<table>
<thead>
<tr>
<th>Title</th>
<th>Unstable homotopy groups of unitary groups (odd primary components)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matsunaga, Chromic</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1(1) P.15-P.24</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/10782</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

http://ir.library.osaka-u.ac.jp/dspace/
UNSTABLE HOMOTOPY GROUPS OF
UNITARY GROUPS
(odd primary components)

HIROMICHI MATSUNAGA

(Received December 2, 1963)

1. Introduction

The purpose of this paper is to prove the following

Theorem. For each odd prime p,

$$^p\pi_{2n+2k-3}(U(n)) = \mathbb{Z}_p^N$$

for $k \leq p(p-1)$, $n > k$ and $n + k \equiv 0 \mod p$, where $N = \min \left(\frac{k-1}{p-1}\right)$, $\nu_p(n+k)$ and $\nu_p(x)$ is the highest exponent of p dividing the integer x.

This theorem contains one of the result of [5] as a special case. We shall use the following well-known isomorphism.

$$\pi_{2n+2k-3}(U(n)) \cong \pi_{2n+2k-3}(EP_{n+k}/EP_n) \text{ for } n \geq k - 2 \ [8]$$

$$\cong \pi_{2n+2k-3}(E(P_{n+k}, k))$$

$$\cong \pi_{2n+2k-3}(P_{n+k}, k) \text{ for } n > k \ [4],$$

where E is the suspension, $P_m (m-1)$ complex dimensional projective space, EP_{n+k}/EP_n or P_{n+k}, k the space obtained from EP_{n+h} or P_{n+k} by smashing the subcomplex EP_n or P_n to a point.

In §2 we recall some material from the homotopy theory of the sphere and the K-theory, and deduce some results which are used in §3. In §3 we prove the Theorem.

2. Preliminary material

2.1. Denote by $\alpha_{n+k, r}$ the coefficient of x^{n+k-1} in $(e^{x}-1)^{n+k-r}$ for $1 \leq r \leq t$. For any non zero rational number x, if $x = p^r \cdot q^s \cdots$ is the factorization of x into prime powers, we define $\nu_p(x) = r$. By (5.3), (5.4), (6.4) and (6.5) in [1], if $\nu_p(\alpha_{n+k, r}) \geq 0$ for $1 \leq r \leq t$ and a fixed prime p, then we have that $\nu_p(\alpha_{n+k, t+1}) \geq 0$ with the exceptional case $t = s(p-1)$,
In this case, \(\nu_p(\alpha_{n+k}, t+1) \geq 0 \) if and only if \(\nu_p(n+k) - \nu_p(s) - s \geq 0 \).

2.2. In the present work we discuss only such finite CW-complexes \(K \) that consisting only of even dimensional cells, at most one for each even dimension. So we make this assumption without any more comments. Then \(H^n(K, Z) = Z \) or 0, and the \(n \)-cell \(e_n \), if it exists, is the generator and, for any coefficient group \(G \), the element \(\alpha e_n \) of \(H^n(K, G) \) determines uniquely \(\alpha \in G \), we shall identify \(\alpha \cdot e_n \) and \(\alpha \) as our convention.

Now consider two finite CW-complexes \(X \) and \(X' \). If a mapping \(f: X' \to X \) induces isomorphisms \(f^*: H^*(X, \mathbb{Z}_p) \cong H^*(X', \mathbb{Z}_p) \) for a fixed prime \(p \), then we have that

(i) it induces the isomorphism \(f_p^*: K(X) \otimes \mathbb{Z}_p \to K(X') \otimes \mathbb{Z}_p \),

and

(ii) \(\nu_p \text{ch}_n(\lambda) = \nu_p \text{ch}_n(f^* \cdot \lambda) \) for any \(\lambda \) of \(K_c(X) \).

Proof. Since \(H^{2n+1}(X, Z) = H^{2n+1}(X', Z) = 0 \) for each \(n \), using 2.1 in [2] we have that

\[
H^{2n}(X, Z) = K_{2n}(X) / K_{2n+1}(X), \quad K_{2n-1}(X) = K_{2n}(X),
\]

and

\[
H^m(X', Z) = K_m(X') / K_{m+1}(X'), \quad K_{m-1}(X') = K_m(X'),
\]

where \(K_m(X) = \ker [K(X) \to K(X^{m-1})] \), \(X^{m-1} \) is the \((m-1)\)-skeleton of \(X \), and for \(K_m(X') \) we make the same convention. Then \(f^* \) induces the isomorphism \(f_p^*: H^*(X, \mathbb{Z}_p) \otimes \mathbb{Z}_p \to H^*(X', \mathbb{Z}_p) \otimes \mathbb{Z}_p \). Consider the following commutative diagram

\[
\begin{array}{c}
0 \to K_{2n+1}(X) \otimes \mathbb{Z}_p \to H^{2n}(X, Z) \otimes \mathbb{Z}_p \to K_{2n}(X) \otimes \mathbb{Z}_p \to 0 \\
\downarrow f^{n+1} \downarrow f \downarrow f^n \\
0 \to K_{2n+1}(X') \otimes \mathbb{Z}_p \to H^{2n}(X', Z) \otimes \mathbb{Z}_p \to K_{2n}(X') \otimes \mathbb{Z}_p \to 0
\end{array}
\]

where the horizontal sequences are exact. If \(f^{n+1} \) and \(f \) are isomorphisms then \(f^n \) is an isomorphism. By descending induction on \(n \) we complete the proof of (i). The relation (ii) follows from the naturality of \(\text{ch} \) and that \(f^* e_n \equiv 0 \) mod \(p \).

2.3. In a complex of two cells \(X = S^{2m} \int f \mathbb{Z}^{2m+2s(p-1)} \) (1 \(\leq s \leq p \)) where \(f \) belongs to an element of the \(p \)-primary component of the stable homotopy group of the sphere, by (3.13) in [7] III, Theorem 4, Lemma 3 in [6], Theorem 1 in [3], 2.2 above and (4.13) in [7] IV, we have that for any bundle \(\lambda \) of \(K_c(X) \), \(\nu_p(\text{ch}_{m+2s(p-1)}(\lambda)) \geq 0 \) if and only if \(f \) is inessential.

2.4. Take the stunted projective space \(P_{n+k} \) such that \(k \leq p(p-1) \).
By (4.13) in [7] IV there exists a CW-complex \(P'_{n+k, k} \) consisting of one cell for each degree 2s, \(n \leq s \leq n+k-1 \), and a mapping \(f: P'_{n+k, k} \to P_{n+k, k} \) such that \(f \) induces isomorphisms \(f^*: H^*(P_{n+k, k}, \mathbb{Z}_p) \to H^*(P'_{n+k, k}, Z_p) \) and the order of the homotopy boundary of each cell of \(P'_{n+k, k} \) is a power of \(p \). Then the complex \(P'_{n+k, k} \) has the following cell structure.

\[
P'_{n+k, k} = \bigvee_{i=0}^{t} \left(S^{2m+2i} \cup e^{2m+2i+2q(p-1)} \right) \cup \cdots \cup e^{2m+2i+2q(p-1)}
\]

where we denote by \(\bigvee \) the union with a single common point and set \(k = q(p-1) + l + 1 \) for \(0 \leq l \leq p-2 \) and \(q < p \). Using the formula in §1 and \(C \)-theory (Serre) we have

\[
p_{\pi_{2m+2k-3}}(U(n)) \approx p_{\pi_{2m+k-3}}(S^{2m+2l} \cup \cdots \cup e^{2m+2l+2q(p-1)}).
\]

2.5. Let \(\xi \) be the dual bundle to the canonical line bundle over \(P_{n+k} \). It is well-known that \(\tilde{K}(P_{n+k}) \) is a truncated polynomial ring over the integer with the generator \(\tilde{\xi} = \xi - 1 \) and a single relation \(\tilde{\xi}^{n+k} = 0 \).

Consider the following exact sequence

\[
0 \to \tilde{K}(P_{n+k}, k) \xrightarrow{i} \tilde{K}(P_{n+k}) \xrightarrow{p} \tilde{K}(P_n) \to 0,
\]

where \(i \) and \(p \) are induced by the injection and the projection respectively. Define the elements of \(\tilde{K}(P_{n+k}, k) \) by \(p^i\tilde{\xi}_i = \tilde{\xi}^i \) \(n \leq i \leq n+k-1 \). It is well-known that \(H^*(P_{n+k}, k) \) is a \(\mathbb{Z} \)-module with generators \(x_n, \ldots, x_{n+k-1} \), where \(p^i x_i = x_i^i \) \(n \leq i \leq n+k-1 \), and \(x \) is the Chern class of \(\tilde{\xi} \). Then \(\pm \alpha_{n+k, r} = \text{ch}_{n+k-1}(\tilde{\xi}^{n+k-r}) \) for \(1 \leq r \leq t \).

Now we suppose that under the condition \(\nu_p(\alpha_{n+k, r}) \geq 0 \) for \(1 \leq r \leq t \) and \(t = s(p-1) (s < p) \) the homotopy boundary of the \(2(n+k-1) \)-cell in \(P'_{n+k, s(p-1)+1} \) is deformable into its \(2(n+k-s(p-1)-1) \)-skeleton. Then we may regard a complex \(S^{2(n+k-s(p-1)+1)} \cup e^{2(n+k-1)} \) as a subcomplex of \(P'_{n+k, s(p-1)+1} \) up to homotopy equivalence. Denote by \(P'' \) the complex obtained from \(P'_{n+k, s(p-1)+1} \) by smashing the subcomplex \(S^{2(n+k-s(p-1)+1)} \cup e^{2(n+k-1)} \), say \(S \cup e \), to a point. The commutative diagram

\[
0 \to \tilde{K}(P'') \to \tilde{K}(P_{n+k, s(p-1)+1}) \to \tilde{K}(S \cup e) \to 0
\]

shows that

\[
\nu_p(\text{ch}_{n+k-1}(\tilde{K}(P'_{n+k, s(p-1)+1}))) \geq 0
\]
if and only if
\[\nu_p(\text{ch}_{n+k-1}K(S^{2(n+k-s(p-1)-1)} \cup e^{2(n+k-1)})) \geq 0. \]

On the other hand by 2.2 we see that
\[\nu_p(\text{ch}_{n+k-1}K(P_{n+k, s(p-1)+1})) \geq 0 \]
if and only if
\[\nu_p(\text{ch}_{n+k-1}K(P'_{n+k, s(p-1)+1})) \geq 0. \]

Then 2.1 and 2.3 show that the homotopy boundary \(BE^{2(n+k-1)} \) in \(P'_{n+k, s(p-1)+1} \) is trivial if and only if \(\nu_p(n+k) - s \geq 0. \)

3. Proof of the Theorem

Consider a CW-complex \(X = S \cup e_1 \cup e_2 \cup \cdots \cup e_m \), where \(S \) is an \(N \)-sphere, \(N \) even, \(e_i \) (\(1 \leq i \leq m \)) are \((N + 2i(p-1)) \)-cells and \(m < p \). Throughout this section we denote by \(\pi(K) \) the \(p \)-primary component of \((N + 2q(p-1)-1) \)-th homotopy group of \(K \) and suppose \(N > 2q(p-1) \). Later in this section we prove the following

Proposition 3.1. If, for a generator \(S \) of the group \(\Pi^N(X, Z_p) \), \(\nu^p_i S = 0 \) for \(1 \leq i \leq m \), and \(m < q < p \), then we have
\[\pi(X) = Z_p^{m+1} \]

From this Proposition follows the

Proposition 3.2. For \(m = q \), if the homotopy boundary of the cell \(e_q \) in the complex \(X \), say \(\alpha \), is deformable into the \(N \)-skeleton \(S \) (then \(S \cup e_q \) can be regarded as a subcomplex of \(X \) up to homotopy equivalence), and if \(\nu^p_i S = 0 \) for \(1 \leq i \leq q-1 \), then we have that
\[\pi(X) = \begin{cases} Z_p^{m-1} & \text{if the } p\text{-primary component of } \alpha \text{ is not zero} \\ Z_p^m & \text{if the } p\text{-primary component of } \alpha \text{ is zero} \end{cases} \]

Proof. If the \(p \)-primary component of \(\alpha \) is not zero we have \(\pi(S \cup e_q) = 0 \). Consider the following exact sequence
\[0 \rightarrow \pi(Z \cup e_q) \rightarrow \pi(X) \rightarrow \pi(X, S \cup e_q) \rightarrow 0. \]

By the Adem relation we see easily that the complex \(X/S \cup e_q \) satisfies
the condition of 3.1 for $q-1$. Then by 3.1 we have $\pi(X) = Z_{p^s}$. If the p-primary component of α is zero, we have

$$\pi(X) \approx \pi((S \cup e_1 \cup \cdots \cup e_{q-1}) \vee S_q) \approx \pi(S \cup e_1 \cup \cdots \cup e_{q-1}) = Z_{p^s},$$

where S_q is the $(N+2q(p-1))$-sphere.

Now we state Proposition 3.3, by which and by 2.5, the proof of the Theorem are completed because the conditions about \mathbb{P}_p are easily checked from the known cohomological structure about the complex projective space.

Proposition 3.3. For $m=q$, if the homotopy boundary βe^a in X is deformable into the $(N+2(q-s-1)(p-1))$-skeleton and not deformable into $(N+2(q-s-2)(p-1))$-skeleton (the complex $S \cup e_1 \cup \cdots \cup e_{q-s-1} \cup e_q$ can be regarded as a subcomplex of X) and $\mathbb{P}_p S = 0$ for $1 \leq i \leq q-1$, then we have

$$\pi(X) = Z_{p^s}.$$

To prove the Propositions 3.1 and 3.3 we use the following

Lemma. In a complex $S^N \cup_a e^{N+2s(p-1)}$, $N > 2s(p-1)$, if the p-primary component of α is not zero, then we have

$$p \pi_{N+2s(p-1)-1}(S^N \cup_a e^{N+2s(p-1)}) = Z_{p^s} \quad \text{for} \quad 2 \leq s \leq p-1.$$

Proof of 3.1. We prove this proposition by induction on m. Consider the following commutative diagram

$$
\begin{array}{cccccc}
0 & \rightarrow & \pi(S \cup e_1 \cup \cdots \cup e_{m-1}) & \rightarrow & \pi(S \cup e_1 \cup \cdots \cup e_m) & \rightarrow & 0 \\
\downarrow i_1 & & \downarrow \pi(S) & & \downarrow \pi(S) & & \downarrow 0 \\
\pi(X) & \rightarrow & \pi(X) & \rightarrow & \pi(X, S) & \rightarrow & 0 \\
\downarrow i_2 & & \downarrow \pi(X) & & \downarrow \pi(X, S) & & \downarrow 0 \\
\pi(S_m) & \rightarrow & \pi(S_m) & \rightarrow & \pi(S_m, e_i) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & & 0 & & 0 & & 0 \\
\end{array}
$$

where $S_i \cup e_{i+1} \cup \cdots \cup e_m$ denotes the complex obtained form the complex $S \cup e_1 \cup \cdots \cup e_m$ by smashing a subcomplex $S \cup e_1 \cup \cdots \cup e_{i-1}$ to a point. Two vertical and horizontal sequences are exact. By the Adem relation we see easily that the complexes $S_i \cup \cdots \cup e_m$ and $S_2 \cup \cdots \cup e_m$ satisfy the conditions of 3.1 for $m-1$ and $m-2$ respectively. Hence $\pi(S \cup \cdots \cup e_m)$
20 H. MATSUNAGA

\[= Z_{p^m} \text{ and } \pi(S_e \cup \cdots \cup e_m) = Z_{p^{m-1}} \text{ by induction hypothesis. The middle vertical exact sequence takes the form} \]

\[0 \to Z_{p^m} \to \pi(X) \to Z_p \to 0. \]

Therefore \(\pi(X) = Z_{p^{m+1}} \) or \(Z_{p^m} \oplus Z_p \).

If we suppose that \(\pi(X) = Z_{p^m} \oplus Z_p \), the exactness of the upper horizontal sequence shows that \(i_1 \)-image must be the second direct factor, which is impossible because

\[i_1(\pi(S)) = i_2 \circ i(\pi(S)) \]
\[= i_2(p\pi(S \cup e)) \]
\[= pt_i(\pi(S \cup e)). \]

Then \(\pi(X) = Z_{p^{m+1}} \). q.e.d.

Proof of 3.3. Put \(S \cup e_1 \cup \cdots \cup e_{q-s-1} \cup e_q \cup S \cup e_1 \cup \cdots \cup e_{i-1} = Y_i \) for \(0 \leq i \leq q-s-1 \) \((Y_0 = S \cup e_1 \cup \cdots \cup e_{q-s-1} \cup e_q) \). By descending induction on \(i \), we shall prove that

\[(*) \quad \pi(Y_i) = 0 \quad \text{for} \quad 0 \leq i \leq q-s-1.\]

By the assumption of the proposition we have \((*)\) for \(i = q-s-1 \). Assume that \((*)\) is true for \(0 \leq k < i \leq q-s-1 \) and consider the following commutative diagram

\[
\begin{array}{ccc}
0 & \to & \pi(Y_k) \\
\downarrow & & \downarrow \\
\pi(S_k) & \to & \pi(Y_{k+1}) \\
\downarrow & & \downarrow \\
\pi(S_k \cup e_{k+1}) & \to & \pi(Y_{k+2}) \\
\downarrow & & \downarrow \\
\pi(S_{k+1}) & \to & 0 \\
\end{array}
\]

The left vertical sequence and the two horizontal sequences are exact. By induction hypothesis the two right terms are zero. Then the same argument as in the above proof of 3.1, making use of the lemma shows that \(\pi(Y_k) = 0 \). Especially we obtained that

\[\pi(S \cup e_1 \cup \cdots \cup e_{q-s-1} \cup e_q) = 0. \]

The exact sequence

\[\pi(S \cup e_1 \cup \cdots \cup e_{q-s-1} \cup e_q) \to \pi(X) \to \pi(X, S \cup e_1 \cup \cdots \cup e_{q-s-1} \cup e_q) \to 0 \]
\[\approx \pi(S_{q-s} \cup \cdots \cup e_{q-1}) \]
shows that $\pi(X) = \pi(S_{q-s} \cup \cdots \cup e_{q-1})$ and the group is isomorphic to Z_p^s because the Adem relation proves that the space $S_{q-s} \cup \cdots \cup e_{q-1}$ satisfies the conditions of 3.1. q.e.d.

Proof of the lemma. At first we summarize some well-known results. By the Adem relation, if $i < p$, we have

\[(1) \quad q_p^i q_p^j = \binom{i+j}{i} q_p^{i+j}\]

\[(2) \quad q_p^i \Delta_p q_p^j = \binom{i+j-1}{i} \Delta_p^1 q_p^{i+j} + \binom{i+j-1}{j} \Delta_p^{i+j} \Delta_p^1\]

Consider the following exact sequences

\[(3) \quad 0 \to Z_p^h \to Z_p^{h+1} \to Z_p \to 0\]

\[(4) \quad 0 \to Z_p \to Z_p^{h+1} \to Z_p^h \to 0 .\]

The coboundary operators associated with (3), (4) are denoted by δ_h, δ'_h respectively. In [9] (§2.1) the cohomology operations Δ^i_h ($1 \leq i$) are defined:

$\Delta^i_h : \Delta^{h-1}_h$-kernel ($\subset H^{h-1}(X, Z_p)$) $\to H^h(X, Z_p)$ mod δ^i_{h-1}-image,

then, the following relations hold:

Δ^i_h-kernel = δ_h-kernel, Δ^i_h-image = δ'_h-image/δ^i_{h-1}-image.

Let $F \to E \to B$ be a Serre fiber space with base space B (>1)-connected and fiber F m(>1)-connected, and $n < l + m + 2$, then we have the following exact sequence

\[0 \to H^l(B, Z_p) \overset{p^*}{\to} H^l(E, Z_p) \overset{i^*}{\to} H^l(F, Z_p) \to \cdots\]

\[\to H^n(B, Z_p) \overset{p^*}{\to} H^n(E, Z_p) \overset{i^*}{\to} H^n(F, Z_p) .\]

Let α and β be respectively elements of $H^l(E, Z_p)$ and of $H^{l+1}(B, Z_p)$ such that $\delta_{r-1}(\alpha) = 0$ and $\Delta^l_r(\alpha) = p^*(\beta) \mod \delta^i_{r-1}$-image. Then by [9] Th. 3.2

\[\tau \cdot \Delta^{l+1}_r i^*(\alpha) = - \Delta^{l}_p(\beta) \mod \tau \cdot \delta'_r H^*(F, Z_{pr})\]

Let α, β and γ be respectively elements of $H^*(E, Z_{pr})$, of $H^{l+1}(B, Z_p)$ and of $H^*(B, Z_{pr})$ such that $\Delta^{r}_p(\alpha) = p^*(\beta)$ ($r \geq 2$) and $\alpha = p^*(\gamma)$, then by [9] Th. 3.8, there exists an element e of $H^*(F, Z_{pr})$ with the following properties:
\[\tau(\xi) = \Delta^l_j(\gamma), \]
\[\tau\Delta^j_k(\xi) = \Delta^l_j(\beta) \mod \tau\delta_{l'-1}, H^*(F, Z_{p'-1}). \]

To prove the lemma we consider the Cartan-Serre fiber space
\[X(N+2(p-1)) \to X \to K(Z, N) \]
for \(X = S \cup \xi_i \), and the associated exact sequence, where \(X(r) \) is \((r-1)\)-connected and \(\rho_i(X(r)) = \rho_i(X) i \geq r. \)

\[
0 \to H^N(Z, N, Z_p) \to H^N(X, Z_p) \to H^N(X(N+2(p-1))Z_p) = 0 \to \]
\[
\tau \to H^{N+2(p-1)}(Z, N, Z_p) \to H^{N+2(p-1)}(X(Z, Z_p)) \to H^{N+2(p-1)}(X(N+2(p-1))Z_p) \to \to 0 \to \]
\[
0 \to H^{N+4(p-1)}(X(N+2(p-1)), Z_p) \to H^{N+4(p-1)}(Z, N, Z_p) \to 0 \to \]

Then there exist elements \(a_i \) and \(b_i \) of \(H^{N+2(p-1)}(X(N+2(p-1)), Z_p) \) and of \(H^{N+4(p-1)}(X(N+2(p-1)), Z_p) \) such that \(\tau a_i = \Delta^l_p \Psi^l_{p-1} u_i \) and \(\tau b_i = \Psi^l_{p-1} u_i \), where \(u_i \) is the generator of \(H^N(Z, N, Z_p) \). Since \(H^i(X, Z_p) = 0 \) for \(i > N+2(p-1) \) we have that the transgression \(\tau : H^{N+i}(X(N+2(p-1)), Z_p) \to H^{N+i}(Z, N, Z_p) \) are isomorphic onto for \(N+2(p-1) \leq i \leq 2N-1 \). Then we have relations:

1. \(\Delta^l_p b_i = \Psi^l_{p-1} a_i \)
2. \(2\Delta^l_p \Psi^l_p b_i = i \Psi^l_{p-1} \Delta^l_p b_i = i(i-1) \Psi^l_{p-1} a_i \) for \(2 \leq i \leq p \).

Next consider the Cartan-Serre fiber space
\[X(N+4(p-1)-1) \to X(N+2(p-1)) \to K(Z,N+2(p-1)) \]
and the associated exact sequence
\[
0 \to H^{N+2(p-1)}(Z, N+2(p-1), Z_p) \to H^{N+2(p-1)}(X(N+2(p-1)), Z_p) \to 0 \to \]
\[
\tau \to H^{N+4(p-1)}(X(N+2(p-1)), Z_p) \to H^{N+4(p-1)}(X(N+2(p-1)), Z_p) \to \to 0 \to \]
\[
0 \to H^{N+4(p-1)}(X(N+4(p-1)), Z_p) \to H^{N+4(p-1)}(Z, N+2(p-1), Z_p) \to 0 \to \]

Denote by \(u_z \) the generator of \(H^{N+2(p-1)}(Z, N+2(p-1), Z_p) \) and by \(b_z \) the \(i^* \)-image of \(b_i \). Since \(\rho^* u_z = a_i \), we have

\[\tau \Delta^l_p b_z = -\Delta^l_{p-1} \Psi^l_{p-1} u_z, \]
by (3.1.1) and (5) above, and

\[(3.2.2) \quad \Delta^2_p \Psi^i_p b_2 = \frac{i(i-1)}{2} \Psi^{i-1}_p \Delta^2_p b_2 \quad \text{for} \quad 2 \leq i < p.\]

by (3.1.2). Thus we have

\[(3.2.3) \quad p_n^{N+2l(p-1)-1}(X) = Z_p^2.\]

When \(p=3\) the proof is completed. When \(p \geq 3\), we shall prove the following assertions \((A_l)\) and \((B_l)\) for \(2 \leq l \leq p-1\) by induction on \(l\) at the same time:

\[(A_l) \quad p_n^{N+2l(p-1)-1}(X) = Z_p^2,\]

denoting by \(b_l\) a generator of \(H^{N+2l(p-1)-1}(X(N+2l(p-1)-1), Z_p)\) there holds the following relation

\[(B_l) \quad \Delta^2_p \Psi^{i-l}_p b_l = \varepsilon(l, i) \Psi^{i-l}_p \Delta^2_p b_l = 0 \quad \text{for} \quad p > i \geq l\]

with \(\varepsilon(l, i) \in Z_p^2.\)

The case for \(l=2\) is proved by (3.2.2) and (3.2.3). Assume \((A_l)\) and \((B_l)\), and consider the Cartan-Serre fiber space

\[X(N+2(l+1)(p-1)-1) \rightarrow X(N+2l(p-1)-1) \rightarrow K(Z_p^2, N+2l(p-1)-1).\]

Denote by \(u_{l+1}\) and by \(b_{l+1}\) generators of \(H^{N+2l(p-1)-1}(Z_p^2, N+2l(p-1)-1, Z_p)\) and \(H^{N+2(l+1)(p-1)-1}(X(N+2(l+1)(p-1)-1), Z_p)\). Since \(p^* u_{l+1} = b_l\) and \(\Delta^2_p b_l = 0\), we have \(\tau b_{l+1} = \Delta^2_p \Psi^1_p u_{l+1}\). By \((B_l)\), \(\Delta^2_p \Psi^1_p b_l = \varepsilon(l, l+1) \Psi^1_p \Delta^2_p b_l\), hence by (6) the relation

\[(C_{l+1}) \quad \tau \Delta^2_p b_{l+1} = \varepsilon(l, l+1) \Delta^2_p \Psi^1_p \Delta^2_p u_{l+1} = 0\]

holds. Further using (6) and the relation above we have the relation

\[\varepsilon(l, l+1) \Psi^1_p \Delta^2_p b_{l+1} = \varepsilon(l, l+1) \Delta^2_p \Psi^1_p \Delta^2_p b_{l+1} \quad \text{for} \quad p > i \geq l+1.\]

Since the group \(Z^2_p\) is also a field this relation are reduced to the following

\[(B_{l+1}) \quad \Delta^2_p \Psi^1_p b_{l+1} = \varepsilon(l+1, l) \Psi^1_p \Delta^2_p b_{l+1} \quad \text{for} \quad p > i \geq l+1.\]

By \((C_{l+1})\) we obtain \(\Delta^2_p b_{l+1} = 0\) and that

\[(A_{l+1}) \quad p_n^{N+2(l+1)(p-1)-1}(X) = Z_p^2.\]

Thus we complete the proof of the lemma.

REMARK. This lemma is a part of Proposition 4.21 in [7] IV which
is obtained by the composition method.

OSAKA UNIVERSITY

References

