Title
On finite point transitive affine planes with two orbits on \(I_\infty \)

Author(s)
Suetake, Chihiro

Citation
Osaka Journal of Mathematics. 27(2) P.271-P.276

Issue Date
1990

Text Version
publisher

URL
http://hdl.handle.net/11094/12376

DOI

Rights
ON FINITE POINT TRANSITIVE AFFINE PLANES
WITH TWO ORBITS ON l_{∞}

CHIHIRO SUETAKE

(Received June 2, 1989)

1. Introduction

Kallaher [3] proposed the following conjecture.

Conjecture. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π. If G has two orbits on the line at infinity, then one of the following statements holds:

(i) The plane π is a translation plane, and the group G contains the group of translations of π.

(ii) The plane π is a dual translation plane, and the group G contains the group of dual translations of π.

The purpose of this paper is to study this conjecture. When G_A has two orbits of length 1 and n on the line at infinity, where A is an affine point of π, some work has been done on this conjecture. (See Johnson and Kallaher [2].)

Our notation is largely standard and taken from [3]. Let $\pi = \pi(\ell)$ be the projective extension of an affine plane π, and G a collineation group of π. If P is a point of π and ℓ is a line of π, then $G(P, \ell)$ is the subgroup of G consisting of all perspectivities in G with center P and axis ℓ. If m is a line of π, then $G(m, m)$ is the subgroup consisting of all elations in G with axis m.

In § 2 we prove the following theorem.

Theorem 1. Let π be a finite affine plane of order n with a collineation group G and let Δ be a subset of ℓ_∞ such that $|\Delta| = t \geq 2$, $(n, t) = 1$ and $(n, t - 1) = 1$. If there is an integer $k_1 > 1$ such that $|G(P, \ell_\infty)| = k_1$ for all $P \in \Delta$ and there is an integer $k_2 > 1$ such that $|G(Q, \ell_\infty)| = k_2$ for all $Q \in \ell_\infty - \Delta$, then π is a translation plane, and G contains the group T of translations of π.

In § 3 and § 4, we prove the following theorem by using Theorem 1.

Theorem 2. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π. If G has two orbits of length 2 and $n - 1$ on ℓ_∞, then one of the following statements holds:
(i) *The plane π is a translation plane, and the group G contains the group T of translations of π.*

(ii) $|G(\ell_0, \ell_0)| = n = 2^m$ for some $m \geq 1$, $G(P_1, \ell_0) = G(P_2, \ell_0) = 1$ and $|G(P, \ell_0)| = 2$ for all $P \in \ell_0 - \{P_1, P_2\}$.

The planes which are not André planes, satisfying the hypothesis of Theorem 2, include a class of translation planes of order q^3, where q is an odd prime power. (See Suetake [4] and Hiramine [1].)

2. The proof of Theorem 1

In this section, we prove Theorem 1.

Let π be a finite affine plane of order n with a collineation group G, satisfying the hypothesis of Theorem 1. By Theorem 4.5 of [3], $G(\ell_0, \ell_0)$ is an elementary abelian r-group for some prime r dividing n. Hence there exist positive integers m and s such that $k_1 = r^m$ and $k_2 = r^s$. Let P be a point of π such that $P \in \Delta$. Let ℓ be an affine line of π such that $\ell \ni P$. Since $G(P, \ell_0)$ is semiregular on $\ell - \{P\}$, $r^m | n$. Similarly, $r^s | n$. By definition, $G(\ell_0, \ell_0) = \bigcup_{P \in \ell_0} G(P, \ell_0)$ and $G(P, \ell_0) \cap G(Q, \ell_0) = 1$ for distinct points $P, Q \in \ell_0$. Thus

$$|G(\ell_0, \ell_0)| = 1 + \sum_{P \in \Delta} (|G(P, \ell_0)| - 1) + \sum_{Q \in \ell_0 - \Delta} (|G(Q, \ell_0)| - 1)$$

$$= 1 + t(r^m - 1) + (n + 1 - t)(r^s - 1).$$

Since $r^m | |G(\ell_0, \ell_0)|$, it follows $0 \equiv 1 - t + (1 - t)r^m - 1 + t \pmod{r^m}$. Therefore $(t - 1)r^m \equiv 0 \pmod{r^m}$. Since $(t - 1, r) = 1$, this implies $r^m | r^s$. Thus $m \leq s$. On the other hand, since $r^s | |G(\ell_0, \ell_0)|$, it follows $0 \equiv 1 + t(r^s - 1) - 1 + t \pmod{r^s}$. Therefore $t(r^s - 1) \equiv 0 \pmod{r^s}$. Since $(t, r) = 1$, this implies $r^s | r^m$. Thus $m \geq s$. Therefore $m = s$ and $k_1 = k_2$. By a result of Gleason (See Theorem 5.2 of [3].), the theorem holds.

3. The proof of Theorem 2 when n is odd

In this section, we prove Theorem 2 when n is odd.

Let π be a finite affine plane of odd order n with a collineation group G which is transitive on the affine points of π, satisfying the hypothesis of Theorem 2. Then G has an orbit $\Delta = \{P_1, P_2\}$ of length 2 on ℓ_0. Let A be an affine point of π. Let Φ be the set of the affine points of π, and let $\Omega = \Phi \cup \ell_0$. Then G induces a permutation group on Ω. Φ, Δ and $\ell_0 - \Delta$ are orbits of G. Since $(|\Phi|, |\Delta|) = (n^2, 2) = 1$ and $(|\Phi|, |\ell_0 - \Delta|) = (n^2, n - 1) = 1$, by Theorem 3.3 of [3] Δ and $\ell_0 - \Delta$ are orbits of G_A.

Lemma 3.1. G_A includes an involutory homology of π.
Proof. G_A induces a permutation group on $\ell_n - \{P_1, P_2\}$. Since n is odd, $|\ell_n - \{P_1, P_2\}| = n - 1$ is even. Let S be a Sylow 2-subgroup of G_A. As G_A is transitive on $\ell_n - \{P_1, P_2\}$, $n - 1 | |G_A|$. Hence $S \neq 1$. There exists an involution σ in the center of S. Suppose that σ is a Baer involution. If $P_1\sigma = P_1$, then $P_2\sigma = P_2$ and so $|\ell_n - \Delta |P\sigma = P| = \sqrt{n} - 1$. This contradicts a result of Lüneburg. (See Corollary 3.6.1 of [3].) If $P_1\sigma = P_2$, then $P_2\sigma = P_2$ and so $|\ell_n - \Delta |P\sigma = P| = \sqrt{n} + 1$. This is again a contradiction by Corollary 3.6.1 of [3]. Therefore σ is an involutory homology.

Lemma 3.2. Let σ be an involutory homology of π such that $\sigma \in G_A$. If $P_1\sigma = P_1$, then π is a translation plane, and G contains the group T of translations of π.

Proof. Since $P_1\sigma = P_1$, $P_2\sigma = P_2$. Assume that ℓ_n is the axis of σ. Then $\sigma \in G(A, \ell_n)$. By a result of André (See Corollary 10.1.3 of [3]), the lemma holds. Assume that ℓ_n is not the axis of σ. We may assume that AP_1 is the axis of σ. Then $\sigma \in G(P_2, AP_1)$. There exists $\tau \in G_A$ such that $P_1\tau = P_2$. Clearly $P_2\tau = P_1$. Since $P_2\tau = P_1$ and $(AP_1)\tau = AP_2$, $\tau^{-1}\sigma\tau \in G(P_1, AP_2)$. Therefore $\sigma(\tau^{-1}\sigma\tau) \in G(A, \ell_n) - \{1\}$, by a result of Ostrom. (See Lemma 4.13 of [3].) Thus the lemma holds by Corollary 10.1.3 of [3].

Lemma 3.3. If G_A includes an involutory homology of π which does not fix P_1, then the following statements hold:

(i) If $P \in \ell_n - \{P_1, P_2\}$, then there exist $Q \in \ell_n - \{P_1, P_2, P\}$ and $\sigma \in G(Q, AP)$ such that $|\sigma| = 2$.

(ii) If $Q \in \ell_n - \{P_1, P_2\}$, then there exist $P \in \ell_n - \{P_1, P_2, Q\}$ and $\tau \in G(Q, AP)$ such that $|\tau| = 2$.

Proof. By assumption, there exists an involutory homology σ of π such that $\sigma \in G_A$ and $P_1\sigma \neq P_1$. Clearly $P_2\sigma \neq P_1$. There exists $P_0 \in \ell_n - \{P_1, P_2\}$ such that AP_0 is the axis of σ. Let Q_0 be the center of σ. Then $Q_0 \in \ell_n - \{P_1, P_2, P_0\}$. Let $P \in \ell_n - \{P_1, P_2\}$. Then there exists $\varphi \in G_A$ such that $P = P_0\varphi$. Set $Q = Q_0\varphi$. Clearly $Q \in \{P_1, P_2\}$. Since $\sigma \in G(Q_0, AP_0)$ and $(AP_0)\varphi = AP$, $\varphi^{-1}\sigma\varphi \in G(Q, AP)$. This yields the statement (i). Similarly, we have the statement (ii).

Lemma 3.4. If G_A includes an involutory homology of π which does not fix P_1, then one of the following statements holds:

(i) The plane π is a translation plane and G contains the group T of translations of π.

(ii) If $P \in \ell_n - \{P_1, P_2\}$, then $G(P, AP) \neq 1$.
Proof. Let \(P \in \omega - \{P_1, P_2\} \). By Lemma 3.3 (i), there exist \(Q \in \omega - \{P_1, P_2, P\} \) and \(\sigma \in G(Q, AP) \) such that \(|\sigma| = 2 \). On the other hand, by Lemma 3.3 (ii) there exist \(R \in \omega - \{P_1, P_2, Q\} \) and \(\tau \in G(R, AQ) \) such that \(|\tau| = 2 \). Assume that \(R = P \). Then \(\sigma \in G(Q, AP) \) and \(\tau \in G(P, AQ) \). By Lemma 4.13 of [3], \(\sigma \tau \in G(A, \omega) - \{1\} \). Thus the statement (i) holds by Corollary 10.1.3 of [3]. Assume that \(R \neq P \). Then since \(\tau \in G(R, AQ) \) and \((AQ) \sigma = AQ, \sigma^{-1} \tau \sigma \in G(R \sigma, AQ) \). As \(R \neq R \sigma, (\sigma^{-1} \tau \sigma) \in G(Q, AQ) - \{1\} \) by a result of Baer. (See Lemma 4.12 of [3].) Thus \(G(Q, AQ) \neq 1 \). On the other hand, since \(G_A \) acts transitively on \(\omega - \{P_1, P_2\} \), the statement (ii) holds.

Lemma 3.5. If \(G(P, AP) \neq 1 \) for all \(P \in \omega - \{P_1, P_2\} \), then there is an integer \(k > 1 \) such that \(|G(P, \omega)| = k \) for all \(P \in \omega - \{P_1, P_2\} \).

Proof. Let \(P \in \omega - \{P_1, P_2\} \). Let \(\ell \) be an affine line of \(\pi \) such that \(\ell \equiv P \). By a result of Ostrom and Wagner (See Theorem 4.3 of [3]), there exists \(\tau \in G_\pi \) such that \((AP) \tau = \ell \). Since \(G(P, AP) \neq 1 \), \(\tau^{-1} G(P, AP) \tau = G(P \tau, (AP) \tau) = G(P, \ell) \neq 1 \). Therefore by the dual of Corollary 4.6.1 of [3], \(G(P, \omega) \neq 1 \). On the other hand, since \(G_A \) acts transitively on \(\omega - \{P_1, P_2\} \), the lemma holds.

Lemma 3.6. If \(G(P, AP) \neq 1 \) for all \(P \in \omega - \{P_1, P_2\} \), then \(|G(P, \omega)| = |G(P \tau, \omega)| > 1 \).

Proof. Since the order \(n \) of \(\pi \) is odd, by Lemma 3.5 \(|G(P, \omega)| \geq 3 \) for all \(P \in \omega - \{P_1, P_2\} \). Therefore

\[
\begin{align*}
|G(P, \omega)| &= \bigcup_{P \in \omega - \{P_1, P_2\}} |G(P, \omega)| \\
&= 1 + \sum_{P \in \omega - \{P_1, P_2\}} (|G(P, \omega)| - 1) \\
&\geq 1 + 2(n-1) \\
&= 2n - 1 \\
&> n.
\end{align*}
\]

Thus \(|G(\omega, \omega)| > n \). Hence by a result of Ostrom (See Theorem 4.6 of [3]), \(G(P, \omega) \neq 1 \) for all \(P \in \omega \). In particular \(G(P, \omega) \neq 1 \). There exists \(\tau \in G_A \) such that \(P_2 \tau = P_1 \). Thus \(|G(P_2, \omega)| = |\tau^{-1} G(P_2, \omega) \tau| = |G(P_1, \omega)| > 1 \). Hence the lemma holds.

Proof of Theorem 2 when \(n \) is odd: By Lemmas 3.2, 3.4, 3.5, 3.6 and Theorem 1, the theorem holds.

4. The proof of Theorem 2 when \(n \) is even

In this section, we prove Theorem 2 when \(n \) is even. Let \(\pi \) be a finite affine plane of even order \(n \) with a collineation group \(G \)
which is transitive on the affine points of \(\pi \) satisfying the hypothesis of Theorem 2. Then \(G \) has an orbit \(\Delta = \{ P_1, P_2 \} \) of length 2 on \(\ell_\infty \).

Lemma 4.1. \(G \) includes a translation of order 2 of \(\pi \).

Proof. Since \(n^2 | | G |, 2 | | G | \). Let \(S \) be a Sylow 2-subgroup of \(G \). Then there exists an involution \(\sigma \) in the center of \(S \). By Corollary 3.6.1 of [3] the involution \(\sigma \) is neither a Baer involution, nor an affine elation. It follows that \(\sigma \) is a translation of \(\pi \).

Lemma 4.2. \(G(\ell_\infty, \ell_\infty) \) is an elementary abelian 2-group and \(| G(\ell_\infty, \ell_\infty) | \geq 2 \).

Proof. If \(n = 2 \), then the lemma holds. Let \(n \neq 2 \). Considering the action of \(G \) on \(\ell_\infty \), by Lemma 4.1 there exist distinct points \(Q_1, Q_2 \in \ell_\infty \) such that \(G(Q_1, \ell_\infty) \neq 1 \) and \(G(Q_2, \ell_\infty) \neq 1 \). By Theorem 4.5 of [3], the lemma holds.

Lemma 4.3. If \(G(P_1, \ell_\infty) \neq 1 \), then the plane \(\pi \) is a translation plane, and the group \(G \) contains the group \(T \) of translations of \(\pi \).

Proof. There exists an involution \(\sigma \), such that \(\sigma \in G(P_i, \ell_\infty) \) for \(i \in \{ 1, 2 \} \). Then \(\sigma_1 \sigma_2 \in G(\ell_\infty, \ell_\infty) \) and \(| \sigma_1 \sigma_2 | = 2 \). Let \(Q \) be the center of \(\sigma_1 \sigma_2 \). Then \(Q \in \ell_\infty - \{ P_1, P_2 \} \). Since \(G \) acts transitively on \(\ell_\infty - \{ P_1, P_2 \} \), there exists \(r \geq 1 \) such that \(| G(P, \ell_\infty) | = 2^r \) for all \(P \in \ell_\infty - \{ P_1, P_2 \} \). There exists \(s \geq 1 \) such that \(| G(P_1, \ell_\infty) | = | G(P_2, \ell_\infty) | = 2^s \). Let \(| G(\ell_\infty, \ell_\infty) | = 2^t \). Then \(t \geq r + s \). Since

\[
| G(\ell_\infty, \ell_\infty) | = 1 + \sum_{P \in \ell_\infty - \{ P_1, P_2 \}} (| G(P, \ell_\infty) | - 1) + \sum_{Q \in \{ P_1, P_2 \}} (| G(Q, \ell_\infty) | - 1),
\]

\(2^t = 1 + (n-1)(2^r-1) + 2(2^s-1) \) (\(*\))

By the same argument as in the proof of Theorem 1, \(2^r \equiv 0 \) (mod 2^s) and \(2^{s+1} \equiv 0 \) (mod 2^r). Thus \(s \leq r \leq s + 1 \).

Suppose that \(r = s + 1 \). From (\(*\)), \(2^t = 1 + (n-1)(2^{s+1}-1) + 2(2^s-1) \) follows. Therefore \(n = 2^t (2^{s+1}-1) \). As \(n \) is an integer, this is a contradiction. Hence \(r = s \). By Theorem 5.2 of [3], the lemma holds.

Lemma 4.4. If \(G(P_1, \ell_\infty) = 1 \), then \(| G(\ell_\infty, \ell_\infty) | = n = 2^m \) for some \(m \geq 1 \), \(G(P_1, \ell_\infty) = 1 \) and \(| G(P, \ell_\infty) | = 2 \) for all \(P \in \ell_\infty - \{ P_1, P_2 \} \).

Proof. By assumption, \(G(P_2, \ell_\infty) = 1 \) follows. If \(P \in \ell_\infty - \{ P_1, P_2 \} \), then \(G(P, \ell_\infty) \neq 1 \). Therefore there exists an integer \(r \geq 1 \) such that \(| G(Q, \ell_\infty) | = 2^r \) for all \(Q \in \ell_\infty - \{ P_1, P_2 \} \). Suppose that \(r \geq 2 \). Then

\[
| G(\ell_\infty, \ell_\infty) |
\]

\[
= \sum_{Q \in \ell_\infty - \{ P_1, P_2 \}} (| G(Q, \ell_\infty) | - 1) + 1
\]

\[
= (2^r - 1)(n-1) + 1
\]
\[\geq 3(n-1) + 1 \]
\[= 3n - 2 \]
\[> n. \]

By Theorem 4.6 of [3], it follows that \(G(Q, \ell_w) \neq 1 \) for all \(Q \in \ell_w \). In particular \(G(P, \ell_w) \neq 1 \), a contradiction. Hence \(r = 1 \). Therefore \(|G(\ell_w, \ell_w)| = (2-1) \cdot (n-1) + 1 = n \). Therefore there exists an integer \(m \geq 1 \) such that \(n = 2^m \). Thus the lemma holds.

Proof of Theorem 2 when \(n \) is even: By Lemmas 4.3 and 4.4, the theorem holds.

Acknowledgement

The author would like to thank Y. Hiramine for his valuable suggestions.

References

[1] Y. Hiramine: On translation planes of order \(q^3 \) with an orbit of length \(q^3 - 1 \) on \(\ell_w \), Osaka J. Math. 23 (1986), 563–575.