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Abstract

Schizophrenia is a heritable disorder with substantial public health impact. We conducted a multi-

stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish 

national sample (5,001 cases, 6,243 controls) followed by meta-analysis with prior schizophrenia 

GWAS (8,832 cases, 12,067 controls) and finally by replication of SNPs in 168 genomic regions 

in independent samples (7,413 cases, 19,762 controls, and 581 trios). In total, 22 regions met 

genome-wide significance (14 novel and one previously implicated in bipolar disorder). The 

results strongly implicate calcium signaling in the etiology of schizophrenia, and include genome-

wide significant results for CACNA1C and CACNB2 whose protein products interact. We estimate 

that ∼8,300 independent and predominantly common SNPs contribute to risk for schizophrenia 

and that these collectively account for most of its heritability. Common genetic variation plays an 

important role in the etiology of schizophrenia, and larger studies will allow more detailed 

understanding of this devastating disorder.
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Schizophrenia is an idiopathic mental disorder with substantial morbidity, mortality, and 

personal and societal costs. 1-3 An important genetic component is indicated by a sibling 

recurrence risk ratio of 8.6, high heritability estimates (0.64 in a national family study,0.81 

in a meta-analysis of twin studies, and 0.23 estimated directly from common SNPs), and 

prior genomic findings. 4-8
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Although the rationale for genomic searches is strong, there are only a handful of robust 

empirical findings for schizophrenia. Genome-wide linkage studies to date have been 

inconclusive, 9 and no compelling Mendelian variants have been identified.8 Eight rare copy 

number variants of strong effect (genotypic relative risks 4-20)with consistent replication 

have been described (e.g., 16p11.2 and 22q11.21); however, these associations are generally 

not disease-specific and can also be associated with autism, mental retardation, or 

epilepsy. 8Initial exome sequencing studies have not yet identified specific variants of 

unequivocal genome-wide significance 9-13 although larger studies are in progress. Prior 

GWAS for common variation have yielded statistical evidence for ∼10 genomic regions8 

including the major histocompatibility complex (MHC) 14-16 along with MIR137 and targets 

of miR-137. 17

The prior studies contained indications that more common variant associations were likely 

to be discovered with larger sample sizes. 13,17,18 We therefore sought to increase 

substantially the number of cases using a multistage GWAS.

Results from Sweden

We analyzed genome-wide data in 5,001 schizophrenia cases and 6,243 controls from a 

population-based sampling frame in Sweden (N=11,244, Table 1). Most subjects (57.4%) 

have never been previously reported. Following genotyping and imputation with the 1000 

Genomes Project Phase 1 reference panel, the genetic data consisted of allelic dosages for 

9,871,789 high-quality polymorphic SNPs. Given that this imputation panel is based on 

>800 chromosomes of European ancestry and includes the detail afforded by genome 

sequencing, we anticipated increased power in finding and describing association signals. 

Indeed, we observed 10,201 SNPs and 187 genomic regions with P < 1×10−5 using 1000 

Genomes imputation compared with 1,594 SNPs and 133 regions for HapMap3 imputation 

(counts include only one region from the MHC).

The resulting λGC was 1.075 and λ1000 (references 19-21) was 1.013. Quantile-quantile and 

Manhattan plots are given in Supplemental Figures 5-6. For association with schizophrenia, 

312 SNPs met a genome-wide significance threshold of 5×10−8 (reference 22). These SNPs 

were in two genomic regions (Supplemental Figure 7): 241 SNPs in the MHC region 

(chr6:28,502,794-32,536,501, minimum P=4.07×10−11 at rs115939516) and 71 SNPs from 

chr2:200,715,388-201,040,981 (minimum P=3.33×10−10 at rs35220450). We replicated the 

MHC association reported in prior studies. 14-17 The chr2 association with schizophrenia is 

novel, shows highly consistent effects in the Sw1-6 genotyping batches and encompasses 

C2orf69, C2orf47, C2orf60, and TYW5.

Sweden + PGC

We re-analyzed the PGC schizophrenia data using 1000 Genomes imputation (8,832 cases 

and 12,067 controls, excluding Swedish samples). 17 Five regions met genome-wide 

significance: the MHC locus (chr6:27,261,324-32,610,445, minimum P=2.18×10−10), 

AS3MT-CNNM2-NT5C2 (chr10:104,635,103-104,960,464, minimum P=4.29×10−10), 

MAD1L1 (chr7:2,005,747-2,098,238, minimum P=2.40×10−8), RP11-586K2.1, 
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(chr8:89,585,639-89,760,620, minimum P=2.37×10−8), and SNPs nearTCF4 

(chr18:53,311,001-53,423,307, minimum P=3.00×10−8).

We then conducted a meta-analysis of the Swedish and independent PGC schizophrenia 

samples using the same quality control, imputation, and analysis pipeline. This GWAS 

meta-analysis of 13,833 schizophrenia cases and 18,310 controls (Table 1) afforded power 

to detect genotypic relative risks of 1.10-1.14 for reference allele frequencies 0.15-0.85 

(power=0.8, α=5×10−8, log-additive model). We evaluated the comparability of the Swedish 

and PGC studies using sign tests: of 608 SNPs selected from the PGC results with P < 

0.0001 and in approximate linkage equilibrium, 62.6% had logistic regression beta 

coefficients with the same sign in the Swedish results, an observation highly inconsistent 

with the null (P=2.2×10−10). λGC was 1.186 and λ1000 was 1.012, values consistent with a 

polygenic pattern of association but not gross inflation due to technical artifacts. 20 Quantile-

quantile and Manhattan plots are shown in Supplemental Figure 11 and Figure 1, and 

genome-wide significance was exceeded by 3,538 SNPs in 12 genomic regions.

We used risk score profiling14,17 to evaluate the capacity of 130K SNPs derived from the 

PGC to predict case-control status in the Swedish samples. These SNPs were selected for 

high-confidence and approximate linkage equilibrium but without regard to association P 

value. As shown in Figure 2, PGC risk scores had a highly significant capacity to predict 

case-control status in the independent Swedish samples (P values from 10−26 – 10−114). The 

increased sample size allowed improved risk profile prediction as more of the SNPs in the 

lower bins are replicable signals. The threshold at which the explanatory power of these risk 

profile SNPs plateaus has decreased with increasing sample size: PT=0.1 in Figure 2, 0.2 in 

the PGC report, and no plateau in the ISC study). 14,17 Although the mean risk profiles were 

highly significantly different between cases and controls, the distributions overlap 

substantially (Supplemental Figure 9) and are insufficient for diagnostic purposes (area 

under the receiver operating characteristic curve 0.65). However, these results strongly 

support the comparability of the Swedish and PGC samples and the validity of the meta-

analysis.

GWAS often omit the X chromosome (chrX). This omission is problematic as chrX is 

approximately as large as chromosome 8 and is enriched for genes important in brain 

development. Using a previously described approach, we imputed genotyped chrX SNPs to 

the 1000 Genomes reference panel. 23 Joint analysis of all subjects as well as males and 

females separately revealed no association exceeding genome-wide significance. The 

strongest association (rs12845396, chrX:6,029,533, P=3.46×10−7) was in an intron of 

NLGN4X (neuroligin 4), a gene previously implicated in mental retardation and autism, and 

there were multiple possible signals nearMECP2(causal to Rett syndrome, P=9.3×10−6).

GWAS results generally do not lie in protein coding regions. 24 A recent report suggested 

that most SNPs in the NHGRI GWAS catalog 24 were in or in perfect LD with DNase 1 

hypersensitive sites. 25 We thus evaluated whether the Sweden + PGC results had significant 

overlap with DNase 1 hypersensitive sites generated as part of the ENCODE project. 26 We 

did not find evidence of enrichment (Supplemental Table 8 and Supplemental Figure 10). 
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However, this negative result is strongly qualified by the lack of DNase 1 hypersensitivity 

data directly relevant to psychiatric disorders.

Sweden + PGC + replication

We then obtained association results for SNPs in 194 genomic regions in six independent 

samples for a total sample size of over 21,000 cases and 38,000 controls(Table 1). The 

genomic regions for which replication genotypes were sought were identified using LD 

clumping defined by LD (r2> 0.5) and a minimum P < 1×10−5 in the Sweden-PGC meta-

analysis. Only one MHC SNP was included. The Sweden-PGC meta-analysis and 

replication results were highly concordant with 76.3% of the logistic regression beta 

coefficients having the same direction of effect (sign test P=1.5×10−17). Indeed, of the top 

100 SNPs in the Sweden-PGC meta-analysis, 90% had the same sign in the replication 

results. This result strongly suggests that many more loci will achieve genome-wide 

significance with further increases in sample size.

Table 2 shows the combined results in which 24 regions reached genome-wide significance. 

As two pairs of these regions overlap (chr1:243Mb and chr5:152Mb), there are associations 

with schizophrenia in 22 genomic regions. Three additional regions nearly met genome-

wide significance (rs4380187 near ZNF804A P=5.66×10−8, rs4523957 in SRR P=5.69×10−8, 

and rs6550435 near TRANK1 P=5.86×10−8 which also had P=9×10−6 in a bipolar disorder 

GWAS). 27

Of these 22 regions (Table 3), five regions have been reported previously as meeting 

genome-wide significance for schizophrenia (MHC, C10orf26, DPYD-MIR137, SDCCAG8, 

and MMP16) and two for schizophrenia, bipolar disorder, and a combined phenotype 

(CACNA1C and ITIH3-ITIH4). 14-17,27-29 For the remaining 15 regions, we now find 

genome-wide significance for a locus previously implicated only for bipolar disorder 

(NCAN)30 along with 14 novel regions.

Themes

We highlight four themes from these results (see also Supplemental Table 9). First, these 

results implicate calcium signaling in the etiology of schizophrenia. As in prior studies of 

bipolar disorder and schizophrenia, 17,27,28 we found genome-wide significant support for 

CACNA1C (Cav1.2, P=5.2×10−12 at the intronic SNP rs1006737). Intriguingly, we identified 

a novel genome-wide significant association for CACNB2 (P=1.3×10−10 at the intronic SNP 

rs17691888) which encodes the β2 subunit of L-type calcium channels (Cav β2). A gene-set 

test supported the involvement of calcium channel subunits in the etiology of schizophrenia 

(Supplemental Table 7).

In L-type calcium channels, the α1c subunit forms the transmembrane pore, and directly 

interacts with the intracellular β2 subunit. 31 The β2 subunit also antagonizes an endoplasmic 

reticulum retention motif on the α1c subunit to facilitate transport to the plasma 

membrane. 32Additional genes with genome-wide significant evidence were implicated 

based on membership in a proteomic network centered on Cav2 (reference 33): the protein 

products of ACTR1A (α-centractin), the divalent metal cation transporter CNNM2 

Ripke et al. Page 4

Nat Genet. Author manuscript; available in PMC 2014 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(P=3.7×10−13, chr10:103,009,986-105,512,924), and CACNB2. A broad genomic region 

containing the calcium binding protein troponin C (TNNC1) also met genome-wide 

significance (P=1.1×10−8) as well as three calcium homeostasis modulator genes (CALHM1, 

CALHM2,and CALHM3 in same chr10 region as CNNM2).

The genetics and biology of calcium channels have been the subject of considerable 

investigation owing to their importance in fundamental neuronal processes and human 

diseases. L-type voltage-gated calcium channels are involved in learning, memory, and 

synaptic plasticity, and CACNA1C knock-out mice show notable deficits in long term 

potentiation. 34-37 Calcium “channelopathies” include mutations in CACNA1C and CACNB2 

that cause Brugada syndrome types 3 and 4 (OMIM #611875 and #611876). 38In addition, 

Timothy syndrome (OMIM #601005), caused by mutations in CACNA1C, is a multisystem 

disorder including cognitive impairment and autism spectrum disorder. 39 Although 

Mendelian disorders are usually characterized by persistent pathological features, Mendelian 

calcium channelopathies can have episodic phenomena perhaps reminiscent of the episodic 

nature of psychotic disorders – for example, intermittent hypoglycemia and hypocalcemia in 

Timothy syndrome (CACNA1C), episodic ataxia (CACNA1A, CACNB4), migraine 

(CACNA1A), epilepsy (CACNA1H, CACNB4), periodic paralysis (CACNA1S), and 

malignant hyperthermia (CACNA1S, CACNA2D1). 31,39

GWAS findings for schizophrenia have converged on genome-wide significant evidence for 

a calcium channel functional complex that has also been implicated in bipolar disorder and 

autism. These genomic results support increased attention to this pathway, and suggest 

hypotheses for clinical translation. Multiple approved medications act at calcium channels 

including some antipsychotics (e.g., pimozide) along with adjuvants for treatment non-

response for schizophrenia and bipolar disorder (e.g., the calcium channel blockers 

verapamil and nifedipine). It is possible that drugs that act on the protein products of 

CACNA1C and CACNB2 for a different therapeutic indication could be “re-purposed” for 

the treatment of schizophrenia. For example, there has been at least one clinical trial of the 

efficacy of isradipine in bipolar disorder (an approved antihypertensive acting at the protein 

product of CACNA1C, R Perlis, personal communication). In addition, given that many 

approved antipsychotics increase the cardiac QT interval, genetic variation in calcium 

channel genes might identify individuals at higher risk of sudden cardiac death. 40,41

Second, as reported previously, 14-17 the strongest association P=9.1×10−14)with 

schizophrenia is in the extended MHC (chr6:25-34Mb), a region of both exceptional 

importance and complexity. The MHC comprises 0.3% of the genome but contains 1.5% of 

the genes in OMIM 42 and 6.4% of genome-wide significant SNP associations in the 

NHGRI GWAS catalog. 24 It is the second most gene-dense genomic region and has high 

LD over its extent. We speculate that these features (high gene density and strong LD) 

combined with the polygenicity of schizophrenia lead to the strong association but will also 

complicate efforts to identify causal variation. Genome-wide significant associations with 

schizophrenia extend over 7Mb, but Supplemental Figure 12 suggests that larger samples 

may resolve this association into sub-regions near TRIM26 (tripartite motif containing 26, 

chr6:30.1Mb) and the HLA-DRB9 unprocessed pseudogene (chr6:32.4Mb, intergenic HLA-

DRA – HLA-DRB5).
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Third, multiple genomic lines of evidence support a role for MIR137 in the etiology of 

schizophrenia. We provide increased support for a common variant association located 

upstream of the MIR137 transcript (P=1.7×10−12, Supplemental Figure 13). Fourteen genes 

in the regions in Table 3 have miR-137 target sites predicted by TargetScan (v6.2) 43 

(C6orf47, HLA-DQA1, TNXB, VARS, C10orf26, CACNA1C, DPYD, CACNB2, TSSK6, 

NT5DC2, PITPNM2, SBNO1, ZEB2, and PRKD3). Using gene-set analysis, we evaluated 

whether genes with predicted miR-137 target sites were enriched for smaller association P 

values. We confirmed the PGC result 17 and extended the finding by showing more robust 

enrichment in afar larger set of genes with predicted miR-137 target sites (Supplemental 

Table 7). In addition, our unpublished work shows enrichment for smaller GWAS P-values 

in genes down-regulated following over-expression of miR-137 in human neural stem cells 

(Collins, in preparation). Given the role of miR-137 in fundamental neuronal 

processes, 44-46 these results support investigation of pathways influenced by miR-137in 

regard to a role in the pathogenesis of schizophrenia.

The SNP with the strongest association to schizophrenia (rs1198588) is 39kb upstream of 

MIR137, and might regulate the transcription of MIR137. However, this has not been proven 

experimentally and there is another candidate gene in the region. rs1198588 is in an LD 

block that includes DPYD (169kb upstream of rs1198588),and rs1198588 is a significant 

local expression quantitative trait locus (eQTL) with DPYD. We note that DPYD also 

contains a predicted miR-137 target site. An exome sequencing study reported two putative 

functional de novo variants in DPYD in cases with schizophrenia. 11

Fourth, 13 of the 22 regions in Table 3 contain long intergenic non-coding RNAs 

(lincRNAs). lincRNAs have multiple known or suspected functions including epigenetic 

regulation and development. 47 Using pathway analysis,48 there was modest enrichment 

(P=0.06) for smaller association P values in a conservative set of lincRNAs derived from 

sequencing of poly-A RNA from multiple tissues. 47 This observation is consistent with a 

general role for GWAS findings in the regulation of gene expression rather than alteration of 

protein sequence. eQTLs 49,50 overlap with SNPs implicated by GWAS over all traits 51-53 

as well as for specific traits like height, adiposity, cardiovascular risk factors, chemotherapy-

induced cytotoxicity, autism, schizophrenia, and Crohn's disease. 54-61An estimated 55% of 

eQTL SNPs lie in DNase I hypersensitivity sites (a marker for open chromatin subject to 

transcriptional regulation) and 77% of SNPs implicated in GWAS are in or in high LD with 

SNPs inDNase I hypersensitivity sites. 25,62,63

Genetic architecture

There has been considerable debate about the genetic architecture of schizophrenia. We 

estimated the proportion of variance in liability to schizophrenia explained by SNPs using 

GCTA. 64 Traditional genetic epidemiological studies use the phenotypic resemblance of 

relatives to estimate the proportion of variance in liability using theoretic resemblance 

assumptions. GCTA uses genome-wide SNP genotypes to calculate the heritability in the 

population from the identity-by-state relationships for each pair of individuals. Using the 

PGC schizophrenia data, we previously estimated the SNP heritability of schizophrenia at 

0.23 (SE 0.01) using HapMap3 imputation and assuming a population risk of 0.01. 7 Using 
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the same imputation reference and population risk, SNP heritability was substantially higher 

in the Swedish samples (0.32, SE 0.03) possibly due to the greater phenotypic and genetic 

homogeneity in the Swedish sample compared to the PGC samples of mixed European 

ancestry. We obtained a similar estimate of SNP heritability using 1000 Genomes imputed 

data (0.33, SE 0.03, population risk 0.01). For a population risk of 0.004, 4,65 SNP 

heritability was 0.26 (SE 0.02) using HapMap3 and 0.27 (SE 0.02) using 1000 Genomes 

imputation. Partitioning of the SNP-heritability by minor allele frequency is consistent with 

80% of the signal reflecting causal variants with MAF > 0.1 (Supplemental Table 5).

To complement the GCTA analyses, we also applied ABPA (approximate Bayesian 

polygenic analysis) 66 to the Sweden + PGC results. Compared to GCTA, ABPA yielded 

somewhat larger but generally congruent estimates of variance in liability to schizophrenia 

using HapMap3 data: 0.43 for population risk of 0.01 (95% credible interval 0.38-0.48) and 

0.34 for population risk of 0.004 (95% credible interval 0.31-0.37).

The Bayesian framework used by ABPA also allows simultaneous estimation of the number 

of independent SNP loci that contribute to risk for schizophrenia. Here, we assume that the 

number of genome-wide significant SNP associations and the amount of variance they 

explain in the Sweden + PGC results reflect only partly the underlying genetic architecture 

of schizophrenia due to inadequate sample size. Using 1000 Genomes results for Sweden + 

PGC and assuming population risk of 0.01, we estimated that 8,300 independent SNPs 

contribute to the genetic basis of schizophrenia and that these SNPs account for 50% of the 

variance in liability to schizophrenia (95% credible intervals 6,300-10,200 for the number of 

SNPs and 0.45-0.54 for total variance explained). We stress that these estimates must be 

interpreted in the context of the assumptions of ABPA and the strengths and weaknesses of 

the input data. Additional analyses (not shown) indicate that most of the signal was derived 

from SNPs with allele frequencies > 0.1; low-frequency imputed SNPs were not generally 

inferred to be associated with schizophrenia. Figure 3 compares ABPA estimates of the 

genetic architecture of schizophrenia and four biomedical diseases. 66 There are similarities 

across the estimates for these complex traits as all are relatively highly polygenic, and 

common SNPs explain substantial proportions of variation. However, these results suggest 

that the genetic architecture of schizophrenia is left-shifted with greater numbers of SNPs 

with smaller effects.

We previously estimated the heritability of schizophrenia in Sweden to be 0.64 (95% CI 

0.617-0.675) using a national pedigree sample of 9.0M individuals,5 and a Danish national 

pedigree study of 2.6M individuals reported a similar estimate (0.67, 95% CI 

0.65-0.71). 5,67Using the 1000 Genomes data with population risk of 0.01, the variance in 

liability estimate from GCTA accounts for 52% of the heritability (0.33/0.64) and ABPA 

accounts for 78% of the heritability (0.50/0.64). Imprecision is inherent to these estimates 

and future work or the use of a twin meta-analytic estimate of the heritability of 

schizophrenia (0.81, 95% CI 0.73-0.90) 6 could revise these estimates downward. However, 

despite the use of different assumptions and methods, these estimates converge on a crucial 

qualitative implication: causal variants tagged by common SNPs make substantial 

contributions to the risk for schizophrenia.
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Conclusions

These results provide deeper insight into the genetic architecture of schizophrenia than ever 

before. We find support for 22 common variant loci (14 novel) that highlight biological 

hypotheses for further evaluation. Some findings have immediate translational relevance. 

Larger studies are highly likely to uncover more common variant associations as argued 

elsewhere. 8,18,68,69

Common variation is an important (and perhaps predominant) genetic contributor to risk for 

schizophrenia. We estimated that 6,300-10,200 independent and mostly common SNPs 

contribute to the etiology of schizophrenia. As one gene or structural element could contain 

multiple independent associations, that the number of number of genes ultimately 

determined to harbor causal variation for schizophrenia will be smaller, and we expect that 

these genes will implicate one or more biological pathways fundamental to disease risk.

Moreover, these thousands of independent loci appear to account for a considerable fraction 

of the heritability of schizophrenia. It is possible that the commonly used phrase “missing 

heritability” lacks precision. Indeed, if thousands of SNPs underlie schizophrenia, a 

statistical models containing a handful of SNPs is unlikely to account for more than a small 

fraction of the heritability. 70 Ourresults imply that the genetic architecture of schizophrenia 

is not dominated by uncommon variation. However, a balanced plan of attack should include 

well-powered searches for rare, private, or de novo genetic variation of strong effect given 

that such variants are probably more tractable to current molecular methods.

Power calculations are a fundamental component of the design of genetic studies. However, 

relatively extensive knowledge of genetic architecture is essential for power calculations to 

have maximum utility for study planning. We used the ABPA estimates of the posterior 

distribution of genotypic relative risks (Figure 3) to inform power calculations by estimating 

the numbers of independent loci that could be detected for different sample sizes 

(Supplemental Table 6 and Supplemental Figure 8). For example, for 60,000 schizophrenia 

cases and 60,000 controls, ABPA results project that hundreds of independent SNP loci 

would reach genome-wide significance (mean of 794 SNPs, 95% credible interval 362-1154 

SNPs).

Thus, for the first time, we now have a clear path to increased knowledge about the etiology 

of schizophrenia via application of standard, off-the-shelf genomic technologies for 

elucidating the effects of common variation. We suggest that a relatively thorough 

enumeration of the genomic loci conferring risk for schizophrenia (the “parts list”) should be 

a priority for the field. 8 Identifying all loci would surely be an exercise in diminishing 

returns. However, we propose a goal for the field: identification of the top 2,000 loci (for 

example) might be sufficient confidently and clearly to reveal the biological processes that 

mediate risk and protection for schizophrenia. Achievement of this goal would provide a 

strong empirical impetus for targeted biological and genetic research into the precise 

molecular basis of risk for schizophrenia, stratification of at-risk populations (e.g., psychotic 

prodrome), and appropriate cellular measure for evaluation of novel therapeutics. As 

indicated by our findings, greater knowledge of the genetic basis of schizophrenia can 
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converge on increasingly specific neurobiological hypotheses that can be prioritized for 

subsequent investigation.

Online Methods

Overview

We present here the pre-planned principal analyses for this project. In order to advance 

knowledge of schizophrenia, a minority of samples were included in prior reports. 

Genotyping was conducted in six batches (denoted Sw1-Sw6) with total sample sizes of 

464, 694, 1498, 2388, 4461, and 2345. Genotypes were generated as sufficient numbers of 

samples accumulated from the field work in Sweden. The 2009 International Schizophrenia 

Consortium report contained GWAS data from the Sw1-2 subjects (N=1158, 9.8% of the 

sample before quality control). 14. The 2011 PGC schizophrenia paper also contained 

GWAS data from the Sw1-2 subjects plus ∼80 SNPs from Sw3-4 in the replication phase. 17 

The 2012 Bergen et al. paper had a particular focus contrasting schizophrenia with bipolar 

disorder and reported GWAS results from Sw1-4 (N=4044, 42.6% of the full sample). 75 

Thus, of the total sample of 11,850 Swedish subjects before quality control (5,351 cases, 

6,509 controls), 57.4% have never been reported previously.

Subjects

All procedures were approved by ethical committees at the Karolinska Institutet and 

University of North Carolina, and all subjects provided written informed consent (or legal 

guardian consent and subject assent). Sample collection was from 2005-11.

Cases with schizophrenia were identified via the Swedish Hospital Discharge Register 76,77 

which captures all public and private inpatient hospitalizations. The register is complete 

from 1987 and augmented by psychiatric data from 1973-86. The register contains ICD 

discharge diagnoses 78-80 made by attending physicians for each hospitalization. 81-84 Case 

inclusion criteria: ≥2 hospitalizations with a discharge diagnosis of schizophrenia, both 

parents born in Scandinavia, and age ≥18 years. Case exclusion criteria: hospital register 

diagnosis of any medical or psychiatric disorder mitigating a confident diagnosis of 

schizophrenia as determined by expert review, and included removal of 3.4% of eligible 

cases due to the primacy of another psychiatric disorder (0.9%) or a general medical 

condition (0.3%) or uncertainties in the Hospital Discharge Register (e.g., contiguous 

admissions with brief total duration, 2.2%).

The validity of this case definition of schizophrenia is described at length in the Supplement, 

and validity is strongly supported by clinical, epidemiological, genetic epidemiological, and 

genetic evidence.

Controls were selected at random from Swedish population registers with the goal of 

obtaining an appropriate control group and avoiding “super-normal” controls. 85 Control 

inclusion criteria: never hospitalized for schizophrenia or bipolar disorder (given evidence of 

genetic overlap with schizophrenia), 5,14,86 both parents born in Scandinavia, and age ≥18 

years.
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Of the potential cases and controls who were alive and contactable, refusal rates were higher 

for cases than for controls (46.7% versus 41.7%). However, these proportions compare 

favorably with modern refusal rates in epidemiology (59% for cross-sectional and 44% for 

case-control studies), 87,88 and in a recent large Norwegian longitudinal study (58%). 89 For 

cases, comorbidity with drug/alcohol abuse or dependence did not predict participation nor 

did any subtype of schizophrenia (e.g., paranoid or disorganized types). The sample was 

approximately representative of the Swedish populace in regard to county of birth 

(Supplemental Figure 4).

Genotyping, quality control, and imputation

DNA was extracted from peripheral blood samples at the Karolinska Institutet Biobank. 

Samples were genotyped in six batches at the Broad Institute using Affymetrix 5.0 (3.9%), 

Affymetrix 6.0 (38.6%), and Illumina OmniExpress (57.4%) chips according to the 

manufacturers' protocols (Supplemental Table 3). Genotype calling, quality control, and 

imputation were done in four sets corresponding to data from Affymetrix 5.0 (Sw1), 

Affymetrix 6.0 (Sw2-4), and the OmniExpress batches (Sw5, Sw6). Genotypes were called 

using Birdsuite (Affymetrix) or BeadStudio (Illumina). The quality control parameters 

applied were: SNP missingness < 0.05 (before sample removal); subject missingness < 

0.02;autosomal heterozygosity deviation; SNP missingness < 0.02 (after sample 

removal);difference in SNP missingness between cases and controls < 0.02; and deviation 

from Hardy-Weinberg equilibrium (P < 10−6 in controls or P < 10−10 in cases).

After basic quality control, 77,986 autosomal SNPs directly genotyped on all four GWAS 

platforms were extracted and pruned to remove SNPs in LD (r2> 0.05) or with minor allele 

frequency < 0.05, leaving 39,239 SNPs suitable for robust relatedness testing and population 

structure analysis. Relatedness testing was done with PLINK90 and pairs of subjects with 

π(x00302) > 0.2 were identified and one member of each relative pair removed at random. 

Principal component estimation was done with the same collection of SNPs. We tested 20 

principal components for phenotype association (using logistic regression with batch 

indicator variables included as covariates) and evaluated their impact on the genome-wide 

test statistics using λ 19 after genome-wide association of the specified principal component, 

and 11 principal components were included in all association analyses.

Genotype imputation was performed using the pre-phasing/imputation stepwise approach 

implemented in IMPUTE2 / SHAPEIT (chunk size of 3 Mb and default parameters). 91,92 

The imputation reference set consisted of 2,186 phased haplotypes from the full 

1000Genomes Project dataset (March 2012, 40,318,245 variants). Evaluation of λGC led to 

the removal of SNPs with control allele frequencies < 0.005 or > 0.995, imputation “info” 

values < 0.2, or that were genotyped only in the smallest sample set (Sw1). Given that male 

sex is a risk factor for schizophrenia, 93 chromosome X imputation was conducted for 

subjects passing QC for the autosomal analysis (excluding chrX SNPs with missingness ≥ 

0.05 or HWE P < 10−6 in females). Imputation was performed separately for males and 

females, gene dosages tested for association under an additive logistic regression model 

using the same covariates as for the autosomal analysis. All genomic locations are given in 

NCBI build 37/UCSC hg19 coordinates.
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Statistical analysis

We first analyzed Swedish cases and controls (N=11,244), and then conducted a meta-

analysis with the PGC results for schizophrenia to evaluate our results with respect to the 

world's literature (N=20,899 after removing 954 subjects from Sw1-2). 17 To maximize 

comparability, the Swedish samples were run through the same analytical pipeline used for 

the PGC samples. Association testing was carried out in PLINK using imputed SNP dosages 

and the principal components described above as covariates. 22 Meta-analysis was 

conducted using an inverse-weighted fixed effects model. 21 To evaluate the comparability 

of the Swedish results with those from the PGC schizophrenia study, we used sign tests and 

risk score profiling based on sets of carefully selected SNPs. 17

Summarizing regional data using “clumping”

Many GWAS findings implicate an extended region containing multiple significant SNPs. 

These are not independent associations but result because of high LD between associated 

SNPs. It is useful to summarize these associations in terms of the index SNP with the 

highest association and other SNPs in high linkage disequilibrium with the index SNP. To 

summarize GWAS findings, we used the following settings in PLINK:

--clump-p1 1e-4 --clump-p2 1e-4 --clump-r2 0.2 --clump-kb 500

to retain SNPs with association P < 0.0001 and r2 < 0.2 within 500 kb windows.

Sign tests

We used sign tests to compare the overall patterns of results between the Swedish and PGC 

schizophrenia samples. We used the clumping settings above to derive a filtered set of 

SNPs. Due to the strong signal and high linkage disequilibrium in the MHC, only one SNP 

was kept from the extended MHC region. We then determined the number of SNPs whose 

logistic regression beta coefficient signs were the same between two independent samples. 

Under the null, the expectation is that 50% of the signs of these SNPs will be the same 

between two independent sets of results. The significance of the observed proportion was 

evaluated using the binomial distribution.

The significance test was done in two ways: selecting SNPs from Sw1-6 results and 

evaluating the signs in the independent PGC results, and by reversing the procedure (select 

from PGC, evaluate signs in Sw1-6). Similar results were obtained selecting SNPs for: (a) P 

< 1×10−5, (b) P < 1×10−6, (c) keeping one SNP every 3 Mb (effectively removing or greatly 

minimizing the effects of residual linkage disequilibrium).

Risk score profiles (RPS)

We used RPS 14 as an alternative and complementary way to compare the overall patterns of 

results from the PGC schizophrenia analysis (discovery sample) with the independent 

Swedish results (target sample). We began by selecting a high-quality, relatively 

independent SNPs with unambiguous directions of effects: from the PGC imputed results 

file, we made a subset of results containing SNPs with allele frequency 0.02-0.98 and 
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imputation INFO scores > 0.9. We then removed SNPs in high LD using via clumping (i.e., 

retain all SNPs with r2< 0.25 within 500 kb windows):

--clump-p1 1 --clump-p2 1 --clump-r2 0.25 --clump-kb 500

For RPS, we wished to evaluate SNP effects across the p-value spectrum. Again, due to the 

strong signal and high linkage disequilibrium in the MHC, only one SNP was kept from the 

extended MHC region.

We used the resulting list from the PGC to calculate schizophrenia risk profile scores in the 

independent Swedish samples using the

--score

function in PLINK. We did this 10 times using different subsets of the PGC SNPs selected 

by increasing P value thresholds. From the set of filtered SNPs from the PGC, we evaluated 

10 different association P thresholds (PT): 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 

and 1.0 (i.e., include all SNPs). For each of these 10 sets of SNPs derived from the PGC, the 

schizophrenia risk profile score (the number of schizophrenia risk alleles weighted by the 

logistic regression beta) was calculated for each case and control in Sw1-6. Logistic 

regression was then used to test whether Swedish cases had significantly different burden of 

schizophrenia risk alleles in comparison to controls (including ancestry principal 

components as covariates). To estimate the proportion of variance of case-control status in 

the Swedish samples accounted for by the risk profile score from the PGC, we used the 

difference in the Nagelkerke pseudo R2 contrasting a logistic regression model containing 

the risk profile score plus ancestry covariates with a logistic regression model containing the 

covariates alone.

Gene-set analysis

One way to understand polygenic associations for a complex trait is if the implicated genetic 

variants are in genes that comprise a biological pathway. Gene-set analysis includes 

evaluation of genetic variants in genes that are grouped based on their interacting role in 

biological pathways (biological pathway analysis) and genes that share similar cellular 

functions (functional gene-set analysis).

We used JAG (Joint Association of Genetic variants, http://ctglab.nl/software) to conduct 

gene-set analyses. This method has previously been applied to the International 

Schizophrenia Consortium data by Lips et al. 94 JAG tests for the association of specified 

gene-sets with schizophrenia as applied to individual-level genotype data which tends to be 

more powerful than using summary statistics. JAG constructs a test-statistic for each gene-

set. JAG includes both self-contained and competitive tests. These two approaches evaluate 

different null hypotheses. Statistical significance (Pself and Pcomp) are determined using 

permutation. First, the self-contained test evaluates the null hypothesis that a defined set of 

genes is not associated with schizophrenia while accounting for the some of the properties of 

the SNPs being studied (e.g., LD structure). Second, the competitive test evaluates whether a 

specific set of genes has evidence for stronger associations with schizophrenia than 
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randomly selected sets of control genes (with the latter matched to the former using the same 

effective number of SNPs per gene-set). Thus, a competitive test is of the null hypothesis is 

that these genes are not more strongly associated than a similar but randomly-selected set of 

genes. That is, the comparison is more one to the average degree of association across genes. 

The principal comparison is the competitive test, and we present self-contained tests for 

completeness. Competitive gene-set tests are more appropriate for a polygenic disease like 

schizophrenia because they explicitly prioritize gene-sets that show a greater average degree 

of association, over and above the polygenic background, rather than prioritizing larger but 

more weakly-enriched gene-sets (as self-contained tests would tend to do).

Replication

We obtained replication association results from six independent samples totaling 7,452 

cases, 20,404 controls, and 581 trios (Supplemental Table 4). These subjects are not 

included in the Swedish samples or in the PGC mega-analysis. 17 The independent samples 

were from SGENE+, 16, CLOZUK, 29 the Irish Schizophrenia Genomics Consortium, 95 the 

Psychosis Endophenotype Consortium, 96, and the Multicenter Family Study. 97 After 

selecting for P < 1×10−5 in the Sweden and PGC meta-analysis and accounting for linkage 

disequilibrium, we requested association results for 194 genomic regions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot of the Swedish and PGC schizophrenia meta-analysis results. The x-axis is 

chromosomal position and the y-axis is –log10(P). The red line is the genome-wide 

significance level (5×10−8). Gene locations are indicated.
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Figure 2. 
Risk score profiling results using the PGC schizophrenia results as the discovery set and the 

Sweden data as the testing set. The x-axis shows ten P value thresholds (PT = 10−4, 10−3, …, 

1). The y-axis is the Nagelkerke pseudo R2, the proportion of variance in case-control status 

explained by the risk score profile. The number atop each vertical bar is the P value for the 

capacity of the risk score profile to predict case-control status for that PT.
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Figure 3. 
The main figure shows the results of ABPA modeling based on the Sweden + PGC results 

(population risk 0.01). The x-axis is the estimated number of SNPs on a log10 scale, and the 

y-axis estimates the total variance in liability explained. The results for five conditions are 

shown: schizophrenia (this analysis, red) and, for comparison, results from a published 

analysis of myocardial infarction (MI, purple), type 2 diabetes mellitus (T2D, blue), celiac 

disease (green), and rheumatoid arthritis (RA, teal). 71 The schizophrenia results are based 

on 1000 Genomes imputation, and the others on HapMap3 imputation. Color intensity 

reflects the probability density with darker colors indicating higher density. Contour lines 

show 50% and 95% credible regions for SCZ, and 95% credible regions for the other 

diseases. The insets depict estimated SNP distributions for the five disorders: (a) distribution 

of SNPs in terms of the variance in liability explained per SNP and (b) the estimated 

distribution of SNP genotypic relative risks (GRR). We again stress that multiple qualifiers 

are essential in interpreting these estimates.
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Table 1

Subject characteristics and sample sizes.

Feature Cases Controls

 Swedish sample characteristics

 Male sex 0.595 0.512

 Median age at sampling 54 (45-62) 57 (48-65)

 Median hospital admissions for SCZ or SAD 7 (3-15) n/a

 Median total inpatient days 243 (81-696) n/a

 Median years from first to last HDR admission 9.7 (2.9-19.5) n/a

Sample sizes

 Swedish subjects (Sw1-6) 5,001 6,243

 PGC schizophrenia subjects (excluding Sw1-2) 8,832 12,067

 Replication results for up to 168 genomic regions 7,413 19,762

 Total subjects 21,246 38,072

Values in parentheses are inter-quartile ranges. The case group had significantly more males (p < 0.0001) and was significantly younger (p < 
0.0001) than controls although these differences were not of large magnitude. The higher median age in controls is in the direction of greater 
confidence in control classification (i.e., controls had greater time at risk for psychiatric hospitalization). Cases tended to have had considerable 
hospitalizations, inpatient lengths of stay, and years of observation. IQQ=interquartile range, SCZ=schizophrenia, SAD=schizoaffective disorder, 
HDR=Hospital Discharge Register.

All cases and controls are independent. The Swedish sample totals N=11,244, the PGC N=20,899, and the replication samples N=27,175. The 
Sweden plus PGC meta-analysis is based on N=32, 143. The Swedish sample plus PGC plus replication samples total 59,318. (these counts exclude 
511 trios).

Nat Genet. Author manuscript; available in PMC 2014 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ripke et al. Page 25

T
ab

le
 2

A
ss

oc
ia

ti
on

 r
es

ul
ts

 f
or

 S
w

ed
en

-P
G

C
 m

et
a-

an
al

ys
is

, r
ep

lic
at

io
n 

sa
m

pl
es

, a
nd

 c
om

bi
ne

d 
an

al
ys

is

C
hr

om
os

om
al

 r
eg

io
n

kb
SN

P
s

In
de

x 
SN

P
P

-v
al

ue
O

R
 (

SE
)

rs
 I

D
a1

2
bp

F
re

q
Sw

+P
G

C
R

ep
lic

at
io

n
C

om
bi

ne
d

Sw
+P

G
C

R
ep

lic
at

io
n

C
om

bi
ne

d

ch
r6

:3
1,

59
6,

13
8-

32
,8

13
,7

68
12

17
.6

14
12

rs
11

40
02

14
0

A
G

32
,4

31
,9

62
0.

76
3

8.
28

x1
0−1

5
6.

93
×

10
−

2
9.

14
×1

0−1
4

1.
21

3 
(0

.0
25

)
1.

07
0 

(0
.0

37
)

1.
16

7 
(0

.0
21

)

ch
r1

0:
10

4,
48

7,
87

1-
10

5,
24

5,
42

0
75

7.
5

36
2

rs
70

85
10

4
A

G
10

4,
62

8,
87

3
0.

64
5

1.
07

×1
0−1

1
2.

10
×

10
−

3
3.

68
×1

0−1
3

1.
12

9 
(0

.0
18

)
1.

07
6 

(0
.0

24
)

1.
11

0 
(0

.0
14

)

ch
r7

:1
,8

27
,7

17
-2

,3
46

,1
15

51
8.

4
56

6
rs

64
61

04
9

T
C

2,
01

7,
44

5
0.

57
1

6.
17

×1
0−1

3
1.

85
×

10
−

2
5.

93
×1

0−1
3

1.
13

2 
(0

.0
17

)
1.

05
9 

(0
.0

24
)

1.
10

7 
(0

.0
14

)

ch
r1

:9
8,

14
1,

11
2-

98
,6

64
,9

91
52

3.
9

30
7

rs
11

98
58

8
A

T
98

,5
52

,8
32

0.
21

4
1.

92
×1

0−8
1.

91
×

10
−

5
1.

72
×1

0−1
2

0.
88

9 
(0

.0
21

)
0.

88
8 

(0
.0

28
)

0.
88

9 
(0

.0
17

)

ch
r1

2:
2,

28
5,

73
1-

2,
44

0,
46

4
15

4.
7

12
9

rs
10

06
73

7
A

G
2,

34
5,

29
5

0.
33

2
8.

79
×1

0−1
1

3.
76

×
10

−
3

5.
22

×1
0−1

2
1.

12
2 

(0
.0

18
)

1.
07

0 
(0

.0
23

)
1.

10
3 

(0
.0

14
)

ch
r1

0:
18

,6
01

,9
28

-1
8,

93
4,

39
0

33
2.

5
14

7
rs

17
69

18
88

A
G

18
,7

34
,5

28
0.

11
4

3.
86

×
10

−
7

6.
09

×
10

−
5

1.
27

×1
0−1

0
0.

87
0 

(0
.0

28
)

0.
84

2 
(0

.0
43

)
0.

86
2 

(0
.0

23
)

ch
r8

:1
43

,2
97

,3
12

-1
43

,4
10

,4
23

11
3.

1
11

7
rs

41
29

58
5

A
C

14
3,

31
2,

93
3

0.
43

9
3.

32
×1

0−8
1.

20
×

10
−

3
2.

19
×1

0−1
0

1.
09

8 
(0

.0
17

)
1.

07
7 

(0
.0

23
)

1.
09

1 
(0

.0
14

)

ch
r1

:7
3,

27
5,

82
8-

74
,0

99
,2

73
82

3.
4

10
26

rs
10

78
93

69
A

G
73

,8
24

,9
09

0.
38

3
4.

68
×

10
−

7
1.

99
×

10
−

4
3.

64
×1

0−1
0

1.
09

1 
(0

.0
17

)
1.

10
6 

(0
.0

27
)

1.
09

5 
(0

.0
15

)

ch
r1

1:
13

0,
70

6,
91

8-
13

0,
89

4,
97

6
18

8.
1

26
9

rs
79

40
86

6
A

T
13

0,
81

7,
57

9
0.

51
3

1.
61

×1
0−1

0
1.

30
×

10
−

1
1.

83
×1

0−9
0.

89
6 

(0
.0

17
)

0.
96

6 
(0

.0
23

)
0.

92
1 

(0
.0

14
)

ch
r5

:1
51

,8
88

,9
59

-1
52

,8
35

,3
04

94
6.

3
79

rs
17

50
46

22
T

C
15

2,
65

4,
47

9
0.

05
0

6.
88

×
10

−
8

1.
02

×
10

−
2

2.
65

×1
0−9

1.
25

0 
(0

.0
41

)
1.

20
2 

(0
.0

72
)

1.
23

8 
(0

.0
36

)

ch
r1

9:
19

,3
54

,9
37

-1
9,

74
4,

07
9

38
9.

1
29

4
rs

29
05

42
4

T
C

19
,4

73
,4

45
0.

34
8

5.
38

×
10

−
7

1.
64

×
10

−
3

3.
44

×1
0−9

1.
09

2 
(0

.0
18

)
1.

09
3 

(0
.0

28
)

1.
09

2 
(0

.0
15

)

ch
r2

:3
7,

42
2,

07
2-

37
,5

92
,6

28
17

0.
6

10
rs

23
73

00
0

T
C

37
,5

92
,6

28
0.

40
2

9.
17

×
10

−
6

1.
38

×
10

−
4

6.
78

×1
0−9

1.
07

9 
(0

.0
17

)
1.

10
8 

(0
.0

27
)

1.
08

7 
(0

.0
14

)

ch
r5

:1
01

,5
81

,8
48

-1
01

,8
70

,8
22

28
9

36
7

rs
68

78
28

4
T

C
10

1,
76

9,
72

6
0.

63
7

1.
47

×
10

−
6

1.
61

×
10

−
3

9.
03

×1
0−9

0.
91

7 
(0

.0
18

)
0.

92
5 

(0
.0

25
)

0.
92

0 
(0

.0
15

)

ch
r3

:5
2,

21
5,

00
2-

53
,1

75
,0

17
96

0
53

3
rs

46
87

55
2

T
C

52
,8

38
,4

02
0.

64
1

9.
31

×
10

−
7

3.
23

×
10

−
3

1.
16

×1
0−8

1.
09

2 
(0

.0
18

)
1.

07
4 

(0
.0

24
)

1.
08

6 
(0

.0
14

)

ch
r2

:1
45

,1
39

,7
27

-1
45

,2
14

,6
07

74
.9

4
rs

12
99

18
36

A
C

14
5,

14
1,

54
1

0.
65

2
2.

25
×

10
−

6
1.

30
×

10
−

3
1.

19
×1

0−8
0.

91
8 

(0
.0

18
)

0.
92

8 
(0

.0
23

)
0.

92
2 

(0
.0

14
)

ch
r2

:2
00

,6
28

,1
18

-2
01

,2
93

,4
21

66
5.

3
24

9
rs

29
49

00
6

T
G

20
0,

71
5,

38
8

0.
19

2
4.

67
×1

0−9
9.

18
×

10
−

2
1.

21
×1

0−8
1.

13
2 

(0
.0

21
)

1.
04

9 
(0

.0
29

)
1.

10
2 

(0
.0

17
)

ch
r1

8:
52

,7
22

,3
78

-5
2,

82
7,

66
8

10
5.

3
39

rs
48

01
13

1
T

C
52

,7
52

,7
00

0.
41

8
6.

46
×

10
−

6
5.

27
×

10
−

4
1.

22
×1

0−8
0.

92
6 

(0
.0

17
)

0.
92

4 
(0

.0
23

)
0.

92
5 

(0
.0

14
)

ch
r2

:2
33

,5
50

,9
61

-2
33

,8
08

,2
41

25
7.

3
19

7
rs

77
83

71
A

G
23

3,
74

3,
10

9
0.

71
9

5.
66

×
10

−
7

5.
93

×
10

−
3

1.
51

×1
0−8

0.
91

1 
(0

.0
19

)
0.

93
5 

(0
.0

25
)

0.
92

0 
(0

.0
15

)

ch
r1

:2
43

,5
93

,0
66

-2
44

,0
25

,9
99

43
2.

9
13

3
rs

14
40

3
T

C
24

3,
66

3,
89

3
0.

22
7

1.
35

×1
0−8

8.
34

×
10

−
2

1.
80

×1
0−8

0.
88

9 
(0

.0
21

)
0.

95
2 

(0
.0

29
)

0.
91

0 
(0

.0
17

)

ch
r1

2:
12

3,
44

7,
92

8-
12

3,
91

3,
43

3
46

5.
5

35
3

rs
11

53
23

22
A

G
12

3,
73

1,
42

3
0.

31
8

1.
37

×
10

−
6

4.
77

×
10

−
3

2.
28

×1
0−8

1.
09

9 
(0

.0
20

)
1.

08
4 

(0
.0

29
)

1.
09

4 
(0

.0
16

)

ch
r1

:2
43

,4
18

,0
63

-2
43

,6
27

,1
35

20
9.

1
11

5
rs

15
38

77
4

C
G

24
3,

54
4,

82
7

0.
26

0
6.

11
×

10
−

7
8.

38
×

10
−

3
2.

53
×1

0−8
0.

90
7 

(0
.0

20
)

0.
93

4 
(0

.0
26

)
0.

91
7 

(0
.0

16
)

ch
r8

:8
9,

18
8,

45
4-

89
,7

61
,1

63
57

2.
7

40
2

rs
11

99
55

72
T

G
89

,5
92

,0
83

0.
13

5
5.

39
×

10
−

8
5.

02
×

10
−

2
3.

33
×1

0−8
1.

15
0 

(0
.0

26
)

1.
06

9 
(0

.0
34

)
1.

12
0 

(0
.0

21
)

ch
r5

:6
0,

48
4,

17
9-

60
,8

43
,7

06
35

9.
5

10
0

rs
17

17
48

A
G

60
,4

99
,1

31
0.

47
1

1.
62

×
10

−
6

5.
36

×
10

−
3

3.
78

×1
0−8

1.
08

4 
(0

.0
17

)
1.

06
8 

(0
.0

24
)

1.
07

8 
(0

.0
14

)

ch
r5

:1
52

,5
05

,4
53

-1
52

,7
07

,3
06

20
1.

9
8

rs
29

10
03

2
T

C
15

2,
54

0,
35

4
0.

53
1

8.
90

×
10

−
6

1.
22

×
10

−
3

4.
12

×1
0−8

0.
92

8 
(0

.0
17

)
0.

91
6 

(0
.0

27
)

0.
92

5 
(0

.0
14

)

Nat Genet. Author manuscript; available in PMC 2014 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ripke et al. Page 26

C
hr

om
os

om
al

 r
eg

io
n

kb
SN

P
s

In
de

x 
SN

P
P

-v
al

ue
O

R
 (

SE
)

rs
 I

D
a1

2
bp

F
re

q
Sw

+P
G

C
R

ep
lic

at
io

n
C

om
bi

ne
d

Sw
+P

G
C

R
ep

lic
at

io
n

C
om

bi
ne

d

ch
r2

:1
85

,5
33

,5
80

-1
86

,0
57

,7
16

52
4.

1
50

rs
43

80
18

7
A

C
18

5,
81

1,
94

0
0.

52
9

5.
14

×
10

−
7

1.
98

×
10

−
2

5.
66

×
10

−
8

1.
08

9 
(0

.0
17

)
1.

05
6 

(0
.0

24
)

1.
07

8 
(0

.0
14

)

ch
r1

7:
2,

01
5,

61
2-

2,
25

6,
11

1
24

0.
5

25
2

rs
45

23
95

7
T

G
2,

20
8,

89
9

0.
61

6
3.

01
×

10
−

7
2.

66
×

10
−

2
5.

69
×

10
−

8
1.

09
6 

(0
.0

18
)

1.
05

7 
(0

.0
25

)
1.

08
3 

(0
.0

15
)

ch
r3

:3
6,

83
4,

09
9-

36
,9

64
,5

83
13

0.
5

66
rs

65
50

43
5

T
G

36
,8

64
,4

89
0.

65
6

1.
65

×
10

−
6

8.
24

×
10

−
3

5.
86

×
10

−
8

0.
91

7 
(0

.0
18

)
0.

93
9 

(0
.0

24
)

0.
92

5 
(0

.0
14

)

W
e 

us
ed

 L
D

 “
cl

um
pi

ng
” 

to
 a

gg
re

ga
te

 a
ss

oc
ia

tio
n 

fi
nd

in
gs

 in
to

 g
en

om
ic

 r
eg

io
ns

. T
he

 f
ir

st
 th

re
e 

co
lu

m
ns

 d
es

cr
ib

e 
th

e 
ge

no
m

ic
 r

eg
io

ns
 a

nd
 th

e 
ne

xt
 th

re
e 

co
lu

m
ns

 th
e 

in
de

x 
SN

P,
 th

e 
SN

P 
w

ith
 s

tr
on

ge
st

 
as

so
ci

at
io

n 
in

 th
e 

ge
no

m
ic

 r
eg

io
n.

 T
he

 n
ex

t t
hr

ee
 c

ol
um

ns
 s

ho
w

 th
e 

P-
va

lu
es

 in
 th

e 
m

et
a-

an
al

ys
is

 o
f 

Sw
1-

6 
w

ith
 th

e 
PG

C
 s

ch
iz

op
hr

en
ia

 r
es

ul
ts

, t
he

 r
ep

lic
at

io
n 

sa
m

pl
es

 a
lo

ne
, a

nd
 th

e 
fi

na
l c

om
bi

ne
d 

an
al

ys
is

 o
f 

Sw
1-

6,
 P

G
C

, a
nd

 r
ep

lic
at

io
n 

sa
m

pl
es

. T
he

 f
in

al
 th

re
e 

co
lu

m
ns

 s
ho

w
 th

e 
od

d 
ra

tio
s 

(O
R

) 
an

d 
st

an
da

rd
 e

rr
or

s 
(S

E
).

 A
ll 

lo
ca

tio
ns

 U
C

SC
 h

g1
9.

Nat Genet. Author manuscript; available in PMC 2014 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ripke et al. Page 27

T
ab

le
 3

D
es

cr
ip

ti
on

 o
f 

22
 g

en
om

e-
w

id
e 

si
gn

if
ic

an
t 

re
gi

on
s 

in
 t

he
 c

om
bi

ne
d 

an
al

ys
is

C
hr

om
os

om
al

 r
eg

io
n

P
-v

al
ue

P
ri

or
 G

W
SI

G
?

G
en

e 
in

 r
el

at
io

n 
to

 in
de

x 
SN

P
O

th
er

 g
en

es
 in

 g
en

om
ic

 r
eg

io
n 

de
fi

ne
d 

by
 L

D
eQ

T
L

D
is

ea
se

 a
ss

oc
ia

ti
on

s

ch
r6

:3
1,

59
6,

13
8-

32
,8

13
,7

68
9.

14
×

10
−

14
SC

Z
H

L
A

-D
R

B
9

M
H

C
 c

la
ss

 I
I,

 m
an

y 
ot

he
r 

ge
ne

s,
 li

nc
R

N
A

M
an

y
M

an
y

ch
r1

0:
10

4,
48

7,
87

1-
10

5,
24

5,
42

0
3.

68
×

10
−

13
SC

Z
C

10
or

f3
2-

A
S3

M
T

C
10

or
f2

6 
C

A
L

H
M

1 
C

A
L

H
M

2 
C

A
L

H
M

3 
C

N
N

M
2 

C
Y

P
17

A
1 

IN
A

 M
IR

13
07

 
N

T
5C

2 
P

C
G

F
6 

P
D

C
D

11
 S

F
X

N
2 

ST
13

P
13

 T
A

F
5 

U
SM

G
5

A
C

T
R

1A
 A

R
L

3 
A

S3
M

T
 C

10
or

f2
6 

C
10

or
f3

2 
C

10
or

f7
8 

N
T

5C
2 

T
M

E
M

18
0 

T
R

IM
8

G
W

A
S-

bl
oo

d 
pr

es
su

re
, C

A
D

, a
ne

ur
ys

m

ch
r7

:1
,8

27
,7

17
-2

,3
46

,1
15

5.
93

×
10

−
13

N
o

M
A

D
1L

1
F

T
SJ

2 
N

U
D

T
1 

SN
X

8
C

7o
rf

27
 F

T
SJ

2 
M

A
D

1L
1 

N
U

D
T

1

ch
r1

:9
8,

14
1,

11
2-

98
,6

64
,9

91
1.

72
×

10
−

12
SC

Z
(M

IR
13

7,
 3

7k
b)

D
P

Y
D

 &
 li

nc
R

N
A

D
P

Y
D

D
P

Y
D

-M
R

ch
r1

2:
2,

28
5,

73
1-

2,
44

0,
46

4
5.

22
×

10
−

12
SC

Z
, B

IP
C

A
C

N
A

1C
-

N
o 

da
ta

C
A

C
N

A
1C

-A
U

T
-T

im
ot

hy
 s

yn
 B

ru
ga

da
 s

yn
 3

ch
r1

0:
18

,6
01

,9
28

-1
8,

93
4,

39
0

1.
27

×
10

−
10

N
o

C
A

C
N

B
2

N
SU

N
6

N
o 

da
ta

C
A

C
N

B
2-

B
ru

ga
da

 s
yn

 4
, G

W
A

S-
bl

oo
d 

pr
es

su
re

ch
r8

:1
43

,2
97

,3
12

-1
43

,4
10

,4
23

2.
19

×
10

−
10

N
o

T
SN

A
R

E
1

-
N

o 
da

ta

ch
r1

:7
3,

27
5,

82
8-

74
,0

99
,2

73
3.

64
×

10
−

10
N

o
(x

10
N

ST
00

00
04

15
68

6.
1,

 4
kb

)
lin

cR
N

A
N

o 
da

ta

ch
r1

1:
13

0,
70

6,
91

8-
13

0,
89

4,
97

6
1.

83
×

10
−

9
N

o
(S

N
X

19
, 3

1k
b)

lin
cR

N
A

SN
X

19

ch
r5

:1
51

,8
88

,9
59

-1
52

,8
35

,3
04

 c
hr

5:
15

2,
50

5,
45

3-
15

2,
70

7,
30

6
2.

65
×

10
−

9  
4.

12
×

10
−

8
N

o 
N

o
E

N
ST

00
00

05
03

04
8.

1
lin

cR
N

A
 (

G
R

IA
1)

N
o 

da
ta

ch
r1

9:
19

,3
54

,9
37

-1
9,

74
4,

07
9

3.
44

×
10

−
9

B
IP

(M
A

U
2,

 4
kb

)
C

IL
P

2 
G

A
T

A
D

2A
 G

M
IP

 H
A

P
L

N
4 

L
P

A
R

2 
M

IR
64

0 
N

C
A

N
 N

D
U

F
A

13
 P

B
X

4 
SU

G
P

1 
T

M
6S

F
2 

T
SS

K
6 

Y
JE

F
N

3
N

o 
da

ta
G

W
A

S-
lip

id
 le

ve
ls

ch
r2

:3
7,

42
2,

07
2-

37
,5

92
,6

28
6.

78
×

10
−

9
N

o
Q

P
C

T
C

2o
rf

56
 C

E
B

P
Z

 P
R

K
D

3 
SU

L
T

6B
1 

lin
cR

N
A

N
o 

eQ
T

L

ch
r5

:1
01

,5
81

,8
48

-1
01

,8
70

,8
22

9.
03

×
10

−
9

N
o

SL
C

O
6A

1
lin

cR
N

A
N

o 
da

ta

ch
r3

:5
2,

21
5,

00
2-

53
,1

75
,0

17
1.

16
×

10
−

8
SC

Z
, B

IP
IT

IH
3

A
L

A
S1

 A
L

D
O

A
P

1 
B

A
P

1 
C

3o
rf

78
 D

N
A

H
1 

G
L

T
8D

1 
G

L
Y

C
T

K
 G

N
L

3 
IT

IH
1 

IT
IH

4 
M

IR
13

5A
1 

M
IR

L
E

T
7G

 M
U

ST
N

1 
N

E
K

4 
N

IS
C

H
 N

T
5D

C
2 

P
B

R
M

1 
P

H
F

7 
P

P
M

1M
 R

F
T

1 
SE

M
A

3G
 S

F
M

B
T

1 
SP

C
S1

 S
T

A
B

1 
T

L
R

9 
T

M
E

M
11

0 
T

N
N

C
1 

T
W

F
2 

W
D

R
82

 li
nc

R
N

A

N
o 

da
ta

 (
IT

IH
1-

IT
IH

3-
IT

IH
4)

G
L

Y
C

T
K

-D
-g

ly
ce

ri
ca

ci
du

ri
a-

M
R

; R
T

F1
-M

R
; 

G
W

A
S-

ad
ip

on
ec

tin
, h

ei
gh

t, 
w

ai
st

-h
ip

 r
at

io

ch
r2

:1
45

,1
39

,7
27

-1
45

,2
14

,6
07

1.
19

×
10

−
8

N
o

Z
E

B
2

-
N

o 
eQ

T
L

Z
E

B
2-

M
ow

at
-W

ils
on

 s
yn

-M
R

ch
r2

:2
00

,6
28

,1
18

-2
01

,2
93

,4
21

1.
21

×
10

−
8

N
o

F
O

N
G

C
2o

rf
47

 C
2o

rf
60

 C
2o

rf
69

 S
P

A
T

S2
L

 T
Y

W
5 

lin
cR

N
A

N
o 

da
ta

G
W

A
S-

os
te

op
or

os
is

ch
r1

8:
52

,7
22

,3
78

-5
2,

82
7,

66
8

1.
22

×
10

−
8

N
o

(E
N

ST
00

00
05

65
99

1.
1,

 2
1k

b)
lin

cR
N

A
 (

T
C

F
4)

N
o 

da
ta

ch
r2

:2
33

,5
50

,9
61

-2
33

,8
08

,2
41

1.
51

×
10

−
8

N
o

C
2o

rf
82

G
IG

Y
F

2 
K

C
N

J1
3 

N
G

E
F

N
o 

da
ta

ch
r1

:2
43

,5
93

,0
66

-2
44

,0
25

,9
99

ch
r1

:2
43

,4
18

,0
63

-2
43

,6
27

,1
35

1.
80

×
10

−
8  

2.
53

×
10

−
8

N
o 

Y
es

A
K

T
3

SD
C

C
A

G
8

C
E

P
17

0
A

K
T

3
SD

C
C

A
G

8

ch
r1

2:
12

3,
44

7,
92

8-
12

3,
91

3,
43

3
2.

28
×

10
−

8
N

o
C

12
or

f6
5

A
B

C
B

9 
A

R
L

6I
P

4 
C

D
K

2A
P

1 
M

IR
43

04
 M

P
H

O
SP

H
9 

O
G

F
O

D
2 

P
IT

P
N

M
2 

R
IL

P
L

2 
SB

N
O

1 
SE

T
D

8 
lin

cR
N

A
A

R
L

6I
P

4 
C

D
K

2A
P

1 
O

G
F

O
D

2 
SB

N
O

1
C

12
or

f6
5-

M
R

; G
W

A
S-

H
D

L
, h

ei
gh

t, 
he

ad
 s

iz
e

ch
r8

:8
9,

18
8,

45
4-

89
,7

61
,1

63
3.

33
×

10
−

8
SC

Z
In

te
rg

en
ic

M
M

P
16

 li
nc

R
N

A
M

M
P

16

ch
r5

:6
0,

48
4,

17
9-

60
,8

43
,7

06
3.

78
×

10
−

8
N

o
E

N
ST

00
00

05
06

90
2.

1
Z

SW
IM

6C
5o

rf
43

 li
nc

R
N

A
C

5o
rf

43
 Z

SW
IM

6

T
he

 p
ri

or
 G

W
SI

G
 c

ol
um

n 
in

di
ca

te
s 

re
gi

on
s 

re
po

rt
ed

 to
 m

ee
t g

en
om

e-
w

id
e 

si
gn

if
ic

an
ce

 f
or

 s
ch

iz
op

hr
en

ia
 o

r 
bi

po
la

r 
di

so
rd

er
. T

he
 f

ir
st

 g
en

e 
co

lu
m

n 
sh

ow
s 

th
e 

ge
ne

 w
ith

 r
es

pe
ct

 to
 th

e 
SN

P 
w

ith
 th

e 
st

ro
ng

es
t a

ss
oc

ia
tio

n 
in

 th
e 

in
te

rv
al

. P
ar

en
th

es
es

 in
di

ca
te

 th
at

 a
 S

N
P 

is
 n

ot
 

w
ith

in
 a

 g
en

e 
an

d 
sh

ow
 th

e 
di

st
an

ce
 to

 th
e 

ne
ar

es
t g

en
e.

 T
he

 s
ec

on
d 

ge
ne

 c
ol

um
n 

sh
ow

s 
th

e 
ot

he
r 

na
m

ed
 g

en
es

 in
 th

e 
ge

no
m

ic
 in

te
rv

al
. T

he
 e

Q
T

L
 c

ol
um

n 
sh

ow
s 

SN
P-

tr
an

sc
ri

pt
 a

ss
oc

ia
tio

ns
 w

ith
 q

 <
 0

.0
5 

in
 p

er
ip

he
ra

l b
lo

od
. U

nd
er

lin
in

g 
in

di
ca

te
s 

eQ
T

L
s 

w
ith

 th
e 

SN
P 

w
ith

 th
e 

Nat Genet. Author manuscript; available in PMC 2014 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ripke et al. Page 28
st

ro
ng

es
t a

ss
oc

ia
tio

n.
 D

is
ea

se
 a

ss
oc

ia
tio

ns
 c

on
ta

in
s 

da
ta

 f
ro

m
 th

e 
N

H
G

R
I 

G
W

A
S 

ca
ta

lo
g,

 2
4  

O
M

IM
, 4

2  
an

d 
co

m
pi

la
tio

n 
of

 g
en

es
 r

el
at

ed
 to

 a
ut

is
m

72
 a

nd
 m

en
ta

l r
et

ar
da

tio
n.

 4
2,

73
,7

4  
N

o 
da

ta
 m

ea
ns

 n
o 

A
ff

ym
et

ri
x 

U
21

9 
pr

ob
es

et
s 

or
 lo

w
 e

xp
re

ss
io

n 
in

 p
er

ip
he

ra
l b

lo
od

. 
A

bb
re

vi
at

io
ns

: G
W

SI
G

=
ge

no
m

e-
w

id
e 

si
gn

if
ic

an
t, 

SC
Z

=
sc

hi
zo

ph
re

ni
a,

 B
IP

=
bi

po
la

r 
di

so
rd

er
, A

U
T

=
au

tis
m

, M
R

=
m

en
ta

l r
et

ar
da

tio
n.

Nat Genet. Author manuscript; available in PMC 2014 April 01.


