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Background and Purpose—Ischemic stroke (IS) and coronary artery disease (CAD) share several risk factors and each has 
a substantial heritability. We conducted a genome-wide analysis to evaluate the extent of shared genetic determination of 
the two diseases.
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Methods—Genome-wide association data were obtained from the METASTROKE, Coronary Artery Disease Genome-
wide Replication and Meta-analysis (CARDIoGRAM), and Coronary Artery Disease (C4D) Genetics consortia. We 
first analyzed common variants reaching a nominal threshold of significance (P<0.01) for CAD for their association 
with IS and vice versa. We then examined specific overlap across phenotypes for variants that reached a high threshold 
of significance. Finally, we conducted a joint meta-analysis on the combined phenotype of IS or CAD. Corresponding 
analyses were performed restricted to the 2167 individuals with the ischemic large artery stroke (LAS) subtype.

Results—Common variants associated with CAD at P<0.01 were associated with a significant excess risk for IS and for LAS 
and vice versa. Among the 42 known genome-wide significant loci for CAD, 3 and 5 loci were significantly associated 
with IS and LAS, respectively. In the joint meta-analyses, 15 loci passed genome-wide significance (P<5×10−8) for the 
combined phenotype of IS or CAD and 17 loci passed genome-wide significance for LAS or CAD. Because these loci 
had prior evidence for genome-wide significance for CAD, we specifically analyzed the respective signals for IS and 
LAS and found evidence for association at chr12q24/SH2B3 (P

IS
=1.62×10−7) and ABO (P

IS
=2.6×10−4), as well as at 

HDAC9 (P
LAS

=2.32×10−12), 9p21 (P
LAS

=3.70×10−6), RAI1-PEMT-RASD1 (P
LAS

=2.69×10−5), EDNRA (P
LAS

=7.29×10−4), 
and CYP17A1-CNNM2-NT5C2 (P

LAS
=4.9×10−4).

Conclusions—Our results demonstrate substantial overlap in the genetic risk of IS and particularly the LAS subtype with 
CAD.    (Stroke. 2014;45:24-36.)
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Stroke and coronary artery disease (CAD) are among the 
most common causes of premature death and loss of dis-

ability-adjusted life years worldwide.1,2 Both conditions are 
risk factors for one another3,4 and in combination they are used 
for the assessment of risk or as a therapeutic target in clinical 
trials. Stroke and CAD share several risk factors and many 
aspects of their underlying pathophysiology. This shared biol-
ogy applies to ischemic stroke (IS) and particularly to the sub-
type of atherosclerotic stroke (large artery stroke [LAS]).4,5 
Twin and family studies have demonstrated that both IS and 
CAD are highly heritable6,7 with some evidence of a shared 
heritability for both diseases.8

Recent genome-wide association studies (GWASs) have 
identified some common genetic variants that are associated 
with IS9–11 and multiple loci that are associated with CAD.12,13 
Interestingly, some of the variants that were originally found 
to affect CAD risk also associate with LAS,14,15 suggesting a 
shared genetic architecture. However, there has been no sys-
tematic study assessing shared genetic susceptibility to both 
IS and CAD or to LAS and CAD on a genome-wide level in 
large datasets.

Combining genome-wide data from the METASTROKE, 
CARDIoGRAM, and C4D consortia, we examined whether 
IS and its subtype LAS share genetic risk with CAD with 
respect to common genetic variation. We further explored 
the most robustly associated variants for CAD for their asso-
ciation with both IS and LAS and vice versa. Finally, we 
conducted a joint meta-analysis of IS and CAD to search 
for variants that are associated with the combined and thus 
broader vascular phenotype.

Methods
Participating Studies and Study Design
The study sample consisted of GWAS case–control samples from the 
METASTROKE,9 CARDIoGRAM,12 and C4D16 consortia (Table I in 
the online-only Data Supplement). All participating studies used a 
case–control or nested case–control design. Most participating stud-
ies were cross-sectional, whereas some were prospective, population-
based studies.

The METASTROKE consortium included 15 GWASs involving 
12 389 IS cases and 62 004 controls. Among them were 2167 LAS 
cases and 49 159 LAS controls, and 2365 cardioembolic stroke (CES) 
cases and 56 140 CES controls. Genotyping in individual cohorts was 
performed using Affymetrix or Illumina platforms, and ≈2.5 million 
imputed genotypes were generated. Individual METASTROKE results 
of the association analyses from every center were analyzed using a 
fixed-effects inverse-variance weighted model with Meta Analysis 
Helper.9,17 All data were quality controlled as previously described.9

The CARDIoGRAM consortium included 14 GWASs involving 
22 233 CAD cases and 64 762 controls. The genotyping platforms 
used and imputation approach was similar to METASTROKE. The 
C4D consortium included 3 studies involving a total of 11 165 CAD 
cases and 10 964 controls. Genotyping was performed using Illumina 
arrays containing a common set of ≈575 000 genotyped single nucle-
otide polymorphisms (SNPs).16 The meta-analysis of all CAD studies 
was performed using a fixed-effects or random-effects model depend-
ing on the extent of heterogeneity as described previously.18 All data 
were quality controlled as previously described.16,18

Phenotype definitions of stroke and CAD are described in the 
original reports.9,12,16 In brief, stroke was defined as a typical clinical 
syndrome with radiological confirmation. Stroke subtyping was done 
using the Trial of Org 10172 in Acute Stroke Treatment (TOAST) 
classification system. Definitions for CAD slightly varied between 
cohorts but usually included myocardial infarction, symptoms of 
angina pectoris, and >50% coronary artery stenosis. Participating 
studies were approved by relevant institutional review boards, and 
all participants provided written or oral consent for genetic research 
using protocols approved by the relevant institutional body.

Statistical Analysis
For the analysis of variants showing a nominal threshold of sig-
nificance (P<0.01) for IS, LAS, or CAD, data were taken from the 
METASTROKE (for IS and LAS) and the combined CARDIoGRAM 
and C4D (for CAD) sample. Variants with a P value of <0.01 for a 
given phenotype were then tested for association with the alternate 
phenotype(s) to determine whether the observed distribution of P val-
ues significantly deviated from the expected distribution. To ensure 
that only independent loci are incorporated in the analysis, we per-
formed LD-based pruning with an r2 cut off of 0.3 retaining the SNP 
with the lowest P value in the original study for each locus. QQ plots 
were drawn to plot –log (P values) where SNPs with effects in op-
posite directions were plotted separately from SNPs with effects in 
the same direction. To determine the deviation of the P value distribu-
tion shown in the QQ plots, P values were z transformed. Under the 
null hypothesis, the z transformed effects follow a standard normal 
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distribution. One-tailed significance was determined by comparing 
the absolute values of the z scores to a random normal 1-tailed dis-
tribution using a standard t test. 2×2 contingency tables were con-
structed for different P values and r2 cut offs and Fisher exact test 
were used to evaluate the significance of the contingency tables.

Directionality of effects (odds ratio associated with the minor al-
lele) of top variants for the 3 phenotypes (IS, LAS, and CAD) in 
other phenotypes (CAD for IS and LAS variants; IS and LAS for 
CAD variants) were examined by calculating the proportion of effects 
going in the same direction and comparing this proportion to that 
expected by chance (50%). For this, an exact binomial test was per-
formed. The analysis was repeated on the LD-pruned data to ensure 
independence of tested SNPs. Bonferroni correction was applied to 
determine study-wide significance.

To rule out that the agreement in P values at individual risk loci is 
limited to single variants, we calculated the correlation of P values 
using Spearman rank correlation for defined genomic regions (con-
sistent drop of P values <0.05) for each potentially shared risk locus. 
This allows to quantify the agreement between the P value distribu-
tions of the different phenotypes using Spearman ρ as a read out, 
where ρ=1 is defined as a perfect positive correlation and ρ=−1 as a 
perfect inverse correlation.

Meta-analysis Methods
We performed meta-analyses of the combined data from CARDIoGRAM 
(for CAD) and METASTROKE (for IS and LAS) using 2 methods. First, 
we performed subtype-specific meta-analyses using the protocol pub-
lished by Mägi et al19 and Mägi and Morris.20 This method was origi-
nally developed for sex-specific GWASs but can also be applied to other 
dichotomous covariates. The algorithm is implemented in the GWAMA 
software19,20 and accounts for possible heterogeneity between study sub-
groups by formally allowing for interaction between genotypes and sub-
groups under an additive model. Here a subgroup-differentiated P value 
below individual P values for individual subgroups is indicative of an 
association with both subphenotypes. To evaluate whether the resulting 
meta-analysis P values are significant after correcting for multiple testing, 
we evaluated the false discovery rate of these P values. The R package 
fdrtool was used to estimate q values, a direct measure of the proportion 
of false-positive results in the presence of a statistically significant result.

Second, we used the method of Zaykin and Kozbur,21 which is 
similar to the method by Lin and Sullivan22 to account for overlap 
of an estimated ≈38 000 controls between the CARDIoGRAM and 
METASTROKE samples from the Kooperative Gesundheitsforschung 
in der Region Augsburg (KORA), Wellcome Trust Case-Control 
Consortium 2 (WTCCC2), Cohorts for Heart and Aging Research 
in Genomic Epidemiology (CHARGE), and deCODE studies (the 
exact number of overlapping controls could not be determined in the 
absence of individualized data), which may lead to the inflation of 
meta-analysis P values. This program compensates for this lack of 
independence in test statistics created by the use of the same controls 
by computing the correlation between studies and using this measure 
for correction of P values obtained from a standard meta-analysis. In 
the absence of exact numbers for overlapping controls, we simulated 
different scenarios of overlapping controls.

Results
Analysis of Variants Meeting a Low Threshold of 
Significance of Association With CAD, IS, and LAS
We first tested whether SNPs with some evidence for asso-
ciation with CAD also associate with IS, and vice versa. 
Specifically, we constructed a QQ plot in the IS GWAS meta-
analysis using variants that displayed a P value of <0.01 for 
CAD in CARDIoGRAM/C4D.12,16 We next constructed a QQ 
plot in the CAD GWAS meta-analysis using variants that dis-
played a P value of <0.01 for IS in METASTROKE.9 For both 
analyses, deviation of the observed from the expected distri-
bution was highly significant with P<10–82 (Figure 1A).

Next, we generated corresponding QQ plots for LAS and 
CAD. Again, deviation of the observed from the expected 
distribution was highly significant in both analyses (P<10–27; 
Figure 1B). Corresponding QQ plots for CES and CAD also 
showed some deviation of the observed from the expected dis-
tribution (Figure 1C). However, the deviation was less pro-
nounced than for LAS and CAD. Focusing on variants with a 
P value of <0.0001 revealed a significant excess of shared sig-
nals between IS and CAD (3.75×10−8) and between LAS and 
CAD (P=3.4×10–3) but not between CES and CAD (P=1.0; 
Figure I in the online-only Data Supplement).

Cross-Analysis of Robustly Associated Variants for 
CAD and IS
We next analyzed directionality of effects (odds ratio asso-
ciated with the minor allele) for all variants that have previ-
ously shown genome-wide significance for association with 
CAD in CARDIoGRAMplusC4D13 in the METASTROKE 
GWASs for IS and LAS. Among 46 CAD variants from 42 
loci, 33 variants (72%) from 31 loci showed point estimates 
for IS that were directionally consistent for CAD (P=0.0045; 
exact binomial test, 2-sided; Table II in the online-only Data 
Supplement). Three variants from 3 loci were significantly 
associated with IS (Table 1) at the 95% confidence level after 
Bonferroni correction (P<0.00108 for testing of 46 variants). 
The effects for IS were in the same direction as for CAD for 
all 3 of the variants. Corresponding results for LAS were 34 
variants from 31 loci (74%; P=0.0016) and 5 variants from 
5 loci with study-wide significance (Table 1; Table II in the 
online-only Data Supplement). When considering LD-pruned 
SNPs (r2<0.3) the results were similar with only 2 SNPs 
(rs11203042 and rs3217992) at 2 loci being removed from 
analysis. Among 44 CAD variants from 42 loci, 31 variants 
from 31 loci (70%) showed point estimates for IS that were 
directionally consistent (P=0.0096). Corresponding results for 
LAS were 32 variants from 31 loci (73%; P=0.0037).

We further analyzed all variants that showed P values <10–5 
with IS in METASTROKE (n=6 variants) for directionality of 
effects in the CARDIoGRAM meta-analyses for CAD. The 
choice of a more liberal P value (P<10–5) was based on the pau-
city of variants reaching genome-wide significance for IS. In all 
cases point estimates for CAD were directionally consistent for 
IS (P=0.0313; for directionality; exact binomial test, 2-sided; 
Table II in the online-only Data Supplement). One variant was 
significantly associated with CAD at the 95% confidence level 
after Bonferroni correction for testing of multiple variants (Table 
1). Finally, we analyzed variants that showed P values <10–5 
with the LAS subtype in METASTROKE (n=11 variants) for 
directionality in the CAD data set. Again, the majority (82%) 
showed effects going in the same direction (P=0.065; Table II in 
the online-only Data Supplement). One variant was significantly 
associated with CAD (Table 1). Considering LD-pruned SNPs 
did not change the results. None of the 3 loci that showed P val-
ues <1×10−5 with CES were associated with CAD (all P

CAD
>0.2).

Meta-analyses of Combined Data From 
CARDIoGRAM and METASTROKE
As a further step we performed meta-analyses for the com-
bined data from CARDIoGRAM (for CAD) and from 
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Figure 1. QQ plots for individual vascular phenotypes considering variants reaching a low threshold of significance (P<0.01) in alternate vascular 
phenotypes: coronary artery disease (CAD) variants in all ischemic stroke (IS; left; A) and all IS variants in CAD (right; A), CAD variants in large 
artery stroke (LAS; left; B) and LAS variants in CAD (right; B); CAD variants in cardioembolic stroke (CES; left; C) and CES variants in CAD (right; 
C). Single nucleotide polymorphisms (SNPs) with effects going into the same direction in the respective samples are shown in black. SNPs with 
effects going into opposite directions in the respective samples are shown in light blue. Data were drawn from METASTROKE, CARDIoGRAM, and 
C4D. Red line, expected line corresponding to a normal distribution; black lines, 95% confidence intervals of the expected distribution. For display 
purposes variants from the 9p21 locus are omitted from the figure. P values correspond to the analysis of directionally consistent SNPs (black line).
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METASTROKE (for IS and LAS) to identify variants that 
are associated with the broader vascular end point. This 
meta-analysis revealed 15 loci that exceeded the threshold 
for genome-wide significance for the combined CAD/IS phe-
notype (Table  2; Figure  2A) and 17 loci that exceeded the 
threshold for genome-wide significance for the combined 
CAD/LAS phenotype (Table 2; Figure 2B). All of these loci 
have been published previously for genome-wide significant 
association with CAD.13 Of note however in the combined 
datasets, several loci showed P values that were >1 order of 
magnitude lower than those in individual meta-analyses on 
the individual diseases. This applied to 3 loci of the CAD/
IS meta-analysis and 5 loci of the CAD/LAS meta-analysis 
(Table 2). All loci were still significant after false discovery 
rate correction (Table 2).

We next focused on loci that showed the strongest indepen-
dent association with IS or LAS in addition to their genome-
wide significance in the combined data set. For IS these were 
chr12q24/SH2B3 (P

IS
=1.62×10−7) and ABO (P

IS
=2.65×10−4; 

Table 2). For LAS, these were HDAC9 (P
LAS

=2.39×10−12), 9p21 
(P

LAS
=3.85×10−6), RAI1-PEMT-RASD1 (P

LAS
=2.69×10−5), 

CYP17A1-CNNM2-NT5C2 (P
LAS

=4.92×10−4), and EDNRA 
(P

LAS
=7.29×10−4; Table 2). In all cases P values for individ-

ual variants within the respective genetic regions (defined 

as a consistent drop of P values <0.05) significantly corre-
lated between CAD and stroke phenotypes suggesting that 
the association signals originate from the same genetic vari-
ants (chr12q24/SH2B3: Spearman ρ

IS/CAD
=0.68, P=3.8×10−87; 

ABO: ρ
IS/CAD

=0.82, P=2.2×10−08; HDAC9: ρ
LAS/CAD

=0.83, 
P=4.8×10−12; 9p21: ρ

LAS/CAD
=0.85, P=2.9E−35; RAI1-PEMT-

RASD1: ρ
LAS/CAD

=0.78, P=5.6×10−17; CYP17A1/CNNM2/
NT5C2: ρ

LAS/CAD
=0.46, P=7.5×10−15; EDNRA: ρ

LAS/CAD
=0.85, 

P=6.5×10−13; Figure II in the online-only Data Supplement).
A closer look at loci that were significant in the combined 

meta-analyses revealed that some loci showed a strong asso-
ciation with both phenotypes reaching a similar level of sig-
nificance for the IS and CAD phenotypes (Figure 3; Figure II 
in the online-only Data Supplement), whereas for other loci 
the association was largely confined to a single phenotype 
(Figure 4; Figure II in the online-only Data Supplement).

To account for the overlap in controls between the stroke and 
CAD samples, we further performed conventional sample-size 
dependent meta-analyses21 for 2 different scenarios covering 
the estimated number of controls that overlapped between the 
2 samples (Table III in the online-only Data Supplement). The 
results compared well with the primary subtype-specific meta-
analysis except for HDAC9 (for all IS/CAD) and SORT1 (for 
LAS/CAD), which reached genome-wide significance in the 

Table 1.  Association Signals and Directional Consistency of Effects of Top Variants for Coronary Artery Disease, Ischemic Stroke, 
and Large Artery Stroke

Lead SNPs Band
Gene in 
Region Minor Allele

Coronary Artery Disease Ischemic Stroke Large Artery Stroke

P Value
Odds Ratio 
(95% CI)

Effects Go 
in Same 

Direction* P Value
Odds Ratio 
(95% CI)

Effects Go 
in Same 

Direction† P Value
Odds Ratio 
(95% CI)

Effects Go 
in Same 

Direction†

Top variants (known loci) for CAD/MI in the CARDIoGRAMplusC4D sample13

 � rs12413409 10q24.32 CYP17A1/ 
CNNM2/ 
NT5C2

A 1.24E-06‡ 0.89  
(0.84–0.93)

. . . 0.0603 0.95  
(0.89–1.00)

Yes 0.00049‡ 0.80  
(0.70–0.90)

Yes

 � rs12936587 17p11.2 RAI1-PEMT- 
RASD1

A 1.98E-07‡ 0.93  
(0.90–0.96)

. . . 0.0051 0.95  
(0.92–0.98)

Yes 2.69E-05‡ 0.86  
(0.80–0.92)

Yes

 � rs3184504‖ 12q24.12 chr12q24/ 
SH2B3

T 9.33E-07‡ 1.07  
(1.04–1.11)

. . . 1.01E-06‡ 1.08  
(1.05–1.12)

Yes 0.00015‡ 1.14  
(1.06–1.22)

Yes

 � rs2023938 7p21.1 HDAC9 C 2.10E-03‡ 1.08  
(1.03–1.13)

. . . 1.65E-06‡ 1.14  
(1.08–1.20)

Yes 2.33E-09‡ 1.38  
(1.24–1.53)

Yes

 � rs579459 9q34.2 ABO C 2.14E-07‡ 1.10  
(1.06–1.14)

. . . 0.00026‡ 1.08  
(1.04–1.12)

Yes 0.0054 1.13  
(1.04–1.22)

Yes

 � rs1333049 9p21.3 CDKN2BAS C 2.96E-56‡ 1.24  
(1.21–1.28)

. . . 0.0053 1.05  
(1.01–1.09)

Yes 3.70E-06‡ 1.19  
(1.11–1.28)

Yes

Top variants (P<10–5) for all ischemic stroke in the METASTROKE sample

 � rs17696736‖ 12q24.13 chr12q24/ 
SH2B3

G 6.56E-08‡ 1.07  
(1.04–1.10)

Yes 5.96E-08‡ 1.10  
(1.06–1.14)

. . . 0.0024 1.11  
(1.04–1.20)

Yes

Top variants (P<10–5) for large artery stroke in the METASTROKE sample

 � rs1333047 9p21.3 CDKN2BAS T 1.44E-53‡ 1.24  
(1.20–1.27)

Yes 0.0063 1.05  
(1.01–1.08)

Yes 1.64E-06‡ 1.20  
(1.11–1.19)

. . .

Shown are variants that were significantly associated with both coronary artery disease (CAD) and ischemic stroke (IS), or both CAD and large artery stroke (LAS), 
or all 3 phenotypes (study-wide level of significance: P<0.00108 for CAD, P<0.008 for IS, and P<0.0045 for LAS). Results are shown for the CARDIoGRAM12§ and 
METASTROKE9 samples. CI indicates confidence interval; and SNP, single nucleotide polymorphism.

*Compared with IS or LAS.
†Compared with CAD/MI, associations reaching study-wide significance (P<0.00108, P<0.008, and P<0.0045) are shown with a (‡).
§Note that the CARDIoGRAM sample represents a subsample of the CARDIoGRAMplusC4D sample.
‖rs3184504 and rs17696736 are in high linkage disequilibrium (r2=0.72, D′=0.91).
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respective subtype-specific meta-analyses but not in the con-
ventional sample-size–dependent meta-analyses.

Discussion
This study demonstrates that common variants at a substantial 
number of genetic loci influence risk of both IS and CAD. This 

conclusion is supported by the results of several approaches: 
First, selecting common variants that had reached a nominal 
threshold (P<0.01) of significance in previous studies and 
testing them for association with the respective other vascu-
lar phenotype; second, analyzing common variants that had 
reached a high threshold of significance in previous studies; 

Table 2.  Association Signals for Risk Loci Significantly Associated With the Combined Coronary Artery Disease/Stroke Phenotypes 
in Meta-analyses

rs_number Band Gene in Region
CAD

P Value
IS

P Value
Effects Go in the 
Same Direction

CAD and IS 
Combined
P Value FDR q Value

Ischemic stroke

 � rs1333049 9p21.3 CDKN2BAS 2.96E-56 0.005 Yes 1.09E-56 5.00E-51

 � rs11065987 12q24.12 chr12q24/SH2B3 5.13E-09 1.62E-07 Yes 4.05E-14* 9.60E-10

 � rs10455872 6q25.3 SLC22A3/LPAL2/ 
LPA

3.15E-13 0.322 Yes 1.72E-12 3.75E-08

 � rs1122608 19p13.2 LDLR/SMARCA4 3.32E-11 0.002 Yes 2.59E-12* 5.52E-08

 � rs4714955 6p24.1 PHACTR1 6.30E-12 0.498 No 4.24E-11 8.30E-07

 � rs11556924 7q32.2 ZC3HC1 2.55E-10 0.217 Yes 9.37E-10 1.59E-05

 � rs964184 11q23.3 ZNF259 1.50E-10 0.871 Yes 1.17E-09 1.95E-05

 � rs579459 9q34.2 ABO 2.14E-07 0.0003 Yes 1.81E-09* 2.95E-05

 � rs2219939 15q25.1 ADAMTS7 2.65E-09 0.042 No 2.49E-09 3.97E-05

 � rs7582720 2q33.1 WDR12 3.76E-09 0.052 No 4.18E-09 6.30E-05

 � rs599839 1p13.3 SORT1 1.41E-09 0.938 Yes 1.07E-08 0.00014

 � rs12190287 6q23.2 TCF21 2.32E-09 0.823 No 1.69E-08 0.00022

 � rs12449964 17p11.2 RAI1-PEMT-RASD1 1.64E-07 0.005 Yes 2.23E-08 0.00028

 � rs17114036 1p32.2 PPAP2B 9.78E-09 0.162 Yes 2.66E-08 0.00032

 � rs9351814 6q13 C6orf155 1.45E-07 0.015 Yes 4.93E-08 0.00055

Large artery stroke

 � rs1333049 9p21.3 CDKN2BAS 2.96E-56 3.70E-06 Yes 1.20E-59* 5.92E-54

 � rs10455872 6q25.3 SLC22A3/LPAL2/ 
LPA

3.15E-13 0.009 Yes 9.25E-14 2.18E-09

 � rs2107595 7p21.1 HDAC9 0.042 2.32E-12 Yes 2.60E-12 5.72E-08

 � rs1122608 19p13.2 LDLR/SMARCA4 3.32E-11 0.017 Yes 1.56E-11 3.31E-07

 � rs4714955 6p24.1 PHACTR1 6.30E-12 0.173 No 2.11E-11 4.42E-07

 � rs12936587 17p11.2 RAI1-PEMT-RASD1 1.98E-07 2.69E-05 Yes 1.93E-10* 3.56E-06

 � rs11065987 12q24.12 chr12q24/SH2B3 5.13E-09 0.002 Yes 3.20E-10* 5.77E-06

 � rs11556924 7q32.2 ZC3HC1 2.55E-10 0.167 Yes 7.74E-10 1.33E-05

 � rs599839 1p13.3 SORT1 1.41E-09 0.023 Yes 8.17E-10 1.40E-05

 � rs964184 11q23.3 ZNF259 1.50E-10 0.468 No 9.14E-10 1.55E-05

 � rs12190287 6q23.2 TCF21 2.32E-09 0.814 Yes 1.69E-08 0.00023

 � rs12413409 10q24.32 CYP17A1-CNNM2- 
NT5C2

1.24E-06 0.0005 Yes 1.77E-08* 0.00023

 � rs6841581 4q32.21 EDNRA 8.45E-07 0.0007 Yes 1.78E-08* 0.00024

 � rs17114036 1p32.2 PPAP2B 9.78E-09 0.133 Yes 2.29E-08 0.00029

 � rs899997 15q25.1 ADAMTS7 4.75E-09 0.391 No 2.41E-08 0.00030

 � rs7582720 2q33.1 WDR12 3.76E-09 0.682 No 2.55E-08 0.00032

 � rs579459 9q34.2 ABO 2.14E-07 0.005 Yes 2.96E-08 0.00036

Shown are loci with P<5e-8. Single nucleotide polymorphisms (SNPs) showing the lowest meta-P values in the respective region are reported. Data were drawn from 
METASTROKE and CARDIoGRAM. Results are shown for both ischemic stroke (IS) and large artery stroke (LAS). CAD indicates coronary artery disease; and FDR, false 
discovery rate.

*P value for the combined phenotype is >1 order of magnitude lower than in individual meta-analyses on the individual phenotypes. Note that variants at individual 
loci may differ from those reported in Table 1.
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and third, meta-analysis of the combined vascular end point 
of CAD and IS, as well as CAD and LAS.

The QQ plots suggest that multiple variants at multiple loci 
including variants reaching a low threshold of significance 
for association with IS, CAD, or both, and thus not previ-
ously reported as risk loci for arterial disease, contribute to 
shared genetic susceptibility to IS and CAD. This agrees with 

the growing evidence that common traits are affected by a 
large number of causative alleles with very small effects.23 As 
illustrated both by the QQ plots and the analysis of variants 
meeting a high threshold of significance, the excess of shared 
signals between CAD and LAS was more pronounced than the 
excess of signals between CAD and CES. This might indicate 
that some of the shared risk variants for CAD and LAS act 

Figure 2. Manhattan plots of 
–log10(P) against genomic posi-
tion: Results are shown for (A) 
the combined end point of all 
ischemic stroke or coronary 
artery disease (CAD) and (B) the 
combined end point of large 
artery stroke or CAD. Genome-
wide meta-analysis association 
results by genomic position at 
autosomal single nucleotide 
polymorphisms. Data were 
drawn from METASTROKE and 
CARDIoGRAM.
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through mechanism that are relatively specific for atheroscle-
rotic disease.

Several loci thus far not identified in isolated GWASs of IS 
or LAS showed a strong and consistent signal when consid-
ered jointly with CAD. Several lines of statistical evidence 
support a role for these loci in IS risk: (1) P values for indi-
vidual variants were <1×10−3, (2) the combined P value in the 
joint meta-analysis with CAD was genome-wide significant 
and ≥1 order of magnitude below the P value found for CAD 
alone, and (3) P values for individual variants significantly 
correlated between CAD (where these loci reached genome-
wide significance) and IS or LAS.

Loci reaching genome-wide significance in the joint meta-
analyses can be broadly classified into 3 categories: loci that 
showed a clear signal for both IS and CAD (eg, chr12q24/
SH2B3; Figure 3A), loci that showed a clear signal for both 
LAS and CAD (eg, RAI1-PEMT-RASD1; Figure 3B), and 
loci for which the association was confined to CAD (eg, 
SORT1 or TCF21; Figure 4).

The locus with the strongest association signal for IS 
was at chr12q24/SH2B3 and to date had not been reported 
for this phenotype. This locus also showed one of the 
strongest signals in the combined meta-analysis indicat-
ing that chr12q24/SH2B3 is a major susceptibility locus 
for cardiovascular disease. Variants in this region have 
been shown previously to be associated with various other 
traits including blood pressure,24,25 blood lipids,26 platelet 
count,27 and type-1 diabetes mellitus.28 Several of these 
traits are linked to IS, CAD, or both. Odds ratios for IS 
and CAD were similar and P values for individual variants 
for IS and CAD significantly correlated indicating that the 
association signals for the 2 phenotypes originate from the 
same genetic variants.

Variants at ABO, the locus with the second strongest signal 
for IS, have likewise been associated with a variety of traits 
including low-density lipoprotein,26 von Willebrand factor,15 
and venous thromboembolism.29 Again, P values for indi-
vidual variants for IS and CAD significantly correlated and 
the odds ratios for IS, CAD, and LAS were all similar with 
no significant heterogeneity (Table II in the online-only Data 
Supplement). Several observations suggest that the effects of 
this locus on vascular risk are mediated by an influence on 
end-stage coagulation and thrombosis,15,29,30 which would be 
consistent with shared mechanisms in CAD and the broader 
phenotype of IS.15

Loci significantly associated both with CAD and the more 
restricted phenotype of LAS included 9p21.3, the locus with 
the strongest signal in the combined meta-analysis, HDAC9, 
and several loci not previously reported to be associated 
with LAS. Among the most significant loci is RAI1-PEMT-
RASD1 (17p11.2), which to date has not been reported as a 
risk locus for LAS. Once again, P values for individual vari-
ants for LAS and CAD significantly correlated at this locus. 
Variants at RAI1-PEMT-RASD1 also significantly associ-
ated with IS, but the odds ratio and level of significance were 
lower than for LAS, suggesting that the association with IS is 
driven by the association with LAS. Interestingly, the RAI1-
PEMT-RASD1 locus to date has not been associated with 
other traits or diseases known to relate to the vascular system. 
Another locus significantly associated with both LAS and 
CAD and not previously reported as being associated with 
LAS is EDNRA. This locus has been associated with carotid 
artery atherosclerosis,31 suggesting that this locus acts by pro-
moting early atherogenesis.

Finally, several loci displayed highly significant associa-
tions with CAD, whereas showing no association with LAS or 

Figure 3. Regional association plots (left) and corresponding Spearman correlation plots (right) of P values for individual variants of (A) 
the chr12q24/SH2B3 locus for ischemic stroke (IS) and coronary artery disease (CAD) and (B) the RAI1-PEMT-RASD1 locus for large 
artery stroke (LAS) and CAD. For clarity, only a subset of variants is displayed (see Figure II in the online-only Data Supplement for all 
variants). Data were drawn from METASTROKE and CARDIoGRAM. SNP indicates single nucleotide polymorphism.
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IS. This included TCF21 (6q23.2), PHACTR1 (6p24.1), and 
WDR12 (2q33.1), which are among the strongest signals for 
CAD.12,13 The finding suggests partially distinct mechanisms 
by which common genetic variants contribute to the risk of 
CAD and LAS.

Our findings must be interpreted in light of the known 
comorbidity between IS and CAD. We did not control for 
comorbid vascular disease because the information was not 
available for most of the participants. However, the pattern 
of association between established CAD loci and IS differs 
from what would be expected based on comorbidity or refer-
ral bias in that the chr12q24/SH2B3 locus displayed a similar 
strength of association with IS and CAD, and RAI1-PEMT-
RASD1 (17p11.2) showed a similarly strong association with 
LAS and CAD. Also, several of the top signals for CAD dis-
played no association with IS or LAS. We can largely exclude 
a referral bias favoring the selection of patients with stroke 
with a diagnosis of CAD because the majority of subjects 
included into METASTROKE were recruited through acute 
stroke services or through population-based studies. There 
may have been some enrichment for patients with a history 
of stroke among subjects recruited into CARDIoGRAM/C4D. 
However, with the exception of HDAC9, all top signals in the 
combined meta-analysis showed stronger associations with 

CAD than with IS, which cannot be explained by comorbidity 
or referral bias.

Our data add to the understanding of familial aggregation 
of IS and CAD. A parental history of CAD is a risk factor 
for stroke and a family history of stroke is a risk factor for 
CAD and acute coronary syndromes.8 In fact, a family his-
tory of stroke was found to be as common in acute coronary 
syndromes as in patients with acute cerebrovascular events.8 
Our finding of shared genetic influences between IS and CAD 
provides some explanation for the aggregation of different 
arterial phenotypes within families.

Translating findings from genetic association studies into 
clinical practice remains a challenge. Recent GWASs have 
revealed a large number of loci that are associated with clas-
sical vascular risk factors,24 and genetic risk scores based on 
multiple SNPs for blood pressure24 or lipid levels are associ-
ated with vascular end points including stroke and CAD. Up 
to now, however, the clinical use of such scores in predicting 
vascular risk is rather limited. This may change as additional 
information from even more markers is added. More impor-
tantly, identification of the biological pathways and mecha-
nisms by which shared genetic influences modulate vascular 
risk might eventually lead to novel therapeutic strategies with 
a broad impact on vascular disease.
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Figure 4. Regional association plots (left) and corresponding Spearman correlation plots (right) of (A) the SORT1 locus for ischemic 
stroke (IS) and coronary artery disease (CAD), (B) the TCF21 locus for large artery stroke (LAS) and CAD, and (C) the HDAC9 locus for 
LAS and CAD. For clarity, only a subset of variants is displayed (see Figure II in the online-only Data Supplement for all variants). Data 
were drawn from METASTROKE and CARDIoGRAM. SNP indicates single nucleotide polymorphism.
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Our study has limitations. First, sample sizes for IS and 
CAD differed substantially. Second, there was some overlap 
in controls between the IS and CAD studies. We attempted to 
account for these limitations through the use of appropriate 
analytic algorithms and found that our results were remark-
ably stable when performing meta-analyses assuming a wide 
range in the proportion of overlapping controls. The statistical 
strength of the subtype-specific meta-analysis19 is illustrated 
by the results for HDAC9, which showed a strong associa-
tion in the joint subtype-specific meta-analysis, despite a weak 
signal in CAD.

In conclusion, this is the first study examining shared 
genetic influences between IS and CAD by meta-analyzing 
GWAS data. Our data provide insights into shared mecha-
nisms and may, in part, explain why vascular events in one 
organ predict vascular events in the other organ.
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