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Abstract

Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality.

In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we

identified 14 new loci associated with heart rate and confirmed associations with all 7 previously

established loci. Experimental downregulation of gene expression in Drosophila melanogaster and

Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a

role for genes involved in signal transmission, embryonic cardiac development and the

pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death.

In addition, genetic susceptibility to increased heart rate is associated with altered cardiac

conduction and reduced risk of sick sinus syndrome, and both heart rate–increasing and heart rate–

decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into

the mechanisms regulating heart rate and identify new therapeutic targets.

A high resting heart rate has been associated with increased incidence of cardiovascular

disease, as well as with cardiovascular and all-cause mortality, independent of traditional

risk factors1–3. There are several potential mechanisms by which higher heart rate may

contribute to greater cardiovascular risk. For example, higher heart rate entails elevated

myocardial oxygen requirement and a shift in cardiac control from parasympathetic to

sympathetic dominance, which may increase the likelihood of myocardial ischemia and

electrical instability4. In addition, experimental alteration of heart rate by sinoatrial node

ablation has been shown to influence the progression of atherosclerosis induced by an

atherogenic high-cholesterol diet in cynomolgus monkeys5,6. In humans, selective reduction

of heart rate using ivabradine was shown to reduce clinical events in individuals with heart

failure, suggesting that elevated heart rate is a clinically relevant and modifiable risk factor7.

However, whether the association of higher heart rate with cardiovascular risk is causal

remains to be clarified.
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Large twin studies with electrocardiogram (ECG) data have shown that genetic factors

contribute to interindividual variation in heart rate, with heritability estimates ranging from

55 to 77% (refs. 8–10). So far, 3 genome-wide association studies (GWAS)11–13,

incorporating data from up to 38,991 individuals each, have identified variants in 7 loci that

show evidence of association with heart rate. These variants are common in the general

population (minor allele frequency (MAF) ≥ 10%) and together explain ~0.7% of the

variance in heart rate12. To gain more comprehensive insight into the genetic regulation of

heart rate, we performed a 2-stage meta-analysis of GWAS in data from up to 181,171

individuals. Loci convincingly associated with heart rate were subsequently tested for

association with cardiac conduction, rhythm disorders and cardiovascular disease to

elucidate potential mechanisms underlying the association between heart rate and

cardiovascular disease and mortality. Furthermore, we undertook experimental studies in D.

melanogaster and D. rerio models as a first step toward identifying the causal genes within

the associated loci.

RESULTS

Stage 1 GWAS identifies five new loci associated with heart rate

We performed a meta-analysis of the associations between 2,516,789 SNPs and heart rate in

data from up to 85,787 individuals of European ancestry from 36 GWAS, including data

from up to 11,207 individuals described previously13 and 6,568 individuals of Indian Asian

ancestry (Online Methods, Supplementary Figs. 1–3 and Supplementary Tables 1–4). All

studies included have been approved by local ethics committees, and all participants have

provided their consent in writing. Our stage 1 meta-analysis showed associations with heart

rate at genome-wide significance (P < 5 × 10−8) for variants in 12 loci (Table 1). These 12

loci included all 7 previously identified loci (in MYH6, CD46 and FADS1 and near GJA1,

ACHE, SLC35F1 and LINC00477 (also known as C12orf67))11–13 and 5 additional loci (in

KIAA1755, CCDC141, SYT10 and FLRT2 and near HCN4).

To validate associations of the loci that were significantly associated with heart rate in stage

1 and to identify additional loci (Supplementary Fig. 1), lead SNPs at 42 loci (associated at

P < 3 × 10−5) were selected for follow-up (Online Methods and Supplementary Table 5).

Conditional analyses based on summary statistics of stage 1 meta-analysis results14

identified two loci with secondary associations that remained significant (P < 5 × 10−8) after

adjusting for the association of the lead SNP. These secondary associations were also

selected for follow-up (Online Methods and Supplementary Table 6).

Stage 2 follow-up identifies nine additional new loci

In stage 2, we examined associations between the 42 loci identified in stage 1 and heart rate

in data from up to 88,823 additional individuals of European descent from 27 GWAS,

including data from up to 38,991 individuals from 15 GWAS described previously12, as well

as 11 studies with Metabochip and 1 study with Cardiochip data (Online Methods,

Supplementary Fig. 1 and Supplementary Tables 7–10).
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In a joint analysis of results from stage 1 and stage 2, variants in 21 loci had associations

that reached P < 5 × 10−8 in data from up to 181,171 individuals (Fig. 1, Table 1 and

Supplementary Table 5). Among the 21 loci were all 12 loci with association P < 5 × 10−8

after stage 1, as well as 9 additional loci (in CHRM2, RFX4, CPNE8 and TFPI and near

GNB4, NKX2-5, GNG11, B3GNT7 and FNDC3B). Hence, our study confirms the 7

previously identified loci11–13 and identifies 14 new loci robustly associated with heart rate.

Impact of the 21 confirmed loci on heart rate

The frequency of the heart rate–increasing alleles ranged from 10 to 85% for the 21

confirmed associations. Effect sizes of associations ranged from 0.21 to 0.74 beats per

minute (bpm) per effect allele (mean ± s.d., 0.41 ± 0.15 bpm per effect allele) (Fig. 2 and

Table 1).

To estimate the combined effect of the 21 loci on heart rate, we constructed a genetic

predisposition score (GPS) by summing the number of heart rate-increasing alleles of the 21

associations. We examined associations between the GPS and heart rate in data from 5,053

adults from LifeLines2 (data for 19 loci available) and 4,000 12-year-old children from

ALSPAC (data for 21 loci available) (Online Methods). The difference in average heart rate

between individuals in the lowest and highest 5% of the GPS distribution was 4.1 bpm in

adults (66.1 versus 70.2 bpm) and 4.9 bpm in children (73.7 versus 78.6 bpm) (Fig. 3a,b),

differences that were previously shown to be clinically relevant15. The GPS explained 0.9%

of the variance in heart rate in adults from LifeLines2 and 0.8% of the variance in children

from ALSPAC.

Conduction, rhythm disorders and cardiovascular disease

An altered heart rate reflects sinoatrial function and may reflect disturbed

electrophysiological properties that are also present in other compartments of the heart. Such

properties include atrial and atrioventricular nodal conduction (PR duration), ventricular

depolarization (QRS duration) and myocardial repolarization (QT duration), which can be

quantified on a 12-lead ECG. We examined whether the heart rate–associated loci showed

evidence of association with cardiac conduction in data from previously reported GWAS for

PR16, QRS17 and QT duration (QT-IGC Consortium (C.N.-C.), personal communication).

Furthermore, we examined the association of the 21 loci with the risk of several conduction-

related disorders, including atrial fibrillation, advanced (second- and third-degree)

atrioventricular block and sick sinus syndrome (SSS, also known as sinus node dysfunction),

as well as pacemaker implantation and sudden cardiac death13,18. Finally, elevated resting

heart rate is a well-recognized precursor of increased blood pressure and hypertension,

independent of initial blood pressure levels19,20, and predicts the incidence of coronary heart

disease during up to 10 years of follow-up, independent of other major risk factors1,2. We

therefore also examined associations of the heart rate loci with systolic blood pressure,

diastolic blood pressure and the prevalence of hypertension, coronary artery disease (CAD)

and myocardial infarction in data from the Global BPgen21 and CARDIoGRAM consortia22

(Online Methods).
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For each of the ECG traits, we found a significant association with individual heart rate loci

(P < 0.002). Heart rate–increasing alleles of these loci were associated with prolonged PR

duration (near LINC00477 and NKX2-5) and reduced QT duration (near GJA1, FADS1,

SLC35F1 and NKX2-5), independent of heart rate, as well as with both reduced (near GJA1,

FADS1, SLC35F1 and NKX2-5) and prolonged (in CCDC141) QRS duration (Table 2).

Common variants of the loci in or near GJA1, FADS1, CCDC141 and NKX2-5 were not

previously identified as being associated with these cardiac conduction traits

(Supplementary Table 11). In addition, stronger genetic susceptibility for increased heart

rate as conferred by the GPS of 21 loci was associated with prolonged PR duration (P = 1.3

× 10−4) and reduced QT duration (P = 1.1 × 10−17), independent of heart rate, as well as

with reduced QRS duration (P = 1.8 × 10−5) (Table 2 and Supplementary Fig. 4). These

results suggest that, to some extent, similar cellular processes control heart rate and cardiac

conduction through the atria and ventricles.

Five of the 21 heart rate loci are associated with atrial fibrillation (P < 0.002). Heart rate–

increasing alleles of these loci were associated with both increased (near SLC35F1,

LINC00477 and NKX2-5; odds ratio (OR) = 1.06–1.13) and decreased (near GJA1 and

HCN4; OR = 0.86–0.90) risk of atrial fibrillation (Table 2). Common variants of the loci in

or near GJA1, SLC35F1 and NKX2-5 were not previously identified as being associated with

atrial fibrillation (Supplementary Table 11). Stronger genetic susceptibility for increased

heart rate in the 21 loci combined was not associated with atrial fibrillation, which reflects

the bidirectionality of the associations in the individual loci (Table 2).

None of the heart rate loci showed evidence of association with the risk of atrioventricular

block, SSS, pacemaker implantation or sudden cardiac death individually (Supplementary

Table 12). However, a higher GPS was associated with reduced risk of SSS (P = 2.3 × 10−4)

and pacemaker implantation (P = 3.6 × 10−4) (Table 2 and Supplementary Fig. 4). SSS

encompasses a group of sinus rhythm disorders, including pathological sinus bradycardia

(slow heart rate), sinus arrest, sinoatrial block and paroxysmal tachycardias (bradycardia-

tachycardia syndrome). SSS is the most common indicator for permanent pacemaker

implantation23, and ~80% of individuals with SSS in our data set had undergone pacemaker

implantation18. Hence, the association between the heart rate loci and pacemaker

implantation is likely secondary to the association with SSS in this study population.

None of the heart rate loci showed evidence of association with blood pressure or prevalent

hypertension, CAD or myocardial infarction, either individually or when combined in the

GPS of 21 loci (Supplementary Fig. 4 and Supplementary Tables 13 and 14). In addition, we

showed, at most, limited evidence of association with heart rate for loci previously identified

as being associated with blood pressure or prevalent hypertension, CAD or myocardial

infarction (Supplementary Tables 15 and 16).

Pathway analyses

The 21 confirmed loci contain 234 genes that are located within 500 kb of the associations

with heart rate (Supplementary Fig. 5 and Supplementary Table 17). To systematically

identify biological connections between these genes and to identify new pathways associated

with heart rate, we tested whether biological processes or molecular functions that were
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predefined in five databases were enriched for multiple modest heart rate associations using

MAGENTA24 (Online Methods). We found evidence of enrichment of associations in

pathways involved in dilated, hypertrophic and arrhythmogenic right ventricular

cardiomyopathy, (cardiac) muscle contraction, regulation of heart contraction, integration of

energy metabolism, positive regulation of cell adhesion and Alzheimer’s disease (P < 2 ×

10−3, false discovery rate (FDR) < 0.1) (Supplementary Tables 18 and 19).

Follow-up in D. melanogaster and D. rerio

Variants identified by GWAS typically implicate genomic regions rather than individual

genes. We used a range of approaches to identify promising candidate genes for heart rate

regulation within the 21 loci, including proteomics experiments aimed at identifying genes

expressed at the protein level in mouse heart that are phosphorylated upon stimulation of the

β1 adrenergic receptor (β1AR), gene expression quantitative trait locus (eQTL) analysis in

blood, in silico search for potentially functional variants in high linkage disequilibrium (LD)

with lead variants (r2 > 0.8), an automated literature search using the program SNIPPER and

biological candidacy (Online Methods and Supplementary Tables 20–23). These approaches

labeled 49 of the 234 genes located within the 21 loci as candidate genes for heart rate

regulation (Supplementary Table 24).

To examine whether some of the 49 candidate genes are likely to underlie the associations

identified by GWAS, we performed 2 series of experiments using animal models. First, we

compared heart rate and risk of arrhythmia in D. melanogaster control pupae and pupae in

which orthologs of the candidate genes were downregulated using RNA-mediated gene

interference (RNAi), both at rest and after 20 min of tachypacing (Online Methods and

Supplementary Tables 25 and 26). Second, we compared heart rate and fractional shortening

of the ventricular chamber in control embryos of the zebrafish D. rerio and embryos in

which orthologs of the candidate genes were downregulated using morpholino

oligonucleotides (Online Methods and Supplementary Table 27).

Results were available for the orthologs of 25 candidate genes from 13 loci in D.

melanogaster pupae and for orthologs of 12 genes from 7 loci in D. rerio embryos; results

from orthologs of 6 genes were available in both species (Supplementary Fig. 6 and

Supplementary Table 24). Results from these experiments support a role in heart rate

regulation for 20 of the 31 candidate genes tested across the 2 models: ACHE, UFSP1,

TRIP6, EPHB4 and PCOLCE (locus 3), PLXNA2 (locus 4), FADS1, FADS2, FADS3 and

BEST1 (locus 5), TTN (locus 9), MFN1 (locus 12), CHRM2 (locus 14), GNG11 (locus 15),

NCL and HTR2B (locus 17), PLD1 and GHSR (locus 18), CRY1 (locus 19) and CALCRL

(locus 21) (P < 2 × 10−3 in D. melanogaster pupae and P < 4 × 10−3 in D. rerio embryos)

(Fig. 4 and Supplementary Tables 28 and 29).

The most convincing results were observed for orthologs of MFN1 and PLD1

(Supplementary Note), for which downregulated gene expression reduced resting heart rate

in both models (P < 1 × 10−5). Moreover, D. melanogaster pupae with downregulated

expression of the MFN1 ortholog were characterized by reduced heart rate after 20 min of

tachypacing (P = 9.5 × 10−5) and by increased risk of arrhythmia, both at rest (P = 4.3 ×

10−4) and after tachypacing (P = 2.0 × 10−6). In D. rerio embryos, in addition to reduced
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heart rate, downregulation of mfn1 (the ortholog of MFN1) was accompanied by edema in

73% of embryos, whereas 51% of embryos with reduced expression of pld1a (the ortholog

of PLD1) had an unlooped heart (Supplementary Table 29).

In addition to reduced heart rate, downregulated gene expression of orthologs of ACHE,

PCOLCE and FADS3 was associated with increased risk of arrhythmia after 20 min of

tachypacing in D. melanogaster pupae. Furthermore, D. rerio embryos with reduced gene

expression of D. rerio orthlogs that was accompanied by reduced heart rate were also

characterized by edema (BEST1 and MFN1), blood pooling (FADS2), an unlooped heart

(HTR2B, NCL, PLD1 and CALCRL) and atrioventricular canal malformation (CALCRL).

Downregulated expression of the CRY1 ortholog was accompanied by a highly penetrant

developmental malformation that likely mediates the heart rate effect (Supplementary Fig. 7

and Supplementary Table 29). Reduced expression of the COL1A2 ortholog did not affect

heart rate in D. rerio embryos (P = 0.07) but resulted in reduced fractional shortening of the

ventricular chamber (P = 1.8 × 10−3).

In summary, results from experiments in D. melanogaster and D. rerio models support a

role in heart rate regulation for 20 genes found within 11 loci associated with heart rate

(Supplementary Table 30). Notably, results from animal models confirmed the eQTL

associations observed in humans for all available orthologs, with a consistent direction of

effect across species for all genes except TRIP6 (Supplementary Tables 21 and 30).

DISCUSSION

Using a 2-stage meta-analysis of GWAS in up to 181,171 individuals, we identified 14 loci

previously unknown to be robustly associated with heart rate and confirmed the 7 previously

established loci, increasing the total number of heart rate loci to 21. Results from

experiments in D. melanogaster and D. rerio models support a role in heart rate regulation

for 20 candidate genes from 11 loci. These experiments highlight a role for genes that are

essential for embryonic cardiovascular development and signal transmission, as well as for

genes with a role in the pathophysiology of dilated cardiomyopathy, congestive heart failure

and/or sudden cardiac death (Supplementary Note). In addition, stronger genetic

susceptibility to higher heart rate is associated with prolonged PR duration and reduced QT

duration, both independent of heart rate, as well as with reduced QRS duration and lower

risk of SSS, a group of sinus rhythm disorders that result from sinus node dysfunction and

are characterized by bradycardia.

Prevalent SSS is unlikely to explain the association between common variants and heart rate

shown by GWAS, as the associations were essentially unchanged with a priori exclusion of

individuals with prevalent cardiovascular disease, heart rate outside the range of 50–100

bpm and/or using heart rate–altering medication. This suggests that the confirmed loci have

subtle effects on sinus node function in the general population, which manifest themselves

in higher heart rate and reduced risk of SSS, showing the clinical relevance of our findings.

Future studies should address whether such effects on sinus node function also affect the

risk of mortality. The associations with higher heart rate do not translate into significantly

higher risk of CAD or myocardial infarction, either individually or in combination, which
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may reflect low statistical power given the effect sizes for heart rate and the number of

available CAD and myocardial infarction cases.

Heart rate–increasing alleles of the loci near GJA1, SLC35F1 (PLN) and NKX2-5 show

unidirectional associations with reduced QRS and QT duration but bidirectional associations

with atrial fibrillation. These findings suggest that both tails of the ventricular depolarization

and myocardial repolarization distributions are associated with increased risk of atrial

fibrillation and that altered heart rate associated with genetic predisposition in these loci may

reflect adaptations to disturbed electrophysiological properties (compartments) of the heart.

Results from experiments in a D. melanogaster model highlight genes in additional loci that

show suggestive evidence of a role in both heart rate regulation and arrhythmia

susceptibility (ACHE, PCOLCE, FADS3 and MFN1). Taken together, these results may

enable the discovery of new druggable targets for the prevention and treatment of

cardiovascular endpoints by selective reduction of heart rate and arrhythmia susceptibility,

similar to the way ivabradine likely exerts its effects through targeting of HCN4 (refs. 7,25).

Results from experiments in D. melanogaster and D. rerio models support a role in heart

rate regulation for genes that are essential for embryonic cardiovascular development

(EPHB4, PLXNA2, PLD1 and CALCRL), as well as for genes with a role in the

pathophysiology of dilated cardiomyopathy, congestive heart failure and/or sudden cardiac

death (TTN, MFN1, CHRM2 and PLD1). In congruence, we show that zebrafish embryos

with downregulated expression of orthologs of these genes have edema (MFN1), an

unlooped heart (PLD1 and CALCRL) and atrioventricular canal malformation (CALCRL).

Such defects in cardiovascular development can be hypothesized to mediate the reduced

heart rate that we observe in these embryos. Future studies are required to determine

whether individuals with genetic susceptibility for reduced heart rate in these loci are

enriched for mild forms of such cardiovascular phenotypes.

In conclusion, our results provide new insights into the mechanisms that regulate or

modulate heart rate in health and disease and provide a new perspective on the well-

recognized association of heart rate with cardiovascular disease and mortality.

ONLINE METHODS

Stage 1 genome-wide association meta-analysis

The discovery sample encompassed 36 studies with data on heart rate in up to 85,787

individuals of European ancestry. Heart rate was derived from ECG in 12 studies (32% of

the total sample) and peripheral pulse rate in 22 studies (49%) and was self-reported in 2

studies with data from health professionals (19%) (Supplementary Table 1). All studies

included have been approved by local ethics committees, and all participants have provided

their consent in writing.

Samples were genotyped using Affymetrix and Illumina genome-wide genotyping arrays

(Supplementary Tables 2 and 3) and were imputed for polymorphic HapMap Phase 2

European CEU SNPs using MACH26, IMPUTE27, BIMBAM28 or Beagle29 (Supplementary

Table 2).
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Each study performed SNP association analyses with heart rate using an additive genetic

model implemented in MACH2QTL30, Merlin31, SNPTEST27, ProbAbel32, GenABEL33,

LME in R, MMAP, Matlab or PLINK34 (Supplementary Table 2). Associations were

adjusted for age, age2, body mass index (BMI) and study-specific covariates when

appropriate (for example, principal components). Analyses were stratified by sex and case

status for samples ascertained for diseases or conditions. To allow for relatedness in the

deCODE, HAPI Heart, Heritage, Korcula, NBS, NSPHS and SPLIT studies, regression

coefficients were estimated in the context of a variance component model that took into

account relatedness in men and women, with sex as an additional covariate. Before meta-

analysis of the results from the 36 GWAS, we excluded SNPs with poor imputation quality

score (r2 hat ≤ 0.3 in MACH, proper_info ≤ 0.4 in IMPUTE and BIMBAM, info ≤ 0.8 in

Beagle), low minor allele count (n × MAF ≤ 3) and/or extreme effect size (β > ±50 bpm per

effect allele, that is, ~5 times the standard deviation of heart rate as typically observed in the

contributing studies) in each sex- and case-specific stratum. Individual GWAS were

corrected by genomic control before meta-analysis when appropriate (λGC > 1.000) to

adjust for population stratification.

We performed the stage 1 fixed-effects meta-analysis using the inverse variance method in

METAL35. Before SNPs were selected for follow-up, a final genomic control correction of

the meta-analysis results was performed (λGC= 1.106), giving conservative association

estimates.

Lead SNPs at 42 independent loci were selected for follow-up in stage 2 (P < 3 × 10−5)

(Supplementary Table 5). Loci were considered to be independent if pairwise r2 for LD was

less than 0.2 and if they were separated by at least 1 Mb. We subsequently performed

conditional analyses using summary statistics of stage 1 results14 to examine whether any of

the 42 loci contained secondary associations with heart rate that remained significant after

adjusting for the association of the lead SNP (P < 5 × 10−8). Before embarking on the

follow-up analysis using all available data, we made sure that the inclusion of subgroups of

the population did not affect the results (Supplementary Table 4).

Stage 2 follow-up

We tested for association of the 42 lead SNPs and 3 secondary associations in data from up

to 88,823 individuals of European descent from 37 in silico replication studies with heart

rate in stage 2. Heart rate was derived from ECG in 22 studies (57% of the total sample) and

from peripheral pulse rate in 15 studies (43%) (Supplementary Table 7). GWAS data were

available for up to 60,396 individuals of European descent from 2 sources: a previously

reported meta-analysis of 15 GWAS for RR interval (RRgen Consortium)12 and 12 GWAS

that have not been described previously in this context (Supplementary Tables 7–9).

Additional data were available for 24,334 individuals of European ancestry from 11 studies

who were genotyped using the Metabochip36 and from 5,171 individuals of European

descent from 1 study who were genotyped using the Cardiochip (Supplementary Tables 8

and 10).

Samples and SNPs that did not meet the quality control criteria described by each individual

study and for stage 1 were excluded. Minimum genotyping quality control criteria were
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defined as Hardy-Weinberg equilibrium P > 1 × 10−6 and call rate > 95% in each of the

follow-up studies.

We tested the association of the 42 lead SNPs and 3 secondary associations with heart rate

in each stage 2 study separately as described for stage 1 studies. Missing SNPs in GWAS of

stage 2 were replaced by one of up to three proxies selected a priori (r2 > 0.8) (if available).

Prioritizing of proxies was based on (in order of importance) (i) availability on the

Metabochip and/or Cardiochip with r2 > 0.8; (ii) r2 for LD; and (iii) proximity to the lead

SNP. This resulted in the inclusion of three proxies in LifeLines2 and one proxy in ACTS,

all of which had r2 > 0.9 with the lead SNP at the locus (Supplementary Table 10). None of

the loci for which these proxies were included has association reaching P < 5 × 10−8 after

meta-analysis of stages 1 and 2 together.

We performed meta-analysis on summary statistics from the stage 1 meta-analysis and stage

2 studies using the weighted z-score method in data from up to 181,171 individuals

(Supplementary Table 5). Genomic control–adjusted P values were used throughout stages 1

and 2 for GWAS. For studies with data from Metabochip and Cardiochip, little evidence for

population stratification was previously observed for associations with other cardiovascular

and metabolic traits, and, hence, no correction of P values was applied.

For loci with secondary associations, the SNP with the lowest P value for association with

heart rate after combined meta-analysis of stage 1 and 2 results was considered the most

representative for the locus. For loci with confirmed associations after meta-analysis of stage

1 and 2 results, an estimate of the effect size was obtained by fixed-effects meta-analysis of

summary statistics from the stage 1 meta-analysis and stage 2 studies with heart rate, using

the inverse variance method.

Additional analyses and functional follow-up experiments

Cumulative effects of confirmed loci and interindividual variation in heart rate
—To estimate the cumulative effect of the 21 heart rate–associated loci, we calculated the

GPS in 5,053 adults from the LifeLines2 study and 4,000 12-year-old children from the

ALSPAC study by summing the number of heart rate–increasing alleles carried by an

individual at the lead SNP of each heart rate locus. The number of heart rate–increasing

alleles ranged from 9 to 26 for the 19 available loci in LifeLines2 (data from rs6127471 and

rs2340782 were not available) and from 10 to 29 for the 21 loci in ALSPAC.

We compared the explained variance (r2) between covariate-adjusted models with and

without the GPS to assess the variance in heart rate that can be explained by these loci in the

LifeLines2 and ALSPAC studies.

Association analyses with related traits—Associations between the 21 heart rate loci

and related cardiovascular intermediates and endpoints were extracted from GWAS data of

the CHARGE Consortium (PR duration)16, the QRS GWAS Consortium (QRS duration)17

and the QT-IGC Consortium (QT duration; QT-IGC Consortium (C.N.-C.), personal

communication) (Table 2), as well as from deCODE Genetics (prevalent advanced (second-

or third-degree) atrioventricular block, SSS, pacemaker implantation and sudden cardiac
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death)13,18 (Table 2 and Supplementary Table 12), deCODE Genetics13 and the CHARGE-

AF Consortium25 (atrial fibrillation) (Table 2), the Global BPgen Consortium (systolic and

diastolic blood pressure, as well as prevalent hypertension)21 (Supplementary Table 13) and

the CARDIoGRAM Consortium (prevalent CAD and myocardial infarction)22

(Supplementary Table 14). All associations were adjusted for covariates as described

previously13,16–18,21,22,25,37.

We calculated multi-SNP predisposition scores for each trait to examine the association of

the 21 heart rate loci combined with each of the before-mentioned traits, on the basis of

single-SNP summary statistics and weighting by effect sizes for association with heart rate

after meta-analysis of stages 1 and 2 together.

Associations of the 21 heart rate loci, both individually and in combination in a multi-SNP

predisposition score, with related traits were considered statistically significant at P < 0.002,

that is, α = 0.05 with Bonferroni correction for 21 independent tests.

Enrichment analysis of heart rate associations in biological pathways—We

used MAGENTA24 to test whether predefined biological processes or molecular functions

were enriched for multiple modest heart rate associations, aiming to discover new pathways

associated with heart rate and to test whether the 21 heart rate loci cluster near genes that

constitute specific biological connections (Supplementary Tables 18 and 19). First, we

calculated a corrected gene association P value for each gene in the genome and grouped

genes into pathways using annotations from the Kyoto Encyclopedia of Genes and Genomes

(KEGG), BIOCARTA, Protein Analysis THrough Evolutionary Relationships

(PANTHER)38, Biological Processes (PANTHER, BP) and Molecular Functions

(PANTHER, MF), REACTOME, Gene Ontology (GO) and Ingenuity databases. Finally, for

each pathway, we evaluated potential enrichment of highly ranked gene scores by

comparing the fraction of genes within each gene set whose corrected P value was more

significant than the 95th percentile of all gene P values to that of 10,000 randomly sampled

gene sets of identical size from the genome24. In significantly enriched gene sets, in addition

to genes in validated association regions, the top ranked genes above the enrichment cutoff

may suggest new modest associations for follow-up (Supplementary Table 19).

Proteomics experiments in mouse heart and genetic enrichment analysis—We

used results from proteomics experiments to identify genes located within the heart rate loci

that are expressed at the protein level in mouse heart and that are phosphorylated upon

stimulation of β1AR (A.L., M.N. Andersen, A.B. Steffensen, H. Horn, C.D. Kelstrup et al.,

unpublished data). Briefly, male C57BL/6 mice were either treated with β1AR- and β2AR-

specific antagonists (control group, n = 3) or with a β2AR-specific antagonist followed by

β1AR-specific agonist (test group, n = 3). Cardiac proteins were extracted and digested,

enriched for phosphopeptides by TiO2 chromatography and analyzed by nanoflow liquid

chromatography tandem mass spectrometry, as described previously39.

A total of 8,518 phosphorylation sites that could be mapped to a specific residue were

identified. Mice in the test and control groups were compared using a two-sided t test with

permutation-based FDR < 0.01. The number of genes encoding proteins identified in the
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experiments was 4,096. Forty-one of these were located within 500 kb of confirmed heart

rate associations, four of which were regulated by β1AR stimulation (MYH6, PLN, TTN and

NCL).

eQTL analyses—We examined associations between each of the heart rate loci and

expression of genes in cis in 1,469 whole-blood samples (PAXgene), reflecting primary

leukocyte gene expression40 (Supplementary Table 21). Transcriptional components were

applied to reduce a substantial proportion of interindividual non-genetic expression

variation. An eQTL meta-analysis was subsequently performed on the residual expression

variation. We used FDR < 0.05 to correct for multiple testing. We removed 50 principal

components by linear regression to remove non-genetic variation in gene expression. In

addition, we performed conditional analyses to examine to what extent each heart rate–

associated SNP explains the association between the gene transcript and the SNP most

significantly associated with the gene transcript.

Significant cis associations were observed between five heart rate–associated SNPs and the

levels of nine nearby transcripts in blood (Table 1 and Supplementary Table 21). The heart

rate–associated SNPs explained a substantial proportion of the association with the most

significant SNP for the gene transcript in conditional analyses (adjusted P > 0.05) for

TRIP6, TMEM258(C11orf10), FADS1, BEST1-FTH1, FADS2, CEP85L(C6orf204) and

NCL-SNORD20.

Potentially functional variants within the 21 loci—To identify SNPs in the

confirmed loci that may be causal for the association with heart rate, we explored whether

the heart rate–associated SNPs were in strong LD (r2 > 0.8) with variants in transcription

factor binding sites, nonsynonymous SNPs or copy number variants (deletion variants and

mobile element insertion polymorphisms) identified in the 1000 Genomes Project CEU Pilot

1 or HapMap CEU reference panels41. For nonsynonymous SNPs, PANTHER38 was used to

assess whether the variant was likely to have a detrimental effect on protein function, based

on alignment of evolutionarily related proteins (Supplementary Table 20).

One association tagged a variant in a transcription factor binding site near

CEP85L(C6orf204; near SLC35F1). Nonsynonymous variants in strong LD with heart rate–

associated SNPs were present in six genes (Supplementary Table 22), with the

p.Arg1045Trp alteration encoded in KIAA1755 likely having a deleterious effect on protein

function38. Of interest, the rs180242 allele that was associated with lower heart rate tagged a

common 723-bp deletion variant located 8 kb upstream of GNG11 (ref. 42) (1000 Genomes

Pilot ID P2_M_061510_7_474; r2 = 0.96) and was additionally associated with lower

expression of GNG11 in blood (Supplementary Table 21).

Candidate genes based on the literature—To identify additional candidate genes in

the heart rate loci, we identified all genes within 500 kb of the 21 heart rate–associated SNPs

and performed an automated literature search using the search term ‘heart’ in the program

SNIPPER (Supplementary Table 23). We identified many genes with established

connections to embryonic cardiac development, cardiac conduction, cardiac contractile

proteins, calcium regulation, angiogenesis and endothelial function (Supplementary Note).
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Many of the loci harbored genes in which mutations lead to dilated and hypertrophic

cardiomyopathy (in MYH6 and MYH7, PLN (near SLC35F1), TTN (near CCDC141), MFN1

(near GNB4) and CHRM2).

Experimental follow-up of positional candidate genes in D. melanogaster and D. rerio

We used D. melanogaster and the zebrafish D. rerio as models to examine whether

candidate genes within the heart rate loci were likely to underlie the associations identified

by GWAS. Forty-nine positional candidate genes were identified on the basis of results from

proteomics experiments and genetic enrichment analysis in mouse heart and eQTL analyses,

as well as by the presence of functional variants and results from the automated literature

search. In addition, we searched the genes located within 500 kb of associations for

biological candidates (Supplementary Table 24).

Experiments in D. melanogaster—BLAST searches were performed to identify

obvious D. melanogaster orthologs of positional candidate genes (Supplementary Table 25).

We subsequently used RNAi43,44 to downregulate orthologs of candidate genes (Vienna

Drosophila RNAi Center). Expression of RNAi was induced by crossing with a D.

melanogaster line expressing GAL4 driven by an actin promoter (stock 4414, Bloomington

Drosophila Stock Center) (Supplementary Table 25).

D. melanogaster stocks were kept at 25°C on standard medium. Pre-pupae were selected for

tachypacing, an established D. melanogaster model for atrial fibrillation, as previously

described45. We recorded videos through a microscope at 10× magnification before and

after tachypacing to visualize heart contractions in triplicate periods of 10 s. Heart rate was

subsequently quantified using ImageJ software. An arrhythmia index was calculated as the

ratio of arrhythmic periods and total measurement duration using the same software.

The number of positional candidate genes for which we analyzed results was reduced from

49 to 25 owing to the absence of orthologs (n = 13 genes), lack of RNAi lines (n = 3), non-

viability of offspring (n = 1) and reduced viability, defined as the generation of fewer than 5

live offspring (n = 7) (Supplementary Fig. 6 and Supplementary Table 25). For the 25

remaining genes, represented by 23 orthologs, we compared heart rate and risk of

arrhythmia in 11 ± 5 (mean ± s.d.) pupae with downregulated gene expression and 30

6000V controls. Ten additional pupae were available with downregulation of stwl

(stonewall), a gene that is not anticipated to have a role in heart rate regulation and which

can thus be interpreted as an extra control group. We targeted 13 orthologs using multiple

independent RNAi lines.

We compared differences in heart rate between the offspring of RNAi-treated D.

melanogaster and 6000V controls using a multilevel approach, adjusting for the dependence

of repeated measures within pupae as a random effect. We compared RNAi lines with

6000V controls at baseline and after tachypacing. Differences in heart rate after tachypacing

were examined with and without adjusting for average heart rate at baseline as a fixed effect.

Results of analyses from multiple independent RNAi lines targeting the same ortholog were

combined using the fixed-effects meta-analysis with inverse variance method

(Supplementary Table 26).
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We examined the risk of arrhythmia by comparing the number of arrhythmic cases and

controls between RNAi-targeted orthologs and 6000V controls, both before and after

tachypacing, using Fisher’s exact test. Differences were considered statistically significant at

P < 0.002, that is, α = 0.05 with Bonferroni correction for 23 independent tests.

Experiments in D. rerio—In the zebrafish D. rerio, we excluded genes in eight loci that

mapped in or near positional candidate genes with extensive a priori evidence of a role in

cardiovascular processes (Supplementary Table 27). A maximum of two positional

candidate genes per locus were selected in the remaining loci, which together with a lack of

zebrafish orthologs in 12 genes resulted in the selection of 12 positional candidate genes for

follow-up in zebrafish experiments (Supplementary Fig. 6 and Supplementary Tables 25 and

27).

Wild-type D. rerio stocks from Ekwill Fish Farm were maintained using standard

procedures. Morpholino oligonucleotides (GeneTools) were designed against orthologs of

the 12 positional candidate gene primary transcripts targeting the first exon-intron

boundaries, except for tfpia (the ortholog of TFPI), which was designed to target the intron

1–exon 2 boundary (Supplementary Table 27). Embryos were injected at the single-cell

stage and were scored and analyzed 48 h later. Downregulation of candidate genes was

confirmed using quantitative PCR (Supplementary Table 29).

Heart rate analysis was performed as previously described46. For each ortholog, we

performed the procedure twice on different days, comparing heart rate in embryos from the

same embryonic aliquot that were injected with either morpholino oligonucleotides or PBS.

Heart rate was measured in 26 ± 4 embryos injected with morpholino oligonucleotides and

in 27 ± 5 embryos injected with PBS.

Measures of heart rate alone do not provide information on cardiac contractility. We

therefore additionally measured ventricular fractional shortening in a subsample of embryos

(6 ± 1 embryos injected with morpholino oligonucleotides and 6 ± 2 embryos injected with

PBS) as previously described47.

Differences in heart rate and fractional shortening of the ventricular chamber were examined

using linear regression and were adjusted for variation in the timing of the heart rate

measurement.

For each group of embryos injected with morpholino oligonucleotides (42 ± 18 embryos),

we assessed whether downregulation of positional candidate gene expression resulted in

visible phenotypes that distinguished treated embryos from those injected with PBS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Manhattan plot of SNPs after meta-analysis of stage 1. The plot shows the significance of

associations between all SNPs and heart rate in stage 1. The 7 loci that were previously

identified are highlighted in light blue; the 14 newly associated loci are highlighted in dark

blue. Loci that reached P < 3 × 10−5 after stage 1 but did not reach P < 5 × 10−8 after meta-

analysis of stages 1 and 2 combined are highlighted in red.
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Figure 2.
Effect size as a function of effect allele frequency. The plot shows the effect sizes of the 21

heart rate–associated SNPs after joint meta-analysis of stage 1 and stage 2 results as a

function of their effect allele frequencies. Light-blue circles represent the 7 previously

identified heart rate loci; dark blue circles represent the 14 newly identified heart rate loci.
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Figure 3.
Combined effect of heart rate–increasing alleles on heart rate. (a) Combined effect of the 19

available heart rate loci in adults of European descent (LifeLines2, n = 5,053). (b) Combined

effect of the 21 heart rate loci in 12-year-old children of European descent (ALSPAC, n =

4,000). In each plot, the number of heart rate–increasing alleles was summed across the

heart rate–associated SNPs. The number of heart rate–increasing alleles is shown (x axis),

grouped at the extremes, and mean heart rate ± s.e.m. is plotted (right y axis). The lines

represent the regression of the mean heart rate values across the GPS distribution. The

histogram shows the number of individuals in each GPS window (left y axis).
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Figure 4.
Effects on heart rate of reduced or ablated expression of orthologs of positional candidate

genes from GWAS in D. melanogaster and D. rerio. Bars show the heart rate (± s.e.m.) of

(i) D. melanogaster pupae with orthologs of positional candidate genes located within 500

kb of GWAS associations downregulated using RNAi compared with control pupae (blue

bars) and (ii) D. rerio (zebrafish) embryos with expression of orthologs of positional

candidate genes reduced by injecting morpholino oligonucleotides versus PBS (red bars).

Darker coloring indicates that heart rate is significantly different in targeted animals

compared with controls after Bonferroni correction for 23 tests in D. melanogaster (P < 2 ×

10−3) and 12 tests in D. rerio (P < 4 × 10−3); lighter coloring indicates that differences do

not reach significance. Results are ordered by availability (D. melanogaster and D. rerio, D.

melanogaster only, D. rerio only) and by effect size.
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