SSOLFDWLRQ

SMF

$JHQW�%86

7HUPLQDO

&&$)

$SSOLFDWLRQ

Fig. 1. Reference architecture

With the reference architecture of Figure 1 in mind we can see how automatic
reconfiguration of the network’s IN flows can take place. Refer to Figure 2 for
numbered steps.

Originally all SLPs reside on the SCF located in the SEN and so service
provisioning (which involves SLP-switch interaction) occurs between two remotely
located physical entities (like in traditional IN). We depict two SSCPs receiving
instructions from the same SEN. This corresponds to frame (a) in Figure 2. However,
when the load balancing mechanisms of the system detect that a certain service should
be served locally (due to either link capacity exceeded or to computational
overloading on a node), it uses that deployed service to clone it and create a second
prototype. That cloned prototype is then migrated locally to one SSCP (frame (b)) and
is used for subsequent sessions to provide services locally. The other SSCP whose
load balancing mechanisms presumably did not detect the need for a locally available
prototype continues to be served remotely (frame (c)). While the originally deployed
prototypes are administered by the Management System, second prototypes’ existence
is transparent to it. The latter are created and removed by the switch-located SCFs
when certain criteria are met. So, at a later point in time we may arrive in a situation
where the second SSCP is served locally (i.e. from the SSCP located SCF) and the
first one has reverted to remote mode.

314 M.K. Perdikeas, F.G. Chatzipapadopoulos, and I.S. Venieris

Migration
originally deployed

prototype

second prototype
(created by the load

balancing mechanisms)
CORBA Cloning

SSCP #1

SCFS
S

F

SSCP #2

SCFS
S

F

SEN

SCF

SSCP #1

SCFS
S

F
SSCP #2

SCFS
S

F

SEN

SCF

SSCP #1

SCFS
S

F

SSCP #2

SCFS
S

F

SEN

SCF

SSCP #1

SCFS
S

F

SSCP #2

SCFS
S

F

SEN

SCF

(a) (b) (c) (d)

Fig. 2. Automatic reconfiguration of the IN flows of the network

4 Experiences Realising Distributed IN Systems

Reflecting on the design decisions we took while implementing the architecture we
described, we can consider as a starting point a typical IN implementation. The first
move towards a Distributed IN was the replacement of the SS7 stack with CORBA.
This meant that the same IN flows were implemented using CORBA method
invocations. The were a number of decisions that had to be taken at this step: the most
important was whether the method invocations would be synchronous or
asynchronous (blocking or non-blocking).

4.1 Invocation Mechanisms and Threading Issues

Non-blocking method invocations resemble closer the semantics of message passing
protocols and thus probably require fewer modifications to existing software.
Asynchronous method invocations or message passing mechanisms can be contained
within wrapper entities to appear the same to higher layer software. Moreover, since
the IN protocol has been defined with message passing mechanisms in mind,
asynchronous invocations fit more naturally from a semantic point of view. This is
why fewer modifications to existing software are needed after all.

Blocking method invocations are quite different than exchanging messages but
they are more natural to use in the context of a distributed processing environment.
This is different than saying that they more appropriate with a specific protocol (e.g.
INAP) in mind. It is just that, if a distributed processing environment is to provide the
illusion of an homogeneous address space, where method invocation are made just as
the objects were residing in the same process context, then blocking method calls
enhance this view. From a programmatic point of view, the main effect of
synchronous method invocations is that they reduce need for threading at sending
entities and that the developers don’t have to implement synchronisation themselves
(because the method calls themselves block until a result can be returned). On the
other hand, depending on the architecture and the network of connections between
invoking and invoked objects, it may lead to deadlock problems at receiving or
intermediate entities where a number of such method invocation chains may pass
through.

Experiences Building a Service Execution Node for Distributed IN Systems 315

4.2 Establishing Associations between Objects

Concerning the use of a DOT, another issue we found to be important was the way in
which the various CORBA objects of the system (corresponding to the functional
entities) would obtain references to each other. Two at least approaches are possible.

One is the use of a simple look-up mechanism where the entities of the system
search their peers by means of their names and retrieve an IOR they can then use to
directly invoke methods. The Naming Service provides an elegant, standardized and
scalable (with federation of Naming Services) solution. Support of nested naming
contexts guards against name pollution. Reconfiguring associations is thus readily
supported by simply changing the relevant names.

A more structured solution would be to implement a ‘configuration server’ that
would be queried by all CORBA enabled entities of the system. The syntactic form of
these queries would be left to the designers of the network to define but it would
allow a higher level approach to be implemented, one that would more clearly reflect
the idiosyncrasies of the architecture and the roles involved. This server would store
in a centralised manner all configuration information about the system facilitating
easy monitoring and modifications of these settings.

4.3 Configuring the System

In the MARINE architecture we chose to implemented the Naming Service solution
coupled with the use of configuration agents. These agents employ code mobility and
are dispatched from a central location to the nodes of the system. One of their uses is
to carry configuration settings (e.g. Naming Service names). That reconfigurations
should be applicable at all points during the operation of the system and not only at
bootstrap time provided the rationale for the use of configuration agents.

In a complex distributed system, one involving many associations between its
entities, during bootstrap or reconfiguration time objects can be found to be in invalid
states. Catering for such not properly initialized objects can degenerate to a series of
ad hoc remedies made on a peer-to-peer basis (e.g. between pairs of communicating
objects) and not universally for the entire system. Given that these periods of
inconsistent state can be extended (for the time-scales of a telecommunication system)
and will occur not only during bootstrap but also during re-configuration or following
an erroneous condition, it is easy to lose track of the overall state. A server that
centrally stores and administers all configuration information about the system can
provide a solution to this problem.

4.4 Applying MAT

Having relied on DOT to provide connectivity between IN functional entities, the next
step was to identify ways in which the introduced location transparencies could result
in more flexible implementations or even cater for shortcomings of the original
centralised approach. Naturally, we considered MAT for this purpose. This
presupposed use of Java and installation of special middleware. Since connections
between objects were no longer statically defined nor associated with transport
protocol addresses, code mobility could be employed to allow a software object to

316 M.K. Perdikeas, F.G. Chatzipapadopoulos, and I.S. Venieris

move from one node to another without terminating its associations. Performance
optimisations as well as load balancing considerations could justify such a migration.

It is not the objective of this paper to make a general assessment of MAT but we
have found that certain conditions hold which warrant the use of mobile code
capabilities in the case of distributed IN. First of all, given the intensity of the IN
dialogues held for instance between SCF and SSF, performance gains can indeed be
expected. Secondly, each SLP is individual in terms of the finite state machines it
maintains, the INAP methods it invokes, their parameters, their sequencing. The
abstraction of an agent as an autonomous software object thus fits neatly with the
concept of a service logic program. We do not believe that alternate ways to transfer
control from SCF to SSF are not possible but we hold that the MAT paradigm blends
naturally with the abstractions and models of IN and provides a clean cut and
intuitively appealing way of doing things. Also, any solution resting on MAT is more
dynamic and flexible than changing the logic of the protocols which can be very
cumbersome or even unfeasible. Finally, management’s ability to reconfigure the
network remotely, without interrupting currently executed services makes the case for
MAT even stronger. This can for instance be implemented using agents to be
dispatched from a management location to a malfunctioning node to locally interact
with it in case remote interfaces have not been defined.

With the particular architecture of MARINE in mind, we have found that the
ability for an SLP to migrate to the switch and control its operations locally is a very
efficient way to respond to an observed pattern of service requests, a congestion or an
anticipated failure or maintenance shut down. We also found the mechanism of
cloning existing prototypes very helpful all the more so since it was supported directly
by the platform we used. We also employed code mobility to dispatch specialised
software components to deal with problems or reconfigurations at remote nodes.

5 Conclusions

We have found that CORBA can very reliably substitute message-based protocols like
INAP while incurring only mild performance penalties. Furthermore, there is nothing
inherent in the paradigm of CORBA that prevents it for operating in even faster
ranges, except perhaps its complexity and the larger number of intermediate layers.
Those layers comprise for instance facilities for marshalling and unmarshalling that
are absent in more rudimentary transport layer protocols. We believe that this is a
profitable trade-off and that CORBA’s advantages in wrapping legacy code and
enhancing code modifiability (along with making it much more compact) for the most
cases compensate handsomely. Moreover, development of specialized, real-time
ORBs will probably remove performance-premised objections. Furthermore, and
while in out prototype we used a private IP network to interconnect the IN physical
elements the consortium behind the CORBA specifications has released a framework
that enables conveyance of CORBA over a native SS7 protocol stack.

Concerning MAT, the performance of all presently available platforms would have
been debilitating for commercial, real-time applications. Two factors contribute to
this poor performance: use of Java and the fact that mobile agents in contrast to
CORBA objects operate as threads in the context of a much larger and performance
bogging entity (the platform providing the runtime environment). It is difficult to

Experiences Building a Service Execution Node for Distributed IN Systems 317

make an in-depth analysis comparing the performance of our prototype to that of
contemporaneous architectures. This is due to the fact that the benefits accruing from
the dynamic distribution characteristics of our approach would be more evidenced in
large scale installations. However, an educated guess would probably hold the overall
performance of our architecture to be inferior to that of commercial deployments.
Nevertheless, and while the focus of our approach is not solely on performance, we
believe that there is a clear potential for improvement as this is not due to structural
reasons but has to be attributed to the present state of the technologies we used.

Performance or load balancing reasons by themselves should not necessarily lead
to the introduction of MAT. However, when the potential for a more efficient
environment coexists with the ability to adopt a network design that is more natural
for a given context (e.g. agents to implement autonomous SLPs) then MAT is a viable
alternative.

References

1. Magedanz, T. and Popescu-Zeletin R. (1996) Intelligent Networks – Basic Technology, Standards and
Evolution, International Thomson Computer Press, ISBN: 1-85032-293-7, London, June.

2. Venieris, I.S. and Hussmann H. (eds.) (1998) Intelligent Broadband Networks, John Wiley, ISBN: 0-
471-98094-3, Chichester

3. MARINE Project (ACTS AC340), http://www.telecom.ntua.gr/~marine/marine.htm
4. ITU-T Recommendations – Intelligent Network, Series Q.12xx
5. OMG, ‘Common Object Request Broker Architecture and Specification’, Updated Revision 2.1,

November 1997.
6. Menelaos Perdikeas et al., "Mobile agent standards and available platforms", Computer Networks and

ISDN systems, Elsevier, Vol 31, pp. 1999-2016
7. http://www.ikv.de/products/grasshopper/index.html

http://www.italtel.it/drsc/marine/marine.htm
http://www.ikv.de/products/grasshopper/index.html

	Introduction
	What is Distributed IN?
	The Architecture at Large
	Experiences Realising Distributed IN Systems
	Invocation Mechanisms and Threading Issues
	Establishing Associations between Objects
	Configuring the System
	Applying MAT

	Conclusions

