

Chandra Shekhar Aryal

 Design Principles for Responsive Web

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

05 December 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38115897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author(s)
Title

Number of Pages
Date

Chandra Shekhar Aryal
Design Principles for Responsive Web

40 pages + 6 pages appendices
28 October 2014

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Supervisor

Olli Hämaläinen , Senior Lecturer

The purpose of this bachelor’s thesis project was to study the responsive design para-
digms and development approaches for creating web pages that are optimised for adap-
tive web design. The additional goals were to analyse the design principles and implement
prototype to find out whether it is feasible to achieve responsive design for various screen
resolution of devices.

The theoretical part of the thesis work explains more details of primary development ap-
proaches and design consideration for creating responsive web pages that work on the
latest smartphones to desktop computers. The thesis also analysed the best design princi-
ples that help to optimize web performance. For practical purpose, simple web page as a
prototype was built, tested on various screen resolution devices and evaluated in terms of
adaptive design with the mobile first principle.

As a result of this project, a functional web page prototype was built using Dreamweaver,
web application design software. HTML5, CSS3 and JavaScript were used for the struc-
ture, presentation and interaction of web functionality. The web page contains videos and
text as web content. A mobile compatible menu was implemented using third parties li-
brary.

The development still needs further work for better user experience and more adaptive
solutions with browser compatibility. The main challenges for developing project were de-
signing web user interface across multiple devices with various browser supports. Under-
standing the responsive design paradigm, the mobile first approach, content planning,
navigation and web performance were benefits gained from this study.

Keywords Responsive web design, adaptive design, viewport, screen
resolution

Contents

1 Introduction 1

2 Theoretical Background 2

2.1 Responsive Web Design 2

2.2 Elements of Responsive Design 3

2.2.1 Fluid Grid 3

2.2.2 Flexible Media 6

2.2.3 CSS Media Queries 7

2.3 Web Technologies 10

2.3.1 Hyper Text Mark-up Language 5 10

2.3.2 Cascading Style Sheet 11

2.3.3 JavaScript 12

3 Modern Design Paradigms 13

3.1 Mobile First Principle 13

3.2 Content First Principle 15

3.3 Optimization of Web Performance 16

3.3.1 Reducing Web Page Weight 17

3.3.2 Image Adaptability 19

3.3.3 JavaScript Interactivity 20

3.3.4 Reducing HTTP Requests 21

3.3.5 HTTP Caching 23

4 Prototyping a Responsive Web Page 25

4.1 Requirement Analysis 25

4.2 Overall Design 26

4.3 Implementation 28

4.4 Result 32

5 Discussion 36

5.1 Benefits 36

5.2 Challenges 36

6 Conclusion 38

References 39

Appendices

Appendix 1. CSS Style Sheet Used for Presentation of Web Page

Appendix 2. CSS Media Query Used for Media Screen Conditions

Abbreviations and Terms

API Application Programming Interface

CSS Cascading Style Sheets

CSSOM Cascading Objet Model

DOM Document Object Model

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

MathML Mathematical Markup Language

OS Operating System

RWD Responsive Web Design

SVG Scalable Vector Graphics

URL Uniform Resource Locator

UI User Interface

UX User Experience

W3C World Wide Web Consortium

WWW World Wide Web

XHTML eXtensible Hypertext Markup Language

1

1 Introduction

Browsing a website via a mobile client, in general a smartphone or a tablet has been

increasing in recent years. This phenomenon is mainly due to an increase in the use of

smartphones and low data and the device cost compared to early stages of the smart-

phone. According to the Global Mobile Media Consumption research conducted by

InMobi, mobile ad network 60 percent of Internet access is mostly mobile. This re-

search was carried out in 14 different countries, including the USA and the UK among

14,000 respondents [1]. With this pace of growth it is likely predictable that within 3 to 5

years mobile browsing will outpace desktop-based access. So developing web content

that are rendered smoothly and enhances user experience is the need of today’s busi-

nesses and web service providers.

Traditionally websites were designed with a fixed grid layout. This design paradigm of a

fixed grid layout was popularized by graphic designers with fixed rows and columns,

which create modules where web content could be placed. The inflexibility of these

fixed designed layout led to problems because websites were also browsed from a

mobile device where user experience was poor compared to desktop browsing. To

address the need of a mobile-friendly website, different versions of the same website

were created based on the user’s device. The solution for delivering a website based

on the device request is done by redirecting to a separately designed mobile websites

for mobiles, tablet websites for tablets and desktop websites for desktops. However,

the solution is not appropriate for the latest context, where smartphones have gained

much popularity as devices to browse websites. Different smartphones have different

screen resolutions. Browsing a website that is designed for a particular device leads to

poor user experiences. This new circumstance makes it difficult to design websites for

all the devices whose resolution and screen sizes are predetermined by the developer.

The need of today’s websites or web applications should be adaptive and accessible

regardless of the device used. This approach of developing websites is popularly

known as responsive website design. This thesis aims to explain the current trend of

responsive website design to develop a website that does not affect the user experi-

ence on different devices. The purpose of this study is to understand the best practises

used in responsive website design and its importance. A prototype website is created

to demonstrate how responsive design can be accomplished.

2

2 Theoretical Background

2.1 Responsive Web Design

Designing a website for flexibility and adaptability is called Responsive Web Design

(RWD). The RWD term was coined by Ethan Marcotte,a freelance web designer, inMay

2010 in an article “A list Apart”. RWD is a contemporary website design and develop-

ment paradigm. It is a principal that focuses on optimizing a website so that it is flexi-

ble, adaptive and provides superior user experience. It enhance a websites with best

possible viewing experience, smooth content reading and navigation with reduced

panning, scrolling and resizing regardless of screen sizes on various devices. This ap-

proach leads to design that is simple and responds to the user’s behaviour and envi-

ronment based on the screen size, platform and orientation. [2]

There are various advantages of choosing a responsive design approach instead of the

traditional design approach where different versions are created for different devices.

Developing a responsive website is expensive in the beginning but it eliminates the

need to create several versions for mobile and other devices. This is rewarding in the

long term financially and in terms of time spent to manage the website. Use of mobile

devices to access the internet is rising exponentially which implies it is a wise approach

to design websites with RWD. Since RWD enhances user experience and the users

can easily find the content that they are looking for, the users will not be deviated from

the website. [2]

Figure 1.Responsive web page for various screen resolution devices. Reprinted from

DDSHOSTING [3].

3

In figure 1, a responsive web page for different devices is shown. The web page is

adaptive for desktops, tablets, and for mobile devices. It is common for only important

features to be present on a small screen device. Similarly the design is adaptive in a

different viewing mode, viewed as landscape and portrait on mobile devices.

2.2 Elements of Responsive Design

In order to design a responsive website, a developer has to take different design as-

pects into consideration. A proposal by Ethan Marcotte suggests three main elements

in responsive design namely Fluid grid, Flexible media and Media queries which are

described in detail in the sections 2.2.1, 2.2.2 and 2.2.3 below. [2]

2.2.1 Fluid Grid

Before responsive design was popular, a typographic grid was used to design web-

sites. Typography, a rational system of columns and rows upon which modules of con-

tent could be placed, was a popular web implementation method. The lowest screen

resolution to support was chosen most commonly 1024x768 pixels for designing a

website. This fixed unit, e.g. pixels, points, inches, used to define the grid size was a

major problem towards supporting multiple devices. A desktop browser of today can

have more than 1024 pixels, while a smartphone can be as small as 320 pixels. This

problem is overcome by using a relative unit such as percentage to CSS property’s

value so that the viewport, browser display area, is relative to the parent container and

its child. [4, 23-31]

4

Figure 2.Typographic grid layout with fixed unit.

In figure 2, the main container width of a website is 960 pixels while the screen resolu-

tion of device is 1200 pixels. The main container of a website has two child containers

with 576 pixels and 384 pixels respectively. The website design is based on fixed typo-

graphic grid and best suited for the screen with a width 1200 pixels. Viewing the fixed

typographic grid of a website in figure 2, from small screen devices such as mobile,

tablet is problematic. Before mobile websites were popular, this kind of design was

widely used for desktop browsers.

The relative unit can be achieved as a percentage unit by dividing the target with con-

text formula. [4, 23]

Context Formula

×

5

In the formula, the target is the child container whereas the context is the parent con-

tainer. [4, page 30, 31] In figure 2, the web page has 960 pixels width which is a child

container of 1200 pixels parent container, which contains all the child containers. By

using the context formula, the result is 80 percent for the parent container. Similarly,

the parent container has two child containers with 576 pixels and 384 pixels widths

which results in the percentage value of 60 percent and 40 percent for each child re-

spectively as shown in figure 3.

Figure 3. Flexible grid with percentage unit

Figure 3 shows the flexible grid of the same website. So instead of defining the web

container with fixed width as shown in figure 2, the flexible grid takes the percentage

approach by defining width in the percentage value. It is possible to replace pixels with

percentage values in the width attribute of the container in CSS. This approach will

solve the problem of today’s devices with various screen resolutions. When a website

is viewed on a modern web browser, it interpret the style that is in percentage and ren-

ders accordingly.

6

2.2.2 Flexible Media

 Images and videos are not naturally adaptive in web pages. The initial setup and ori-

entation stay the same at all configurations of the viewport of the devices. The screen

where web contents are rendered is called the viewport of the device. The scaling of

media does not fit to the various screen resolutions of devices with initial setups. This

results in media that either stretches horizontally or vertically or is cropped.

The shortcoming of rendering media can be overcome by using a relative unit, per-

centage in CSS. The media inherits the same properties as the grid layout. However

this is not a reliable solution all the time since scaling of media might not take place

according to the container scaling. Richar Rutter, a user interface designer of websites,

has experimented and discovered the technique for scaling of the media with its con-

tainer by using “max-width: 100%” attribute in the CSS properties of media elements. It

is possible to overcome the scaling of media with respect to its container and also me-

dia will not occupy more than the 100% width of the container.[4, 43-47]

Figure 4. Snapshot of flexible media viewed in smartphone and tablet device.

7

In figure 4, the snapshot on the left is from a smartphone and one on the right is from a

tablet, the flexible media was experimented on mobile and tablet devices. The videos

were experimented by using max-width: 100 percent attribute in the CSS properties of

the media element. As a result, the video is scaled properly with respect to media con-

tainers and devices viewport.

2.2.3 CSS Media Queries

The third element in addition to flexible grid and flexible media needed for responsive

design is CSS Media Queries. Responsive design is incomplete without CSS Media

Queries. The percentage and proportional design may not be feasible to adjust with the

requirements of different viewport dimensions of devices such as mobile phones to

huge screen desktop browsers. The layout can result in a squeezed format in small

screen devices. [4, 64-69]

Figure 5.Web container using percentage unit.

In desktop browsers, the layout of the website works perfectly by using 80 percent of

width. However on the small screen devices such as mobile phone, the layout of the

website is squeezed to narrow and not feasible for the web contents as shown in figure

8

5. On the mobile phone the viewport of the screen is too small to fit all the contents.

Using all space will be appropriate for the responsive approach. For this reason using

media query as a break point, which refers to the devices viewport where certain attrib-

utes apply, for defining new attributes of CSS properties will help to overcome the prob-

lem , as shown in figure 6.

Figure 6.Web container with 100% width.

 The World Wide Web (W3C) introduced the media query as a part of the CSS3 stand-

ard in June 2012, which solved this problem of not being able to define a particular

CSS for a particular range of viewport and give way to designing responsive web pag-

es. [5]

Media Query is a CSS3 module allowing different media types and features to adapt

different styles for individual device viewport, device orientation, and many more. It

consists of different media types, aural, braille, handheld, print, projection, screen, tv.

Each media type is followed by different expressions that check conditions of particular

media features such as: width, height, device-width, device-height, orientation, resolu-

tion, grid, color. It uses logical expression true or false. When the media features and

values allocated is true then the given style is applied. The expression and value allo-

cated is false, the style is ignored. [5]

9

Table 1. Common screen resolutions of devices for defining break points. Reprinted

from Marcotte (2010) [4, 114].

In the example listing 1, the screen is used as the media type. The common screen

resolution is implemented as a breakpoint to check the conditions. In table 1, the com-

mon screen resolution of the devices is shown. The given screen resolution can be

used as a breakpoint for various devices to check the condition of the media query and

apply appropriate CSS style.

@media only screen and (min-width: 320px) and (max-width: 480px)

{

 // CSS style for given screen resolution devices.

}

Listing 1.CSS media query condition for mobile devices

For example in listing 1, when the browser window width matches the condition of the

given media query where the screen’s minimum resolution is 320 pixels and maximum

480 pixels, the given CSS style is applied. This design will be appropriate for mobile

10

phones in the portrait and landscape modes. Similarly, by defining the appropriate me-

dia query condition it is possible to achieve adaptive and responsive websites.

2.3 Web Technologies

The Hyper Text Mark-up Language (HTML), Cascading Style Sheets (CSS) and

JavaScript are three main technologies for creating web pages. In the web pages there

are mainly three components to name structure, presentation and interaction. The

HTML is used for structuring the web content, the CSS is used for presentation and

JavaScript is used for all interactive functionality. These technologies are the basic

components for designing web pages.

2.3.1 Hyper Text Mark-up Language 5

HTML5 is a mark-up language used for structuring and presenting the content for web

pages. On 28 October 2014 the World Wide Web and Web Hypertext Application

Technology Working Group standardized the fifth revision of the HTML. The core aims

is to support the latest multimedia, subsume HTML4, XHTML and DOM Level 2 HTML

and to make it easily readable elements. [6]

The new features of HTML5 in comparison to HTML4 are the following:

New features were added while old features such as were deprecated in

HTML5. W3C added additional elements to support multimedia and dynamic graphics

in HTML5. This included the <audio>, <video> and <canvas> .Using these elements

makes it possible to play sound, video and dynamic graphics in the web browser with-

out relying upon on external plug-in or software. The new media element enables de-

signers and developers to provide modern browsers to create rich experiences and

dynamic graphics reliably across all platforms. [7]

In addition to multimedia, HTML5 allows for MathML and SVG vector graphics ele-

ments to be linked or embedded inside the content of a single HTML file. By using

JavaScript it is possible to interact with these elements for any changes without relying

upon any third-party platforms. [7]

11

Semantic tags <article>, <section>, <header>, <footer>, <aside> and <figure> tags, are

used to create self-describing HTML documents. It helps in organizing the web con-

tents, describes the clear meaning to both developer and browsers, easy navigation for

search engine, facilitating for device-to-device communication. [7]

New types of form input elements such as telephone number, email, date and time

were introduced in HTML5. These form elements enable high speed data capture

within a native paradigm without using any further scripts libraries. [7]

In addition to these features, HTML5 content uses, XML- based formatting rules. It is a

simple DOCTYPE syntax <! DOCTYPE HTML> compare to previous SGML (Standard

Generalized Markup Language) used in HTML4, which requires specific DTDs (Docu-

ment Type Definitions) to validate document structure. Also, HTML5 specifies several

new application programming interfaces (APIs) that can be used with JavaScript. [7]

Major browsers, all of the leading smartphones, tablets and multi-screen devices sup-

port HTML5. It is intended to bring rich media, dynamic graphics, high user experi-

ence, and complex user interface, well-structured and semantic contents, supporting

many APIs, and having compatibility with modern web browsers. Also it supports all

existing HTML 4 based content with backwards compatibility.

2.3.2 Cascading Style Sheet

On 17 December 1996, CSS (Cascading Style Sheets) level 1 was first released by

HäkonWium Lie and Bert Bos with the W3C recommendation [14]. Until today, It has

several CSS levels such as: CSS Level 1, CSS Level 2, and CSS Level 3. CSS Level 3

is a large single specification defining various new features including several modules

with new capabilities or extends the features defined in CSS2. [8]

The CSS is the language for describing the presentation of web pages such as colours,

layout and fonts. It is one of the core technologies for building web pages with visual

and aural layout of web pages for a variety of devices. It can be used with any XML-

based mark-up language and independent of HTML. The style can be inserted in three

different ways: External style sheet, Internal style sheet, Inline style. [8]

12

Figure 7.CSS syntax declaration, Reprinted from w3schools website [9]

The CSS style consists of list of rules with selectors and declarations as shown in fig-

ure 7. The selectors are the elements of the HTML and the declarations are the attrib-

utes of the CSS style. As shown in figure 7, selector “h1” is the header element of

HTML. By using the CSS attribute color and the font-size it is possible to give style with

colour blue and font size12 pixels.

2.3.3 JavaScript

JavaScript was created in 1995 by Brendan Eich and was released with Netscape 2 in

1996. It is an object-oriented and loosely written client-side scripting language. How-

ever the list of areas where it is used is rising up every day. With the introduction of

node.js, we can use JavaScript for server side scripting as well. Today JavaScript in-

terpreters can be found on other platform such as, Adobe Acrobat and Photoshop. [10]

Defining the content with HTML and presenting the content with the CSS design is in-

complete without adding user interaction achieved by the use of JavaScript. Creating

interactive content, responding the behaviour of user selection, adding functionality,

validating the input form, loading and submitting data from server are created by using

JavaScript. JavaScript is embedded inside the HTML pages and interacts with docu-

ment object model (DOM), organizes objects of HTML in the tree structure of the page.

The script runs locally in web browser to provide quick response to user actions. [10]

13

3 Modern Design Paradigms

3.1 Mobile First Principle

Starting from 2010 there have been tremendous changes in the field of web develop-

ment. Initially web contents were designed so that they were best fitted for desktop

browsing. After the introduction of the first iPhone in 2007 by Apple, the mobile web

crossed several milestones, including the latest paradigm popularly known as the Mo-

bile First Principle.

Before 2007, accessing web content using a mobile web browser was very cumber-

some, due to technological constraints such as slower mobile Internet, unreliable con-

nection, not so advanced mobile web browsers and unpleasant user interface experi-

ence. A number of people accessing web via a mobile device was very low. Now, with

the advancement in technology, the smartphones become a need for most people,

Today the trend is towards mobile web. [11, 1-3]

Figure 8.Worldwide Internet usage through desktop and mobile platforms. Reprinted

from StatCounter [12]

14

 Figure 8, shows the Internet usage of desktops and mobiles from August 2013 to

2014 through web browsers. In August 2013, the Internet usage of mobiles was nearly

17 percent of total internet usage. After 12 months, the Internet usages increased to

around 28 percent of the total Internet usage. Whereas Internet access to mobile de-

vices increased by 67 percent. On the other hand, the Internet access through desktop

browsers decreased by 21 percent, from 77 percent to 64 percent. These statistics

suggest that accessing web pages through a mobile browser is increasing rapidly.

Table 2. Shipment of Worldwide mobile devices. Reprinted from Canalys [13]

Similarly, as can be seen from table 2, worldwide shipment of mobile devices (note-

books, tablets, smartphones and phones) will reach around 2.6 billion units by 2016

according to the forecasts from Canalys. The tablet and smartphone are the fastest

growing categories with a compound annual growth rate (CAGR) of 35 percent and 17

percent respectively. So, it is clear that in the coming future, there will be huge num-

bers of smartphones and tablets used for various purposes.

 Based on data from figure 8 and table 2, we can conclude that there will be a huge

surge of mobile devices and mobile web access by 2016. Developers, organizations

and governments should focus on creating web pages with Mobile First Principle. De-

signing for mobile first now creates new opportunities for growth and future, and also it

15

can lead to better solutions and user experience for websites or applications. It is highly

recommended for developers to start everything from mobile-based designed.

When planning mobile design for web experiences there are many factors that devel-

opers should focus on. Understanding the current needs of the user at the right time

and providing right solutions is a primary need for today’s web developers. Designing

responsive web pages for small to large screens is a very challenging approach. Or-

ganizing content first, focusing on priority issues, providing good navigation, designing

good user interface and maintaining clarity are a good start for mobile first design.

Aligning the important uses, understanding mobile behaviors, providing relevant explo-

ration and pivoting options are also important factors that should be considered in mo-

bile first principle. [11, 7-14]

3.2 Content First Principle

“There is no Mobile Web. There is only The Web, which we view in different ways.

There is also no Desktop Web. Or Tablet Web. Thank you.” [14]

Today, web pages are not built for a specific viewport. However the excess of these

web pages is increasing rapidly through different viewports that include handheld de-

vices. In these cases, presentation of the content first approach is important. However

the intrinsic designs of the desktop web are only possible for mobile devices via zoom-

ing, which is not the today’s target for responsive design. [14]

Responsive design is about displaying the source of relevant content across countless

viewports, using media queries and a flexible grid to ensure that design is adaptive and

accessible as needed [4,107]. Since the same layout is not possible to be implement-

ed across different viewports, it is important to focus on providing the content as it is in

different viewports because users care about the easiness of getting the right content.

[11, 52]

The primary goal of a web page is to provide content to a user. The content is the soul

of any website. The content can be anything: text, image, video, music or application.

The visitors are the users of web pages. Users need the desired content immediately

when they visit a web page, which means that content should come first. So designing

the responsive web is not only about the flexible grid and media queries. It’s more

16

about content first, which serves the right content at the right time to the user regard-

less of different viewports from where the webpage is viewed. [11, 52-58]

“The main goal of content strategy is to use words and data to create unambiguous

content that supports meaningful, interactive experiences. We have to be experts in all

aspects of communication in order to do this effectively.”[15]

As explained in the above quote, the primary use of a website is to get content. A user

expects it to be presented beautifully and in a very interactive manner but when situa-

tions are not favorable, such as when there is a slow Internet connection or when the

user is browsing via a mobile device, what the user really cares about is to get the con-

tent. Different functionalities such as animation, color and easy navigation are increas-

ingly used in websites to engage users, but they are not appropriate when what a user

really cares about is getting the right content. [15] For example in a situation when

there is a slow internet connection and the user is browsing the BBC website on a mo-

bile device, the user care about getting the meaningful content and not how beautifully

it is designed or how the buttons animate when the user clicks on them. So content first

is a good approach when content is more important than presentation and functionali-

ties.

3.3 Optimization of Web Performance

The other important principle when going toward responsiveness is performance. Per-

formance of web pages is an important factor for engaging a user. According to re-

search done at Google, delay and slower performance reduces the user activities by

0.2% to 0.6% within half a second [16]. Today, mobile phones are less efficient and

rely on mobile data connections whereas traditional desktop computers and laptops in

general, have a steady and persistent Internet connection. Mobile users can easily de-

viate from web pages if it takes a longer time to load and slow down the web perfor-

mance. Performance should be focused as a priority before starting development. [11,

22-24]

At present broadband speed is getting faster which implies that content can be easily

fetched from the Internet, but different countries have different Internet infrastructures

to facilitate faster connection. For example a Northern European country like Finland

17

enjoys a faster connection while developing countries like Nepal have a very slow In-

ternet connection. So the target audience of the website should be taken into consider-

ation before implementing. A website that performs well in one part of the world might

not do the same in other part because of the Internet speed factor. Optimization is

possible with eliminating unnecessary download, leverage browser caching, reducing

HTTP Requests, image optimization, enabling compression techniques and minimizing

uses of HTML, CSS and JavaScript. Using asynchronous scripts is essential to consid-

er for optimization of web development. Optimization possibilities are further discussed

in the chapter 3.3.1 to follow. [17, 4-5]

3.3.1 Reducing Web Page Weight

Web pages continue to grow day by day with their own ambition and functionality as

well as by the number of users. The downloaded data for a web page also increases at

a steady pace as shown in figure 9. To provide better performance on both desktop

and mobile platforms the downloaded data must be taken into consideration.

Figure 9. Data downloaded through Hypertext Transfer Protocol (HTTP) request, Re-

printed from HTTP Archive-Trends [18]

18

Figure 9 shows the average downloaded data of all web pages worldwide by HTTP

request from November 2012 to November 2014. The data was taken from the HTTP

Archive web page and around 290,000 URLs were analyzed. According to the HTTP

Archive, the average downloaded data for a web page was 1899 kilobytes (kB), com-

pared to 1269 kilobytes in November 2012. This represents around 49 percent of

growth rate in just two years. Similarly, the number of HTTP request is also rising up by

a 13 percent growth rate. From this we can conclude that the number of HTTP request

and download bytes have grown at a steady pace throughout the years which implicat-

ing the performance.

A Few simple steps while writing code for web pages include removing all unnecessary

code comments from HTML, CSS and JavaScript and collapsing two style declarations

into one without affecting each other and removing whitespace (space and tabs). This

technique can be used also when implementing CSS frameworks and JavaScript librar-

ies to minimize the size of download and optimize the performance. [19]

GZIP and Deflate are tools used for compression of web page files for all HTTP re-

quests. Both are supported in all modern browsers. HTML documents, scripts and style

sheets are common file types used for compression. Image and PDF files should not

be compressed because they are already compressed. Using compression tools re-

duces the HTTP response by web pages on about 70%. Comparing both tools for

compression, GZIP is typically used for compression because it reduces about 6%

more compared to Deflate as shown in table 3. [17, 29-31]

Table 3.Compression file sizes using gzip and deflate. Adapted from Sounders (2007)

[17, 31]

19

Compression works in the following way:

 The browser sends http request header telling the server that it accepts the

compressed content : Accept-Encoding :gzip, deflate

 The server sends an HTTP response: Content-Encoding: gzip

3.3.2 Image Adaptability

Adaptability of downloading images enhances performance. Images often occupy a

significant amount of space on the web page. Downloading the actual size of the im-

age slows the speed of the web page. Compression of the image can be one solution

to save space. However for responsive design, the image has to be best fitted from a

mobile to desktop browser. Choosing the right format of the image and its size with the

respective screen resolution of devices is more essential. The fewer bytes the browser

downloads, the less usage of the Internet and the faster the speed. [20]

By using CSS media queries it is possible to know the screen resolution of devices and

apply an appropriate image. In addition to matching the screen resolution it also

matches the device pixel ratio condition to choose the right format of image. The detail

of using the media queries is explained in chapter 2 section 2.1.

 Using JavaScript script, it is possible to have specific images. JavaScript allows

checking the capabilities of the devices to determine device pixel ratio, get screen

width, height via window.devicePixelRatio and navigator.connection for

network connection. Once the collection information such as device pixel ratio, get

screen, height and network connection known, then it will be easy to decide which im-

age to load. [20]

The HTML5 picture element offers a declarative approach for an image loading solution

for providing multiple version of an image based on the device viewport, device size,

device resolution and orientation. Also, by defining the srcset attribute of HTML en-

hances the behavior of image selection. It allows the browser to choose the best image

depending on the device behaviors. There will be no longer need for CSS or JavaScript

to handle responsive images. The developer benefits the optimization of an image by

20

using picture elements for image resource loading, which only download the image

necessary for the particular viewport. [20]

<picture>

<source media="(min-width: 1024px)" srcset="image-1x.jpg, image-

2x.jpg">

<imgsrc="head-fb.jpg" srcset="image-2x.jpg 2x" >

</picture>

Listing 2.Using picture element in HTML5.

In listing 2, if the browser width is at least 1024 pixels, then the image-1x.jpg or either

image-2x.jpg will be used, depending on the device resolution. If the browser does not

support the picture element, it will renders from element and it should always

include.

3.3.3 JavaScript Interactivity

Modification of web pages such as content, styling, user interaction and validations are

all done in the HTML Document Object Model (DOM) tree and the CSS Object Model

(CSSOM) with JavaScript. In a production environment, an adding an inline script or

external file script it is possible to interact with DOM and CSSOM.JavaScript offers

interactivity power to web pages for modification but dependencies between the DOM

and CSSOM can lead to a significant delay. The bottleneck of using JavaScript comes

with the price of slower performance over a low speed network. [21]

Execution of the script blocks DOM construction for an unnoticeable time in a high

speed Internet connection but it is clearly visible on a slower connection. When the

HTML tag encounters a script tag, it will immediately pause the construction of DOM

and will yields control over to the JavaScript engine. Once the script has finished run-

ning, it will allow the DOM tree to pick up from where it left and resumes the construc-

tion. The waiting time for execution of the script, always interrupts the construction of

the main HTML DOM tree. Similarly, the construction of DOM tree is also interrupted by

CSSOM. Until the downloading and building of CSS is not accomplished the script in-

terrupts the construction of HTML DOM tree. [21]

21

By default JavaScript’s parser is blocking and the browser does not know the output of

the script and what it is planning to do on the page. However there is a solution for it,

by using the “async“ in the script tag as shown in the code example below. It is possi-

ble that, the script does not need to be executed at the exact point where it is defined

and referenced in the HTML tag. It tells the browser that it should allow the DOM con-

struction to continue without any interrupt and wait for the script to become available. In

this way it is possible to increase the performance of web pages without affecting the

interactivity of JavaScript. The other way is to include the script tag in the end of the

body, which ensures that the DOM is loaded first. [21]

<script src="ScriptFile.js" async></script>

3.3.4 Reducing HTTP Requests

The Hypertext Transfer Protocol (HTTP) is the client/server protocol which requests

and responses for communicating with the browsers and servers over the Internet. Uni-

form Resource Locator (URL) is a webpage address for sending an HTTP request in

the human readable form. The server hosting that URL sends back the response. GET,

POST, HEAD, PUT, DELETE, OPTIONS and TRACE are types of requests with sim-

ple, plain text format. Figure 10 shows the architecture for an HTTP request and re-

sponse. [17, 6]

Figure 10, HTTP request and response architecture .Reprinted Web page [22].

22

In an HTTP request and response, end-users get the HTML document in just only 10-

20 percent of the response time. However the rest of 80-90 percent of the response

time is spent making other HTTP requests for components of web pages such as im-

ages, script file, style sheets and flash. Reducing the number of HTTP requests re-

duces the response time. It can be done by using techniques such as CSS sprites,

Image maps , inline images and combined scripts and style sheets. These techniques

can reduce the response time by 50% of total response time. [17, 10]

JavaScript and the CSS are most used in web pages. There are a number of scripts

and style sheet files in web pages for specific purposes. These separate files require

an additional HTTP request for downloading from a server. Combining multiple script

files into a single script and multiple style sheets into a single style sheet reduces the

number of HTTP requests. Steve Sounder, author of High Performance Web Sites,

experimented this technique and his finding showed that a page with combined scripts

loads 38 percent faster than the uncombined scripts files. [17, 15-16]

Another way to reduce the HTTP request is to reduce the number of image request in

web pages. This can be done by using the CSS Sprites. In this technique all images

are combined into a single image file. Using CSS properties, background-image and

background-position, it is possible to know the location and position and easy to fetch

the image for a required layout. [17, 11-13]

 Similarly, there is another technique called Image maps. It is the same as the CSS

sprites principle, by combining multiple images into a single image and it can fetch im-

age by defining the coordinates of image maps. However there is one drawback in it: it

only works for contiguous images in the pages, such as a navigation bar. [17, 10-11]

Additionally, an Inline image is another technique. It is a simple approach where it in-

cludes images in web pages without adding more HTTP requests. It can be done by

using the data URL scheme. In this approach the image data is embedded in the actual

page through a URL scheme. However, a drawback is there will be no cached of the

image in the browser. To rectify this situation, a better way is to use inline images with

the CSS rule. [17, 13-14]

23

3.3.5 HTTP Caching

HTTP Caching is a way to achieve the performance of web pages and to provide high

end-user experiences. It is adopted universally through all modern browsers. Imple-

menting the HTTP caching benefits the web page by improving the response time and

reducing the server load. The web browser stores the copies of web resources. When

the resources are required, browser will retrieve the resources without requesting the

server, which is called HTTP caching. However, when the content of web pages

changes frequently, this is not a good solution. To overcome problem, HTTP headers

have ETags, tokens generated by the server typically a hash or fingerprint of web con-

tents. Browsers automatically validate the ETags token and notify the client if there is

modification done. Analyzing necessary ETags tokens from servers should be con-

firmed and ensured by the web developer. [23]

Figure 11.HTTP caching in local browser cache. Reprinted from Heroku Dev Center

[23]

24

Figure 12.Browser cache alleviating resources without an HTTP request for the server.

Reprinted from Heroku Dev Center [23]

Figure 11 illustrates the simple cache architecture of a browser. A browser requests an

HTTP request for the first time, web server will response with all the required infor-

mation. The required responses are stored for later use in a browser cache. Whenever

the resource is requested again, as shown in figure 12, a web page using HTTP cache

headers is able to fetch the required resources without alleviating the server-load

again. This practice will increases response time.

25

4 Prototyping a Responsive Web Page

The primary purpose of the study was to examine the principle behind the responsive

web and use that principle and implement a simple prototype. To find the best practical

way is to design a simple web page and make it adaptive and responsive. This section

discusses how the prototype was carried out while following the software life-cycle de-

velopment phases: requirement analysis, overall design, implementation and testing

the result.

4.1 Requirement Analysis

The requirement analysis is the initial phase of software life-cycle development. In this

phase the web page prototype requirements were analysed and outlined. The require-

ments of the web page are listed below:

1. Responsive design approach

2. Uses the latest technologies HTML5 and CSS3

3. Following the design principles

4. Supporting cross browser / device testing

Each requirement is discussed in detail in the paragraphs below.

The First approach explains that the web page has to be responsive with mobile, tablet

and desktop browsers. The three main elements of responsive web design, Fluid grid,

Flexible media, and CSS media queries as discussed at the beginning of this thesis,

should be used.

In the web the basic web technologies are HTML, CSS and JavaScript. As mentioned

in the section 2.3.2, HTLM5 has more benefits compared to HTML4. Applying the new

feature such as picture element, semantic tags and media element of HTML5 will en-

hance the design. Similarly, the web page has to use the CSS3 media query for the

latest presentation and visual design of the web page. Rich user interface and better

user experiences are valuable key points for web page success.

26

After analyzing the third requirement it was decided to follow the mobile first principle.

This means the prototype was designed for a mobile initially. Combining JavaScript

and CSS was done using a normal compression method, so that the script was minified

for optimization.

Finally, the fourth requirement is about testing the design in the latest version of

browsers: Chrome, Mozilla, Internet explorer, Safari. It is also important that the design

is appropriate for each device desktop, laptop, tablets, and mobiles. It does not mean

the design should be the same, it is about coherent experience across all devices.

4.2 Overall Design

After analyzing the basic requirements, the user interface sketch layout was designed

before the real implementation of web pages. The desktop, tablets and mobile layout of

the content was designed separately. This helped to establish the system design of the

whole web page. Sketching the webpage layout before implementing helped to identify

the breakpoints of responsive design.

Figure 13.Sketch diagram for desktop layout.

27

The desktop browser’s screen varies from 1024 to 1200 pixels in average. This range

of screen resolution works for most laptops and notebooks. Designing the target reso-

lution will be appropriate for all wide screen browsers. Figure 13 shows the layout pri-

marily for a desktop browser with a higher than 1024 pixel screen resolution. Web page

has well fitted web container with respective header, sidebar and container and footer

which are represented with numbers 1, 2, 3 and 4 respectively. In the desktop design

the web container has enough margin and padding on it.

Figure 14 . Sketch diagram for a tablets layout in the portrait and landscape modes.

Tablets have a screen resolution that varies from 600 to 1024 pixels in average.

At present there are small tablets, 10-inch tablets from various vendors such as Apple,

Google, and Microsoft. In figure 14, the sketch diagram for a tablet layout was de-

signed. In the portrait mode the screen view ports support the entire layout by adjusting

a dynamic web page container. Similarly this design is not supported in the landscape

mode, so a separate design for the landscape mode was prepared which contained

only container 1, 2 and 3 while the page loads. Upon scrolling down the user can see

the fourth container.

28

Figure 15. Sketch diagram for mobile layout in portrait and landscape modes.

In figure 15, the mobile sketch layout was designed. The screen widths of the mobile

are nearly 80 percent smaller than the desktop width. The mobile screen resolution

starts from 320 in the portrait mode to 480 in the landscape mode. The container of the

mobile layout cannot fit the same layout as shown in the tablet and desktop layouts. So

that the mobile design of the web page would fit in a single column. A single column

layout that best fits the mobile screen was designed and containers 1, 2, 3 and 4 were

aligning in a vertical order. By removing padding and margin and adjusting the entire

container layout it is possible to have high user interface design for mobile users. Align-

ing these containers is based on the priority of a container. For example if a page has

an important content in container 2 instead of container 1, then it is good practice to

align in the top of the container stack.

4.3 Implementation

Once the layout and designed are finalized in the sketch which gives the basic idea of

how the web page renders in different viewports, following the mobile first principle the

first web page was designed for mobile using Dreamweaver CS5. Web development

software, used for creating static and dynamic web applications and web pages. The

created product was installed on a desktop local server and tested with latest browsers.

The implementation procedures are briefly described below.

29

After the installation of Dreamweaver web platform, the new HTML5 project was creat-

ed.

Figure 15. File structure of the prototype web page.

Figure 15 shows the folder structure of the website. The Clientside is the name of the

folder that represents the public_html folder where a website’s index page is nor-

mally stored. It contains the entire required folder for storing CSS, JavaScript and

HTML5 files, which is good practice because it makes it easy to navigate between files

and locate the files when needed. The actual implementation of the requirement was

started after creating this folder structure. Necessary files for each type of document

were placed in their respective folders. The prototype was designed for adaptive and

responsive web layout. For this reason flexible grid, flexible media, and media queries

were implemented.

30

For the flexible grid, the width of the container was calculated from the context formula.

#wrapper aside {

margin:1%;

float:left;

width:40%;

box-shadow:0px 0px 3px 1px #888;

-webkit-border-radius: 10px;

-moz-border-radius: 10px;

border-radius: 10px;

padding:2%;

min-height:10px;

}

#wrapper section{

margin:1%;

float:right;

width:56%;

box-shadow:0px 0px 3px 1px #888;

-webkit-border-radius: 10px;

-moz-border-radius: 10px;

border-radius: 10px;

padding:2%;

min-height:100px;

}

Listing 3. Source code for flexible grid: section and aside container.

As illustrated in listing 3, the web page has main two containers excluding the header

and footer. These two containers width was defined in a percentage value so that the

containers were flexible when the width of browser narrowed down. The width of both

containers is 96 percent of the viewports width. The 4 percent of width was used for the

margin of the container.

31

Similarly, the page has two embedded videos in the aside container. For the demon-

stration purpose the video container was used for flexible media. For the flexible media,

the video container defines as maximum width 100 percent.

Finally, to achieve real adaptive and responsive design the CSS media queries were

implemented inside the mediascreen.css file. The file has several breakpoint conditions

to achieve different layouts for appropriate viewports. This is a simple prototype, so two

breakpoint conditions were used. The breakpoint condition can vary according to the

list of the supported viewport. If none of these conditions are matched then a default

CSS would be applied for the web page. Those conditions that are not defined in this

breakpoint are default.

@media only screen and (min-width :320px) and (max-width:600px){

 // CSS style

}

@media only screen and (min-width: 600px) and (max-width:

1024px){

// CSS style

}

Listing 4. Media queries breakpoint condition.

For example as shown in listing 4, if the media type is screen and the minimum width is

320 pixels to maximum width is 600 pixels, which is the range of a mobile and small

tablet’s viewport, the first condition will be true and all the CSS properties defined in-

side these conditions will be applied.

The mobile menu, which is usually represented by three line menus, is a standard way

to tell a user that there are more items upon clicking the menu button. A third-party

library was included to render this menu in mobile devices because of a small viewport

in mobile devices. This represents the content first principle.

32

4.4 Result

The final result was obtained after successful implementation of the entire require-

ments. The web page was tested including the general testing and cross browser com-

patibility. For the general testing of the web page, the functionality of web pages was

checked that it would works flawlessly. Also assuring that it would work in the entire

latest browser such as Google Chrome, Mozilla Firefox and Microsoft Internet .In addi-

tion, for supporting legacy browsers extra code was added to the HTML5 document.

This was necessary for backward compatibility of the webpage. During testing phases

several bugs were noticed which were fixed later on. The final result for different view

ports is described below.

Figure: 16. Prototype web page shown in desktop browser.

Figure 16 is the final web page prototype for a desktop browser with a screen resolu-

tion higher than 1024 pixels. The web page has a simple design with two containers,

and a simple menu on the top. Left side container contains two responsive videos. Vid-

eos are adaptive and responsive regardless of devices screen size. Similarly, right side

33

container contains the simple text. The web page follows the responsive design princi-

ples for high user interface and superior user experience.

Figure 17.Web page in tablet web browser.

Figure 17 shows the tablet view of the web page. The web is designed for devices with

more than 600 pixels to 1024 pixels. There can be various tablets available in the mar-

ket. The design is also adaptive and responsive by implementing the required condition

of the media queries CSS for this layout.

34

Figure 18.Web page in Mobile web browsers.

Figure 18 shows that the design is adaptive for mobile devices regardless of various

viewports. In the mobile design all the containers are in a single column because the

screen sizes of devices are small in comparison to desktops. The three line menus

represent the menu bar for easy navigation. The menu items are hidden by default for

mobile viewports and extended once clicked or touched.

35

Figure 19. Web page tested for browser compatibility.

The web page was tested for the latest version of browsers Google Chrome version 38,

Mozilla Firefox version 33, Internet Explorer version 11. As shown in figure 19 the pro-

totype’s design, CSS properties, JavaScript and HTML5 are supported across all the

modern browsers in use.

36

5 Discussion

5.1 Benefits

Browsing web pages through smartphones has been on the rise with the increase of

smartphones as discussed above in chapter 3.The main benefit of responsive web de-

sign is to provide web page for different devices that render without affecting user ex-

perience and content. The web content can be rendered flawlessly without zooming

and with greater user experiences. In this way it is possible to reach a high number of

users.

Flexibility to adaptation reduces the workload for creating different versions of web-

sites. This eliminates the needs to create web solutions for particular devices. The cost

for development also reduces automatically in the long run. There will be no extra effort

for maintaining the website, since it can be done from a single file. Also it is easy to

update, maintain the content. It also helps to save time and avoid an extra threshold for

developing many versions of websites. Besides these benefits, it provides brand con-

sistency. The web identity will be consistent across all the screen sizes which will helps

the user to recognize the website. Also the web URLs will be the same. It is easy to

remember for the user and helps the developer to optimize the content from one link.

5.2 Challenges

The responsive web page design is a principle that is tedious to implement in the be-

ginning because it is still in a nascent stage. Designing the desktop version of the web-

site is much less time-consuming but maintaining several versions for desktops and

mobile versions proves to be expensive and complicated in the long run. In comparison

to a responsive approach it is easy to implement a desktop version because it takes

less resources and designing is faster and saves time. This advantage comes with the

price of implementing different versions for different devices.

The users of each browser have specific needs and goals. In the desktop version of the

webpage, there are not many constraints to provide all the required content as needed

even with advertisement banners. However in the mobile or tablet devices which has

37

small screen and less content to fit. It is not possible to fit all the content. It is neces-

sary to know the required goals and prioritize the content first principle.

The hardware capabilities of devices have many benefits to users. The interaction

which works in one device may be irrelevant on another. In desktops and laptops, the

interaction can be done with a mouse and a keyboard. For example the mouse pointer

can be used to navigate through website links. Similarly by using keyboard short cut

key, it is easy to navigate or interact with web page. However, this interactivity cannot

be applied for finger touch screen devices.

The browser compatibility will be another challenge for a developer. In the webpage

market there have been many available browsers with many versions. There are still

users who stick to one browser without updating a newer one. The older versions of

browsers does not support the latest web technology such as CSS, Media queries,

HTML5 or even JavaScript. The responsive design may not work for older browsers.

Each platform has its own browser which is unique to it. For example Safari is used as

default browser in iOS devices while Internet Explorer is used for Windows Phones.

The capabilities in Safari browsers can differ from the Internet Explorer. This means

certain features might not be supported by all browsers. This should be taken into con-

sideration while developing a responsive webpage. Customization is often a solution to

deal with different browser capabilities, which will help to customize a webpage based

on the browser used.

38

6 Conclusion

The thesis project was initiated as a study on how to design a responsive web page,

what the main elements in responsive designs are, what the design paradigms are for

the latest context and what the challenges and solutions for web pages are. As a result,

the goal was achieved and the web page prototype was designed to test the output

result of the study.

The Responsive web design principle is one of the new trends for the World Wide Web.

It has many benefits and opportunities to provide appropriate solutions to present-day

web pages. The adaptability of web pages to various sizes of devices with a respective

screen resolution would have benefits such as easy maintenance, low cost and less

work load. However this approach has also many challenges. Designing the web pages

from mobile devices to big screen desktop computers creates problems for developers.

The content strategy, mobile first design, interactivity of various devices in the market

and performance of web pages can lead to poor user experience. Considering this fact

beforehand and applying the best practices as a solution will provide better user ex-

perience.

Responsive design is an emerging field that is growing rapidly and it requires study for

a better solution of responsive design principles. As a result of this study, the overall

outcome was positive. The prototype was created from scratch for learning purposes

however it can be implemented using a CSS framework such as Bootstrap, Foundation

3, Skeleton or 960 gird systems. The use of CSS framework can help fast development

by reusing the code provided for the common structure. The simple approach of de-

signing the solution in the initial phase can open the path of complex and better solu-

tions of the future. Following the trends and using a new technology will always create

new opportunities and challenges.

39

References

1 Greg Sterling Report. 60 Percent of Internet Access Is Mostly [online]. Mobile
Marketing Land; 19 February 2014.
URL:http://marketingland.com/outside-us-60-percent-internet-access-mostly-
mobile-74498. Accessed 15July 2014.

2 Ethan Marcotte. Responsive Web Design [online]. A List Apart; 25 May 2010.
URL:http://alistapart.com/article/responsive-web-design. Accessed 17 July 2014.

3 Lisa Morton. Responsive Web Design- Why it Matters, Why You Need it
[online].DDSHOSTING, Website Design News; 21August2014.
URL:http://www.ddshosting.com/responsive-web-design-matters-need/. Ac-
cessed 26 August2014.

4 Ethan Marcotte. Responsive Web Design. New York,U.S.A , A Book Apart; 2011.

5 Media Queries, W3CRecommendation [online]. W3C; 19June 2012.
URL:http://www.w3.org/TR/css3-mediaqueries/. Accessed 5August2014.

6 HTML5, W3C Recommendation [online]. W3C; 28 October 2014 URL:
http://www.w3.org/TR/html5/. Accessed 2November 2014.

7 HTML5 Differences from HTML4, W3C Recommendation [online].W3C; 18th
September 2014. URL: http://www.w3.org/TR/html5-diff/. Accessed
20September 2014.

8 Selector Level 3, W3C Recommendation [online].W3C; 29 September 2011.
URL: http://www.w3.org/TR/css3-selectors/Accessed 25September, 2014.

9 CSS Syntax,CSS [online].W3schools; 1999-2014.
URL: http://www.w3schools.com/css/css_syntax.asp. Accessed 27September
2014.

10 Simon Willison. A re-introduction to JavaScript [online].Mozilla Developer Net-
work;October 2014.
URL: https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-
introduction_to_JavaScript. Accessed 2 October 2014.

11 Luke Wroblewski.MobileFirst. New York, U.S.A, A Book Apart;2011

12 Internet usage comparison [online]. StatCounterGlobalStats; 8October 2014.
URL: http://gs.statcounter.com/#all-comparison-ww-monthly-201308-201408.
Accessed 8October 2014.

13 Mobile device market to reach 2.6 billion units by 2016 [online]. Canalys; 22 Feb-
ruary 2013.
URL: http://www.canalys.com/newsroom/mobile-device-market-reach-26-billion-
units-2016. Accessed 8October 2014

40

14 Stephen Hay. There is no Mobile Web [online]. The Haystack; 7January 2011.
URL: http://www.the-haystack.com/2011/01/07/there-is-no-mobile-web/.
Accessed 10 October, 2014

15 Rachel Lovinger. Content Strategy:The Philosophy of Data [online]. Boxes and
Arrows; 27March 2007.
URL: http://boxesandarrows.com/content-strategy-the-philosophy-of-data/.
Accessed 11 October 2014

16 Jake Brutlag. Speed Matters [online]. Google Research Blog; 23 June 2009.
URL: http://googleresearch.blogspot.fi/2009/06/speed-matters.html .Accessed 12
October, 2014

17 Steve Sounders. High Performance Web Sites. First Edition, O’Reilly Media,Inc.;
September 2007.

18 URLs Analyzed, HTTP Archive-Trends [online].
URL:http://httparchive.org/trends.php?s=All&minlabel=Nov+1+2012&maxlabel=N
ov+1+2014#numurls. Accessed 2 November 2014.

19 IIyaGrigorik. Optimizing Content Efficiency, Optimizing Performance
[online].Google Developers.
URL: https://developers.google.com/web/fundamentals/performance/optimizing-
content-efficiency/. Accessed 14October 2014.

20 Pete LePage. Images in Markup, Web Fundamentals [online].Google Develop-
ers; 30 September, 2014.
URL: https://developers.google.com/web/fundamentals/media/images/images-in-
markup. Accessed 16 October 2014.

21 IlyaGrigorik. Adding Interactivity with JavaScript, Critical Renderign path [online].
Web Fundamentals [online].Google Developers; 18 September2014.
URL: https://developers.google.com/web/fundamentals/media/images/images-in-
markup. Accessed 18 October 2014.

22 Kalid Azad, How to Optimize Your Site with HTTP Caching [online].
URL: http://betterexplained.com/articles/how-to-optimize-your-site-with-http-
caching/. Accessed 20 October 2014.

23 Increase Application Performance with HTTP Cache Headers
[online].Herokudevcentre, 18 September 2014.
URL: https://devcenter.heroku.com/articles/increasing-application-performance-
with-http-cache-headers. Accessed 22October 2014.

Appendix 1

1 (5)

Appendix 1. CSS style sheet used for presentation of web page

/* CSS style sheet*/

* {

 padding: 0;

 margin: 0;

 -webkit-box-sizing: border-box;

 -moz-box-sizing: border-box;

 box-sizing: border-box;

}

body {

 background-color:#EFEFEF;

 margin:0;

 padding:0;

}

#wrapper {

 margin:0 5% 1% 5%;

 background-color:#FFF;

 box-shadow: 1.5px 1.5px 5px 1.8px #888;

 overflow:hidden;

}

header {

 width:100%;

 height:auto;

 overflow:hidden;

 box-shadow: 1.5px 1.5px 5px 0.8px #888;

}

header h1 {

 text-align: center;

 color:#00B4D8;

 padding:1%;

}

header nav {

 overflow:hidden;

 float:right;

 padding:0.7%;

 width:40%;

 background:#444;

 margin-right:5%;

 margin-bottom:2%;

 margin-right:5%;

 -webkit-border-radius: 12px;

 -moz-border-radius: 12px;

 border-radius: 12px;

}

header nav ul {

 list-style: none;

 overflow:hidden;

}

header nav li a {

 float:left;

 color:#00B4D8;

Appendix 1

2 (5)

 display:inline-block;

 font: 400 17px/1.4 'Cutive', Helvetica, Verdana,

Arial, sans-serif;

 padding: 3px;

 text-align: center;

 text-decoration: none;

 width: 25%;

 -webkit-border-radius: 15px;

 -moz-border-radius: 15px;

 border-radius: 15px;

 /*TRANSISTIONS of hover effect*/

 -webkit-transition: background 0.5s ease;

 -moz-transition: background 0.5s ease;

 -o-transition: background 0.5s ease;

 -ms-transition: background 0.5s ease;

 transition: background 0.5s ease;

}

/*HOVER*/

header nav li a:hover {

 background:#EFEFEF;

}

/*BORDER FIX*/

/*

.fixed and .default for flauting the navigation bar

*/

.fixed {

 position: fixed;

 top: -5px;

}

.default {

 overflow:hidden;

 float:right;

 padding:0.7%;

 width:60%;

 background:#444;

 margin-right:5%;

 margin-bottom:2%;

 margin-right:5%;

 -webkit-border-radius: 12px;

 -moz-border-radius: 12px;

 border-radius: 12px;

}

#wrapper aside {

 margin:1%;

 float:left;

 width:40%;

 box-shadow:0px 0px 3px 1px #888;

 -webkit-border-radius: 10px;

 -moz-border-radius: 10px;

 border-radius: 10px;

 padding:2%;

Appendix 1

3 (5)

 min-height:10px;

}

#wrapper aside nav ul {

 list-style: none;

}

#wrapper aside nav ul li a {

 color:#0076AE;

 display:inline-block;

 font: 600 15px/1.4 'Cutive', Helvetica, Verdana,

Arial, sans-serif;

 padding:3%;

 text-decoration: none;

 width:80%;

 -webkit-border-radius: 15px;

 -moz-border-radius: 15px;

 border-radius: 15px;

 /*TRANSISTIONS of hover effect*/

 -webkit-transition: background 0.5s ease;

 -moz-transition: background 0.5s ease;

 -o-transition: background 0.5s ease;

 -ms-transition: background 0.5s ease;

 transition: background 0.5s ease;

}

#wrapper nav li a:hover {

 background:#EFEFEF;

}

#wrapper section {

 margin:1%;

 float:right;

 width:56%;

 box-shadow:0px 0px 3px 1px #888;

 -webkit-border-radius: 10px;

 -moz-border-radius: 10px;

 border-radius: 10px;

 padding:2%;

 min-height:100px;

}

#wrapper section article {

 padding:10px;

 margin:0 0 10px 0;

}

#wrapper section article h1 {

 margin-bottom:5px;

}

footer {

 clear:both;

 min-height: 20px;

 background-color: white;

 padding: 20px;

 box-shadow: 1.5px 1.5px 5px 0.8px #888;

 overflow:hidden;

 width:100%;

}

Appendix 1

4 (5)

footer h5 {

 text-align:center;

 color:#00B4D8;

}

#geolocation {

 float:right;

}

/*#main article button,#msg,#lat,#long{

 float:right;

}*/

button, input[type="button"] {

 display: inline-block;

 outline: none;

 cursor: pointer;

 text-align: center;

 text-decoration: none;

 font: 13px/100% Arial, Helvetica, sans-serif;

 padding: .4em 2em .5em;

 text-shadow: 0 1px 1px rgba(0, 0, 0, .3);

 -webkit-border-radius: .5em;

 -moz-border-radius: .5em;

 border-radius: .5em;

 -webkit-box-shadow: 0 1px 2px rgba(0, 0, 0, .2);

 -moz-box-shadow: 0 1px 2px rgba(0, 0, 0, .2);

 box-shadow: 0 1px 2px rgba(0, 0, 0, .2);

}

button:hover {

 text-decoration: none;

}

button:active {

 position: relative;

 top: 1px;

}

input[type="text"] {

 display: inline-block;

 outline: none;

 cursor: pointer;

 text-decoration: none;

 text-shadow: 0 1px 1px rgba(0, 0, 0, .3);

 -webkit-border-radius: .5em;

 -moz-border-radius: .5em;

 border-radius: .5em;

 -webkit-box-shadow: 0 1px 2px rgba(0, 0, 0, .2);

 -moz-box-shadow: 0 1px 2px rgba(0, 0, 0, .2);

 box-shadow: 0 1px 2px rgba(0, 0, 0, .2);

}

input:focus {

 outline:none;

 border-color:#CACACA;

}

.video-wrapper {

Appendix 1

5 (5)

 max-width: 100%;

}

.video-container {

 position: relative;

 padding-bottom: 56.25%;

 padding-top: 30px;

 height: 0;

 overflow: hidden;

 margin-bottom:1%;

}

.video-container iframe, .video-container object, .video-

container embed {

 position: absolute;

 top: 0;

 left: 0;

 width: 100%;

 height: 100%;

}

#maincontact article {

 float:left;

 width:50%;

}

#getintouch {

 padding:20px;

 border:1px solid #ccc;

 -moz-border-radius: 10px;

 -webkit-border-radius: 10px;

 -khtml-border-radius: 10px;

 border-radius: 10px;

}

#getintouch legend, h2 {

 font-family : Arial, sans-serif;

 font-size: 1.3em;

 font-weight:bold;

 color:#333;

}

#getintouch p {

 color:#525252

}

#getintouch h1 {

 color:#573143;

}

#technology {

 color:#900;

 font-weight:bold;

}

#feature {

 color:#008C8C;

 font-weight:bold;

}

Appendix 2

1 (1)

Appendix 2. CSS media query used for media screen conditions

/* CSS MEDIA QUERIES*/

@media only screen and (min-width :0px) and (max-width:600px) {

 #wrapper {

 margin:0%;

}

 #wrapper h1 {

 font-size:20px;

}

 #wrapper aside {

 width:99%;

}

 #wrapper section {

 width:99%;

}

 #wrapper section article {

 padding:0px;

 margin:0px;

}

 footer h5 {

 font-size:12px;

}

}

 @media only screen and (min-width :600px) and (max-

width:1024px) {

 #wrapper {

 margin:0%;

}

 #wrapper h1 {

 font-size:23px;

}

 #wrapper aside {

 margin:1%;

 padding:1%;

}

}

