
	

	

Yang Fan

MOBILE FOOD ORDERING

APPLICATION

Technology and Communication

2014

	
 	
 1(1)	

Keywords Struts 2, Spring, JPA, MySql, Servlet/JSP, Android, Mobile

Food Ordering Application

	

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Fan Yang
Title Mobile Food Ordering Application
Year 2014
Language English
Pages 82
Name of Supervisor Dr. Ghodrat Moghadampour

The purpose of this thesis was to build a food ordering client server application
for Tom Yum Thai Oy, which is a Thai restaurant in Vaasa.

For the customer, this application provides a view of current food information
(category, name, image，price, description etc.) on the website and Android
application. The customer can order food from these two platforms. For the
administrator in restaurant, this application offers a series of operations to add,
update, delete and query the information of food, food order and employees.

The application includes three parts: Background Management Platform, Website
Foreground Public Page and Android Application. The Background Management
Platform was implemented with S2SJ, a combination of Struts 2 framework,
Spring framework and JPA framework. Servlet and JSP were used in the Website
Foreground Public Page. The Android Application is obviously based on Android
framework.

So far, all core functions were developed successfully and the progress of the
project was most rewarding and generated an excellent experience in
programming.

	
 	
 1(82)	

	

ACKNOWLEDGEMENTS

Firstly I would like to give a big appreciation to my supervisor Dr. Ghodrat

Moghadampour, for his patient guidance and support during conducting the whole

thesis.

Moreover, I would like to give my gratitude to other teachers, especially Gao

Chao, Antti Virtanen and Santiago Chavez Vega for the quality education. Finally

I also need thank all the people whose names are not mentioned here for their help

on study and life.

Vaasa, Finland, 2013/4/12

Fan Yang

	
 	
 2(82)	

	

CONTENTS

1	
 INTRODUCTION ... 6	

2	
 Technology overview .. 7	

2.1	
 Struts 2 Framework .. 7	

2.2	
 Spring Framework .. 10	

2.3	
 JPA Framework .. 12	

2.4	
 Android Framework ... 12	

3	
 Application Description .. 15	

3.1	
 Functional Description ... 16	

3.1.1 Background .. 16	

3.1.2 Website Foreground Public Page ... 22	

3.1.3 Android Application ... 24	

3.2	
 Class Hierarchy .. 26	

3.2.1 Background Management Platform ... 26	

3.2.2 Website Foreground Public Page and Android Application 32	

3.3	
 Sequence Diagram ... 37	

3.3.1	
 Background Management Platform .. 37	

3.3.2	
 Website Foreground Public Page and Android Application 42	

4	
 DATABASE AND GUI DESIGN .. 44	

4.1	
 Database Design ... 44	

	
 	
 3(82)	

	

4.2	
 GUI Design .. 51	

4.2.1 Background Management Platform ... 51	

4.2.2 Website Foreground Public Page ... 57	

4.2.3 Android Application ... 59	

5	
 IMPLEMENTATION ... 64	

5.1	
 Adding Food in Background Management Platform 64	

5.2	
 Display Food Information in Website Public Page 65	

5.3	
 Order Food in Website Public Page ... 66	

5.4	
 Display Food Information in Android Application 68	

5.5	
 Order Food In Android Application ... 71	

6	
 TESTING .. 75	

7	
 CONCLUSIONS ... 79	

REFERENCES .. 82	

APPENDICES

	
 	
 4(82)	

	

LIST OF FIGURES AND TABLES

Figure 1. Struts 2 request processing/2/ p.7
Figure 2. Struts 2 Architecture/2/ p.8
Figure 3. Spring Framework Architecture /3/ p.10
Figure 4. Android Architecture p.13
Figure 5. Use Case diagram for administrator p.16
Figure 6. Order state changing flow p.21
Figure 7. Use case diagram for customer p.22
Figure 8. Use case diagram for customer in Android Application p.24
Figure 9. Order Module Controller Structure p.26
Figure 10. Employee Module Controller Structure p.28
Figure 11. Product Module Controller Structure p.29
Figure 12. Module Structure p.31
Figure 13. Controller structure in Website Foreground Public
Page

p.32

Figure 14. Controller structure in Android Application p.35
Figure 15. Module structure p.36
Figure 16. Background Management Platform Login p.38
Figure 17. Product Category Management p.39
Figure 18. Product Information Management p.40
Figure 19. Order Management p.42
Figure 20. Customer Purchase sequence diagram p.43
Figure 21. Entity Relationship Diagram p.50
Figure 22. Login page p.51
Figure 23. Management main page p.52
Figure 24. Category List View Page p.53
Figure 25. Category Adding page p.53
Figure 26. Product List View page p.54
Figure 27. Add Product page p.54
Figure 28. Product Style page p.55
Figure 29. Order List View page p.55
Figure 30. Order Detail Display View page p.56
Figure 31. Dishes Display page p.57
Figure 32. Customer Login page p.57
Figure 33. Shopping Cart page p.58
Figure 34. Launch Window p.59
Figure 35. Register Window p.60
Figure 36. Dishes Display Main Window p.60
Figure 37. Dish Detail Information Window p.61
Figure 38. Shopping Cart Window p.62
Figure 39. Dish Modify Window p.62
Figure 40. Order Confirmation Window p.63

Table 1. Users Class Entity p.44
Table 2. OrderFoods Class Entity p.45

	
 	
 5(82)	

	

Table 3. Order Class Entity p.45

Table 4. Employee Class Entity

p.46

Table 5. IDCard Class Entity p.47
Table 6. ProductInfo Class Entity p.48
Table 7. ProductType Class Entity p.49
Table 8. ProductStyle Class Entity p.49
Table 9. The application-testing table part 1 p.75
Table 10. The application-testing table part 2 p.77
Table 11. The application-testing table part 3 p.78

	
 	
 6(82)	

	

1 INTRODUCTION

With the rapid development of information technology, web application and

Android application have been increasing in recent years. Compared with the

desktop application, the advantages of web application for users are:

- No need to install and update

- Easily visit through browsers

The advantage of the Android application:

- Mobile application is convenient to carry

- Global partnerships and large install base

- Powerful development framework

- Open marketplace for distributing apps

Based on the advantages of both applications, I motivated myself to develop a

combination project between web and Android application.

Tom Yum Thai Restaurant in Vaasa sells Chinese and Thai food. Due to the

cheaper prices and delicious food, more and more people select to eat in this

restaurant. Meanwhile, with the number of customers increasing, the new problem

occurs. Because the space of the restaurant is limited, the restaurant can only seat

a certain number of customers at the time, therefore, the full customer resource

cannot be utilized.

Mobile Food Ordering Application is the key to solve this problem. Using this

application, the customers need not go to the restaurant by themselves, but they

can order the dishes through computers and Android mobiles anywhere.

The Background Management platform in this application was designed for the

administrator. The Administrator will be able to manage food dishes, dish orders

and company employees here.

	
 	
 7(82)	

	

2 TECHNOLOGY OVERVIEW

The administrator part was developed with struts2 framework, spring framework

and JPA framework, while the display part of website for customers is

implemented with servlet/JSP. MySql was chosen as a database for the project.

The Android part was developed with the Android framework. Following the core

frameworks will be generally introduced in this application.

2.1 Struts 2 Framework

“Apache Struts 2 is an elegant, extensible framework for creating enterprise-ready

Java web applications.” /1/

Struts 2, the next generation product of Struts, is the new framework merged

based on Struts 1 framework technology and WebWork framework technology.

The core of Struts 2 is WebWork. /1/

Figure 1. Struts 2 request processing/2/

	
 	
 8(82)	

	

As shown in Figure 1, it illustrates the Request Lifecycle in Struts2 applications.

When the FilterDispatcher in the server receives the request sent from the user, it

will determine the appropriate Action. As the same time, interceptors configured

for applying the common functions, such as validation and file upload are applied

to the Request. Then the action method executes the related operations and the

Result renders the output. Then the request returns through the interceptor in the

reverse order. Finally the control returned in the servlet container will send the

output to the user browser. /2/

The Struts 2 allows us to define exception handlers and inceptors. Using the

exception handler, we can define the exception-handling procedure on global and

local basis. When the framework catches the exception, it will display the

exception details information on the page. The inceptors configured to apply the

functionalities, such as workflow, validation etc. are used to specify the

“request-processing lifecycle” for an action. /2/

Figure 2. Struts 2 Architecture/2/

	
 	
 9(82)	

	

Figure 2 depicts the architecture of Structs 2 Framework. It also shows the initial

request going to the servlet container, such as tomcat, which is then passed

through the standard filter chain. The filter chain includes: Action

ContextCleanUp filter, FilerDispatcher and ActionProxy. /2/

! Action ContextCleanUp filter:

This filter is optional and useful when integration has to be done with other

technologies. /2/

! FilterDispatcher:

The FilterDispatcher uses the ActionMapper to determine whether to invoke an

Action or not when it is called. If the action needs to be invoked, the

FilterDispatcher delegates the control to the ActionProxy. /2/

! ActionProxy:

The ActionProxy takes help from the Configuration Files manager initialized from

the struts.xml. Then the ActionProxy creates an ActionInvocation. The

ActionInvocation process invokes the Interceptors (if configured) and the action.

The ActionInvocation looks for a proper result. Then the result that involves the

rendering of JSP or templates is executed. /2/

The Interceptors are executed again in the reverse order. Finally the response

returns through the filters configured in the web.xml file. The ThreadLocal

ActionContext will not be cleaned if the ActionContectCleanUp filter is

configured, otherwise. /2/

	
 	
 10(82)	

	

2.2 Spring Framework

This section gives details about all the modules available in Spring Framework.

About 20 modules, which can be used based on an application requirement, are

provided in the Spring Framework.

Figure 3. Spring Framework Architecture /3/

The main layers seen in Figure 3 will be described below.

! Core Container:

The Bean module provides BeanFactory. The Core module provides the

functional parts of framework, including the IoC and Dependency Injection

features. The Context module builds on the solid base provided by the Core

and Beans module and it is a medium to access any objects defined and

configured. The ApplicationContext interface is the focal point of the Context

	
 	
 11(82)	

	

module. The Express Language module provides a powerful expression

language for querying and manipulating an object graph at runtime. /3/

! Data Access/Integration:

The JDBC module provides a JDBC-abstraction layer that removes the need

to do tedious JDBC related coding. The ORM module provides integration

layers for popular object-relational mapping APIs, including JPA, JDO,

Hibernate, and iBatis. The OXM module provides an abstraction layer that

supports Object/XML mapping implementations for JAXB, Castor,

XMLBeans, JiBX and XStream. The JMS module contains features for

producing and consuming messages. The Transaction module supports

programmatic and declarative transaction management for classes that

implement special interfaces and for all your POJOs. /3/

! Web:

The Web module provides basic web-oriented integration features such as

multipart file-upload functionality and the initialization of the IoC container

using servlet listeners and a web-oriented application context. The

Web-Servlet module contains Spring’s module-view-controller (MVC)

implementation for web applications. The Web-Struts module contains the

support classes for integrating a classic Struts web tier within a Spring

application. The Web-Portlet module provides the MVC implementation to

be used in a portlet environment and mirrors the functionality of Web-Servlet

module. /3/

! Miscellaneous:

The AOP module provides an aspect-oriented programming implementation

allowing the definition of method-interceptors and pointcuts to cleanly

decouple a code that implements functionality that should be separated. The

Aspects module provides integration with AspectJ that is again a powerful

and mature aspect oriented programming (AOP) framework. The

Instrumentation module provides class instrumentation support and class

	
 	
 12(82)	

	

loader implementation to be used in certain application servers. The Test

module supports the testing of Spring components with JUnit or TestNG

frameworks. /3/

2.3 JPA Framework

“The Java Persistence API, sometimes referred to as JPA, is a Java programming

language application programming interface specification which describes the

management of relational data in application using Java Platform, Standard

edition and Java Platform, Enterprise Edition.” /4/

Persistence in this context covers three areas: /4/

1. the API itself, defines in the javax.persistence package

2. the Java Persistence Query Language (JPQL)

3. object/relational metadata

2.4 Android Framework

Android is known as a mobile operating system based on the Linux Kernel. It is

mainly designed for touchscreen mobile devices such as smartphone and table

computers. Meanwhile, the Android operating system is widely used in televisions,

games consoles, digital cameras and other electronics because of its open and

customizable features. Android was developed initially by Android, Inc. and

bought by Google in 2005. /5/

The source code for Android is available under free and open-source software

licenses. It means that the device manufactures, wireless carriers and enthusiast

developers can freely modify and distribute the software. Most Android devices

ship with a combination of open source and proprietary. /5/

Today, Android has become the most popular mobile OS, and is the leader in

smartphone market in the world. More and more customers select mobile phones

	
 	
 13(82)	

	

with the Android operating system as their first choice. Meanwhile, mounts of

programmers throw themselves into the Android application development camp.

The major features of Android architecture are shown as shown in Figure 4 below.

Figure 4. Android Architecture/5/

! Linux Kernel

At the bottom of the layers is Linux Kernel. It provides a basic system

functionality, such as memory management, device management etc. Also, it

handles the things that Linux is good at such as networking.

	
 	
 14(82)	

	

! Libraries

On top of Linux Kernel is a set of libraries including open-source Web browser

engine WebKit, SQLite database, libraries to play and record audio and video,

SSL libraries and so on.

! Android Runtime

This section provides a key component called Dalvik Virtual Machine that is a

kind of Java Virtual Machine designed for Android. The Android runtime also

offers a set of core libraries: it enables developers to develop Android applications

using the standard Java programming language.

! Application Framework

The Application Framework layer provides many higher-level services to

applications in the form of Java classes. Application developers are allowed to

make use of these services in their applications.

! Applications

All the Android applications will be found at the top layer. The application written

by the developer will be installed on this layer only.

	
 	
 15(82)	

	

3 APPLICATION DESCRIPTION

There are certain requirements the proposed application must fulfil to meet the

objectives of the project.

The requirements to be achieved:

In Background Management Platform:

! Administrator can add and modify food categories.

! Administrator can add, modify and query food information.

! Administrator can add, modify and query employee information.

! Administrator can manage orders produced from the web application and

Android application.

In the Website Public Page and Android Application:

! Customer can view food information, such as category, name, price, image,

description and so on.

! Customer can order food.

! Customer can modify food item, food amount in Shopping Cart.

! Produce food order.

The requirements that should be achieved:

! The project supports internationalization, customer can select different

language environments according to their real requirements.

The requirements nice to be achieved:

! Permission Management in Background Management Platform

! Query Dish Function in Website Public Page

	
 	
 16(82)	

	

3.1 Functional Description

Destine Food System is divided into two parts in terms of roles, the background

for the administrator, the website foreground public pages and the Android

application for user. Functions corresponding to each role will be introduced in

detail in the following.

3.1.1 Background Management Platform

Figure 5 is a use case diagram to illustrate the main functions in the background

for the administrator. The detailed description of functions is as follows:

Figure 5. Use Case diagram for administrator

	
 	
 17(82)	

	

Log In/Out

Properties:

" Username

" Password

When the administrator connects the background management platform url, a log

in interface will be displayed. The administrator needs to input correct username

and password to log into the main page of the background management page. One

admin username and password is pre-set when the application is initialized.

Add Food Category

Properties:

" Category Name

" Note

When the administrator clicks “Category Manage”, a list view of dish category

will be displayed. On the bottom of the list view page, there are two buttons:

“Add Category” and “Query”. While clicking the “Add Category” button, the

page will be linked to a dish-adding interface, the administrator can add a new

dish category here.

Query Food Category

Properties:

" Category Name

Also, clicking the “Query” Button, a dish category query interface will be

displayed, here the administrator can query current existing dish category

according to the category name.

Modify Food Category

	
 	
 18(82)	

	

Properties:

" Category Name

" Note

In addition, in the category list view page, the administrator can modify the

existing dish category by clicking “Modify” button.

Add Food Info

Properties:

" Product Name

" Product Category

" Market Price

" Sell Price

" Product Code

" Product Style Image

" Product Description

When the administrator wants to add dishes, “Product Manage” just needs to be

clicked; the right frame page will jump to a list view page of dishes. On the page,

the detailed information of existing dishes will be shown, such as Product Code,

Product Name, Category Belong, Sell Price, the state of sale, etc.

Modify Food Info

Properties:

" Product Name

" Product Category

	
 	
 19(82)	

	

" Market Price

" Sell Price

" Product Code

" Product Style Image

" Product Description

The administrator can modify food information by clicking “Modify“ button.

Query Food Info

Properties:

" Product Name

" Product Category

" Sell Price

" Product Code

The administrator can query food information according to different conditions

above.

Sale/Stop to sale

In addition, this project provides “On Sale” and “Stop Sale” functions. Using

these functions, the administrator can manage the state of dish sale.

Add Employee Info

Properties:

" Login Account

" Login Password

	
 	
 20(82)	

	

" Repeat Password

" Employee Name

" Employee Photo

" Id Number

" Birthday

" Address

" Telephone

" Email (optional)

" Degree (optional)

" School (optional)

In the Employee Management module, the administrator can view the information

of existing employees in the company by clicking “Employee Manage”. The

functions of “Add“ and “Modify employee“ are also provided in the project. The

employee accounts added can be used to log in this background management

platform. In addition, according to the real request, when an employee leaves the

company, the administrator can mark leave for this employee using “Mark Leave”

function, it means that the employee account will be invalid to log in the

background management platform.

Query Employee Info

Properties:

" User Name

" Real Name

	
 	
 21(82)	

	

By clicking the “Employee Query” link, the administrator can query company

employees by the user name (log in account) or the employee’s real name.

Change Order States

Figure 6 is a use case diagram for the order flow to illustrate the flow of order

state. When the customer purchases the dishes no matter what platform they are in

(website or Android application). The order of dishes will be produced and

showed in the background management platform.

Figure 6. Order state changing flow

The dish order is divided into five states: Unexamined, Wait Deliver, Delivered,

Received and Cancelled. The default state of produced order is Unexamined, the

administrator can load the order to check the detailed information, for example,

dish items, amount, price and customer information. After checking the

Unexamined order, the administrator can decide to change the state of order, if the

order is examined, the order state is changed to Wait Deliver, otherwise, the state

is changed to Cancelled. As the simpler flow, the order state goes through

Delivered, till Received. When order in Unexamined, Wait Deliver, Delivered,

	
 	
 22(82)	

	

Received state, it can be cancelled, once the dish is delivered, the order cannot be

cancelled. In the Order Manage module, this project provides five order state links,

“Order Unexamined”, “Order Wait Deliver”, “Order Delivered”, “Order

Received”, “Order Cancelled”. In each link, there are the orders of related state. In

addition, the “Order Query” link is used to query the order according to Order

Code Or Buyer Name.

3.1.2 Website Foreground Public Page

Figure 7 shows the core functions provided for customers in this application.

Figure 7. Use case diagram for customer

Register

When the customer wants to purchase dishes on the website, first, he needs to

register an account by clicking “Register” button to enter the register page, and

then just filling in User Name, Password and Repeat Password. If the customer

	
 	
 23(82)	

	

register is successful, a page will display to inform the customer, also if there is a

register fault, such as the User Name already exists, a friendly warning message

will be given on the register page. Note that in the register form, there is a

validation function written by JavaScript to validate whether the information filled

by the customer is valid or not. Only if all information is valid, the operation of

register will be successful.

Log In

After registering, the customer can log in with the correct User Name and

Password to the website to purchase the dishes.

View Dishes

To click “Online Order” tab, the customer can view the current dishes according

to different categories. Every dish item has two buttons: Order and Detail. The

customer can click the “Detail” Button to view the detailed information (big

image, material of dish, price, etc.) of dishes. By clicking “Order” Button, the dish

item you select will be added to the shopping cart.

Shopping Cart

The dish items purchased by the customer will be added to the shopping cart. The

customer can view the dish items he/she purchases, unit price, dish amount and

total price. The default amount for each dish item is one, the customer can update

the amount according to his own requirement. After modifying the amount,

customer needs to click “Update” button to update the dish amount. Also, if the

customer needs to delete some dish item, it is easily implemented by clicking

“Delete” Button following each dish item. On this Shopping Cart page, three

buttons (“Clear Cart”, “Continue to Buy”, “Produce Order”) are shown. “Clear

Cart” button means that the customer can delete all dish items in the shopping cart.

To click “Continue to Buy” button, the page will be linked to dishes display page,

the customer can continue shopping. By Clicking “Produce Order” Button, the

application will produce an order for dish items purchased by the customer, the

order produced will shown in background management platform. At the same

	
 	
 24(82)	

	

time, the remainder of the page will display to inform the customer. This is the

entire purchasing process for the customer to order dish on the website platform.

3.1.3 Android Application

The Android application also provides the similar functions to those on website

foreground public page.

Figure 8. Use case diagram for customer in Android Application

Register

Compared with the website foreground public pages, the customer must register

an account first to view the information of dishes. When the customer launches

the Destine Food Client application on an Android mobile, a pop-up window will

display. The customer needs click the “Register” Button for the first time to use

this application. After clicking, the customer will see the Register window, then

he needs to fill in a valid username and password to finish the registering task.

	
 	
 25(82)	

	

When the customer’s registering is successful, the window will jump back to the

log in window automatically.

Log In

When the customer has a valid account, just fill the username and password in

related fields, then “Enter” Button is clicked, and the dishes display window will

be shown. At the same time, if the customer wants to enjoy the music while

ordering dishes, the music play button is given.

View Dishes

In the dishes display window, there are three tab views for three different dish

categories. Each tab view contains the corresponding dishes. The customer can

view the dish information via clicking the tab views. To click some dish item, the

optional menu will come out, and the customer can view the details of dish or add

the dish to the shopping cart.

Shopping Cart

Once the customer clicks the “Add to Cart” button, the pop-up window of dish

amount will appear, in this window, the customer needs to fill in the integer

number and click “Order” button to confirm. Now the customer should go to the

shopping cart window. The dish items the customer ordered will be shown as a

list view here. The application will calculate the sub price and total price

automatically. If the customer wants to delete some dish item or modify the dish

amount, clicking anywhere of the dish item row will produce a pop-up window to

display to let the customer do related operations. In addition, the customer also

can clear the shopping cart, continue to purchase dishes and confirm the order

similarly to the operations on the website. Also, the produced order will be shown

in the background management platform.

	
 	
 26(82)	

	

3.2 Class Hierarchy

3.2.1 Background Management Platform

The Background Management Platform part is architected with Struts2 framework,

Spring framework and JPA framework, and it makes use of classical concept

known as MVC, short for model, view and controller. This inside structure will be

analysed in detail in the following.

3.2.1.1 Controller Class Diagram

Order Module:

As Figure 9 shows, the administrator can change the state of dish order by using

these methods.

Figure 9. Order Module Controller Structure

! execute():

	
 	
 27(82)	

	

 Implement this method to jump to a JSP page.

! cancleOrder():

 Cancel the dish order.

! confirmOrder():

 Change order state from “Unexamined” to “Wait Deliver”

! turnDelivered();

 Change order state from “Wait Deliver” to “Delivered”

! turnReceived():

 Change order state from “Delivered” to “Received”

Employee Module:

The administrator can make a series of operations shown in Figure 10 regarding

employees. Also, employees can use their own function given in the system, such

as log in, log out and so on.

	
 	
 28(82)	

	

Figure 10. Employee Module Controller Structure

! execute():

 Implement this method to jump to a JSP page.

! editEmployee():

 Modify the current existing employee information.

! editEmployeeUI():

 Jump to modify employee information page.

! exist():

 Measure whether the employee account exists or not when registering.

! leave():

	
 	
 29(82)	

	

 Mark an employee in leave situation when an employee leaves company.

! query():

Query an employee according to the account name or employee’s real name.

! regEmployee():

 Employee registers.

! regEmployeeUI():

 Jump to employee register page.

Product Module:

In the product module, the administrator can control the related operations for

dishes.

Figure 11. Product Module Controller Structure

	
 	
 30(82)	

	

! execute():

 Implement this method to jump to a JSP page.

! disable():

 Stop to sale some dish.

! add():

 Add dishes.

! edit():

 Edit current existing dish.

! editUI():

 Jump to edit dish page.

! queryUI():

 Jump to query dish UI

! selectUI():

 Select dish category for dish when adding a dish.

! visible():

 Start to sell a dish corresponding to stop to sale some dishes

3.2.1.2 View Class Diagram

The view layer mainly takes in charge of JSP display pages in the foreground.

	
 	
 31(82)	

	

3.2.1.3 Model Class Diagram

These POJO classes in the diagram in Figure 12 define their own entities in this

project meanwhile building a mapping with relative tables in the database.

Figure 12. Module Structure

As a consequence, each row of POJO attribute is relative to corresponding

attribute in tables (Object/Relatinal Mapping).

	
 	
 32(82)	

	

3.2.2 Website Foreground Public Page and Android Application

The Website Foreground Public Page part and the Android Application still make

use of MVC structure. Compared with the Background Management platform, the

technology used for the controller layer is a servlet.

3.2.2.1 Controller Class Diagram

Controller layer in Website Foreground Public page is servlet. The main methods

called by servlet are described below.

Figure 13. Controller structure in Website Foreground Public Page

	
 	
 33(82)	

	

! getAllFood2():

 Get all dishes information for displaying on the website public page.

! getAllFood2ByTypeId():

 According to type id, get all dishes belonging to some category.

! getFoodsTypeByTypeId():

Get all dish categories in order to display dishes according to different

categories.

! getFoodsStyleByProductId():

 According to dish id, find dish image.

! addCartInformation():

 Add dish amount and dish id to shopping cart.

! findOrderByOrderId():

 Find order by order id, return type is list.

! findOrderByOrderId2():

 Find order by order id, return type is OrderItem, an entity bean contains some

 properties of dish item.

! getFoodById():

 Get Food Entity according to food id.

! getFoodOrderByOrderId():

 Get food order according to order id.

! getFoodOrderByBuyerName():

	
 	
 34(82)	

	

 Find food order according to buyer’s name.

! getFoodsStyleImageNameByProductId():

 Fetch some dish image name according to dish id.

! Login():

 Customer logs in the website when purchasing dishes.

! addUser():

 Customer registers in to the website.

! getUserByName():

Query the user by name in order to validate whether the user name exists or

not.

Customers do operations in Android Application, application sends request with

data to server, and then servlet in server will handle data and response data to

android application. Therefore, in Android Application, the controller layer is still

servlet. Also, the main methods in servlet will be given as follow.

	
 	
 35(82)	

	

Figure 14. Controller structure in Android Application

! login():

 Customer logs in the Android application platform to purchase dishes.

! addUser():

 Customer registers in the Android application before purchasing dishes.

! addOrder():

 Insert customers deliver information to the database.

! getAllFood2():

 Return all dishes information from website.

! findOrderByOrderId():

 Get some order according to order id.

	
 	
 36(82)	

	

! addCartInformation():

 Insert customers’ order detailed dishes information to database.

3.2.2.2 View Class Diagram

The view layer on the Website Foreground Public Page still includes some JSP

page to display on the foreground public pages. In the Android Application, the

view layer mainly takes in charge of the layout xml files.

3.2.2.3 Model Class Diagram

Below is the module structure in Android Application. The entities in theses

POJO classes also build a mapping with relative table in the MySql database.

Figure 15. Module structure

	
 	
 37(82)	

	

Also, every POJO class is an entity bean containing some attributes, building a

mapping with relative tables in the database.

3.2 Sequence Diagram

The sequence diagram of main modules in Background Management Platform

shows here. Since Website Foreground Public Page and Android Application have

the same purchase sequence logic, so the purchase sequence in these both

platforms will be analysed in this chapter as well.

3.2.2 Background Management Platform

There are five main modules, such as Log In Module, Category Management

Module, Product Info Management Module, Employee Management Module and

Order Management Module. The sequence diagram will be given separately

below.

3.2.2.1 Log In

The administrator needs to login first before using the Background Management

Platform. An account username and password for the owner of company will be

pre-setted when the project is initialized.

	
 	
 38(82)	

	

Figure 16. Background Management Platform Login

The administrator fills in the username and password in the related fields and

presses the login button. If the login is successful, the url will direct to the

Background Management Platform main UI, otherwise, the user will be notified

with an error message.

3.2.2.2 Category Management

Application provides function to allow customers to view dishes according to

different categories. Therefore, administrator needs to add to categories first.

	
 	
 39(82)	

	

Figure 17. Product Category Management

To add dish to display on the website or Android, the administrator should add

dish categories first, in order that display dishes according to different categories.

1. Add Category:

In the Product Management, by clicking “Category Manage”, a list view page of

current existing dishes will be shown. By clicking “Add Category” button, the

right frame will jump to the category adding UI. Required data is filled in, then it

is confirmed, and a dish will be added successfully. At the same time, the right

frame will jump back to the category list view page, the new added dish will be

displayed on this page.

	
 	
 40(82)	

	

2. Modify Category:

On the category list view page, every category item provides a “Modify” button,

by using this button, the administrator can modify the existing dish information.

3. Query Category:

In addition, there is a “Query” button. This button can help the administrator to

query some dish category among lots of categories.

3.2.2.3 Product Info Management

After adding categories, administrator can add dishes belong to different

categories in Product Management module.

Figure 18. Product Information Management

	
 	
 41(82)	

	

In the Product Management, there is a similar logic to that in Product Category

Management, such as adding, modifying and querying. Therefore, no detailed

description is given here.

Stop or start selling

On the product list view page, there are two buttons: On Sale and Stop Sale. By

using these two button, the administrator can control the sale state of food dish in

order to display or remove a food dish on the website foreground public page or

the Android application.

3.2.2.4 Employee Management

The Employee Management also has a similar logic to that referred above. The

Mark Leave logic is also the same with the change sale state of food dishes. The

employee accounts added by the administrator are used to log in and make use of

the background management platform. Once the administrator marks an

employee's leave, the employee account will not log in and use this platform any

more.

3.2.2.5 Order Management

As mentioned in use case diagram for order flow, figure 19 demonstrates the

entire ordering progress.

	
 	
 42(82)	

	

Figure 19. Order Management

The default state of produced order is unchecked, and the administrator can decide

to change the state to waiting deliver or cancel. For waiting deliver state order, the

administrator can change state to delivered or cancel. But for delivered order, the

state cannot be changed any more.

3.2.2 Website Foreground Public Page and Android Application

Purchasing function is the core function in this application. So the purchase

sequence diagram will be analysed as follow.

	
 	
 43(82)	

	

Figure 20. Customer Purchase sequence diagram

In the Website platform, the customer can view the information of food dishes

without logging in. Before purchasing dishes, the customer needs to log in. The

dish items purchased by the customer will be added to the shopping cart

temporarily. In the shopping cart, the customer can modify the number of dishes

and delete the dish items purchased. Moreover, the customer can select to

continue to buy or confirm the order.

In the Android Application, the purchase flow is almost the same as that in the

Website platform. The biggest difference is that in the Android Application, the

customer must register a valid account to launch the application to do the further

operations.

	
 	
 44(82)	

	

4 DATABASE AND GUI DESIGN

This chapter will describe database design and main graphical user interface

design in this application.

4.2 Database Design

MySql was chosen as a database, the table structures and attributes are the same

as POJO classes mentioned in Model Structure shows above. The main entity and

their relations will be described in detail next.

Table 1. Users Class Entity

Key Attribute Comment

PK userId User ID.

 userName User Account Name.

 userPassword User Account Password.

	
 	
 45(82)	

	

The Users entity contains information about the customer registered.

Table 2. OrderFoods Class Entity

Key Attribute Comment

PK orderId Order ID:

FK(Users) userId Customer ID.

 userName Customer Real Name.

 address Deliver Address.

 telephone Customer contact number.

 email Customer contact email.

 orderSuggest Customer’s requirement for dishes ordered.

 state The state of order.

 createDate Order created date.

 postal Postal code of deliver address.

The OrderFoods entity is related to the customers who order dishes.

Table 3. Order Class Entity

Key Attribute Comment

PK foodId Dish ID.

PK/FK(Ord

erFoods)

orderId Order ID.

 quantity The amount of dishes.

The entity in Table 3 responses for storing the relationship among order, dish

items and dish amount.

	
 	
 46(82)	

	

Table 4. Employee Class Entity

Key Attribute Comment

PK username Employee login name.

 degree Employee degree.

 email Employee contact email.

 imageName Employee photo name

 password Employee login password.

 phone Employee contact phone.

 realname Employee real name.

 school Employee graduate school.

 visible The visible state of employee.

FK(IDCard) card_id The id of employee identity card.

The employee entity is used to store the information of employees in company.

Employee can use their account saved here to log in the Background Management

Platform.

	
 	
 47(82)	

	

Table 5. IDCard Class Entity

Key Attribute Comment

PK id The id of employee identify card.

 address The address in ID card.

 birthday The birthday in ID card.

 cardno ID card number

The Employee and IDCard entity contains the detailed information of an

employee. Because every employee has one unique IDCard, so the relationship

between the Employee entity and the IDCard entity is one to one.

	
 	
 48(82)	

	

Table 6. ProductInfo Class Entity

Key Attribute Comment

PK id Dish ID.

 buyexplaine The explainition of dish when customers buy.

 code Dish code for administrator searching.

 createdate The date for administrator add dish to system.

 description Dish description.

 imagename Dish image name.

 marketprice Dish market price.

 model Dish model.

 name Dish name.

 sellprice Dish sale price.

 visible The state of dish sale, on sale or sale stop.

FK(Product

Type)

typeid Category id the dishes belong to.

The entity in ProductInfo Class is used to save dish information which is

displayed in Website Foreground Public Page and Android Application.

	
 	
 49(82)	

	

Table 7. ProductType Class Entity

Key Attribute Comment

PK typeid Category id the dishes belong to.

 name Category name.

 note Category note.

Website Public Page and Android Application provide function to display dishes

according to different categories. The entity in Table 7 is used to store the dish

categories.

Table 8. ProductStyle Class Entity

Key Attribute Comment

PK id Dish style id.

 imagename Dish style image name.

 name Dish style name.

FK(ProductI

nfo)

productid The id of dish which style belongs to.

The entity in ProductInfo, ProductType and ProductStyle contains all information

of the dishes. One category can has many dishes, so the relationship between

ProductType and ProductInfo entity is one to many. One dish has only one style is

designed in this project, so the relationship between ProductStyle and ProductInfo

is one to one.

	
 	
 50(82)	

	

Figure 21. Entity Relationship Diagram

Figure 21 shows the relationship between different entities. One employee has

only one IDCard, so the relationship between them is one to one. One product has

only one image style, so the relationship between ProductInfo and ProductStyle is

one to one. One product category can have several products, so the relationship

between ProductType and ProductInfo is one to many. One customer has unique

deliver and contact information, so their relationship is one to one.

	
 	
 51(82)	

	

4.3 GUI Design

The user interface design was one of the core tasks in this project. The aim of UI

design is to make the application to be accepted and used easily by users. The

main UI will be shown next.

4.3.2 Background Management Platform

This section will describe the main GUI design in Background Management

Platform

Administrator Login page

Figure 22. Login page

The administrator need fill in a valid username and password to log in to the

Background Management Platform. Here a validation function will check whether

the username and password provided by the administrator are valid or invalid, if

the username and password are valid, the administrator will log in successfully

and enter the Background Management Main page, and otherwise a warning

message will show.

	
 	
 52(82)	

	

Background Management Main page

Figure 23. Management main page

After the administrator has logged in successfully, he will be allowed to enter the

Background Management Main page. On this Main page, there are three main

modules: Order Management, Product Management and Employee Management.

The administrator can also log out of the system by clicking “Logout System“ link

and ”red cross” button.

	
 	
 53(82)	

	

Product Category List View page

Figure 24. Category List View Page

When Clicking “Category Manage“ link, the existing categories will display on

the left side.

Category Adding page

Figure 25. Category Adding page

The administrator can add a new category on the Category adding page. All data

needed here are Type Name and Note.

	
 	
 54(82)	

	

Product Information List View page

Figure 26. Product List View page

To click “Product Manage“ link, the existing food information will be shown on

the left side.

Product Adding page

Figure 27. Add Product page

	
 	
 55(82)	

	

By clicking “add“ button on the Product Information List View page, the

administrator can go into Product Adding page and add new product information

here.

Product Style page

Figure 28. Product Style page

On the Product Style page, the administrator can view and change food image.

Order List View page

Figure 29. Order List View page

	
 	
 56(82)	

	

In the Order Management module, there are orders with different states. For

example, when the administrator clicks “Order Unchecked“, the orders with

“unchecked“ state will be shown on the left side.

Order Detail Display page

Figure 30. Order Detail Display View page

By clicking “Load Order“ link in Order List View page, the selected order will

show its detailed information.

	
 	
 57(82)	

	

4.2.2 Website Foreground Public Page

Dishes Display page

Figure 31. Dishes Display page

The food information, such as image, name and price and so on is shown on the

Dishes Display page.

Customer Login page

Figure 32. Customer Login page

	
 	
 58(82)	

	

On the Customer Login page, the customer needs customer to fill in a valid

username and password to log into the application.

Shopping Cart page

Figure 33. Shopping Cart page

The dishes ordered by the customer will be added into the Shopping Cart

temporarily. The customer can delete dish items, modify dish amount and make

other related operations here.

	
 	
 59(82)	

	

4.2.3 Android Application

Launch Window

Figure 34. Launch Window

The customer needs a valid username and password to use the Android food

ordering application.

	
 	
 60(82)	

	

Register Window

Figure 35. Register Window

If the customer has no account, he can go to the Register Window to register an

account.

Dishes Display Main Window

Figure 36. Dishes Display Main Window

	
 	
 61(82)	

	

The customer can view dishes information according to different food categories.

Dish Detail Information Window

Figure 37. Dish Detail Information Window

The customer can view dish detailed information by touching “Dish

Detail“ button in the Dishes Display Main Window.

	
 	
 62(82)	

	

Shopping Cart Window

Figure 38. Shopping Cart Window

The dishes ordered by the customer will be stored in the Shopping Cart in Figure

38.

Dish Modify Window

Figure 39. Dish Modify Window

	
 	
 63(82)	

	

To touch some dish item, a pop-up window will show. In this window, the

customer can modify the number of dishes or delete this dish item.

Order Confirmation Window

Figure 40. Order Confirmation Window

Finally, the customer needs to provide correct delivery and contact information.

	
 	
 64(82)	

	

5 IMPLEMENTATION

The implementation of core functions is described in this chapter.

5.2 Adding Food in Background Management Platform

Adding Food is a core function in the Background Management Platform. The

food information added here will be displayed on the Website Public Page and

Android Application to the customer. The brief implementation code of this

method is shown below.

<action name="add_product" class="productform" method="add">
<interceptor-ref name="fileUpload">
 // image formate allowed to be uploaded

 <param
name="allowedTypes">image/bmp,image/png,image/gif,image/jpeg,image/jpg</param>
 //image maximum size
 <param name="maximumSize">1025956</param>

</interceptor-ref>
<interceptor-ref name="defaultStack"/>

 <result name="message">/WEB-INF/page/share/message.jsp</result>
 <result name="input">/WEB-INF/page/share/img_error.jsp</result>
</action>

Snippet 1. Action configuration in struts.xml

When ”add_product” action is executed, it will call “add“ method in productform

class. Meanwhile, the size and image format are restricted. Once, this

“add“ method runs successfully, this action will return to message.jsp page,

otherwise, action will return to img_error.jsp page.

public String add(){
 ProductInfo product = new ProductInfo();
 product.setName(name);
 product.setSellprice(sellprice);
 product.setMarketprice(marketprice);
 product.setBuyexplain(buyexplain);
 product.setCode(code);
 product.setDescription(description);
 product.setModel(model);
 product.setProducttype(new ProductType(typeid));
 product.setImagename(imagefileFileName);
 //construct image name
 String ext = imagefileFileName.substring(imagefileFileName.lastIndexOf("."));
 String imagename = UUID.randomUUID().toString() + ext;
 product.setImagename(imagename);
 product.addProductStyle(new ProductStyle(stylename, imagename));

	
 	
 65(82)	

	

 productInfoService.save(product);
 String pathdir ="/images/product";//create file store path
 // file store real path
 String realpathdir = ServletActionContext.getServletContext().getRealPath(pathdir);
 if(imagefile!=null){
 File savedir = new File(realpathdir);
 if(!savedir.getParentFile().exists())
 savedir.mkdirs();
 String path = pathdir + "/" + imagename;
 File savefile = new File(savedir,imagename);
 try {
 FileUtils.copyFile(imagefile, savefile);
 } catch (IOException e) {
 e.printStackTrace();
 }
 System.out.println(path);
 System.out.println(realpathdir+"/"+imagename);
 }
 ActionContext actionContext = ActionContext.getContext();
 Map<String,Object> request = (Map) actionContext.get("request");
 request.put("message", "Add product successfully!");
 request.put("urladdress", SiteUrl.readUrl("control.product.list"));

 return "message";
 }

Snippet 2. The adding food method

Using this method, the food information will be inserted into MySql database.

Meanwhile, the image will be stored into the Tomcat server.

5.3 Display Food Information in Website Public Page

The food information added in the Background Management Platform needs to be

displayed on the Website Public Page. This implementation code is described

here.

<servlet>
<servlet-name>DisplayFoodServlet</servlet-name>

 <servlet-class>com.yangfan.servlet.web.DisplayFoodServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>DisplayFoodServlet</servlet-name>
 <url-pattern>/DisplayFoodServlet</url-pattern>
 </servlet-mapping>
<servlet/>

Snippet 3. Servlet configuration in web.xml

	
 	
 66(82)	

	

When the customer visits the url address like …/DisplayFoodServlet through

browser, the methods in DisplayFoodServlet will be executed as follows.

public class DisplayFoodServlet extends HttpServlet{
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 doPost(request, response);
 }

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 FoodDao dao = new FoodDaoImpl();
 List<Foods> foods = new ArrayList<Foods>();
 String typeid = request.getParameter("typeid");
 //Display dishes according to different categories
 if(typeid != null){
 if("all".equals(typeid)){
 foods = dao.getAllFood2();
 }else{
 foods = dao.getAllFood2ByTypeId(Integer.parseInt(typeid));
 }
 }else{
 foods = dao.getAllFood2();
 }
 List<FoodsType> types = dao.getAllFoodsType();
 request.setAttribute("foodsTypes", types);
 //System.out.println(foods);
 request.setAttribute("foods", foods);
 request.getRequestDispatcher("show.jsp").forward(request, response);
 }
}

Snippet 4. Display Food Servlet View

When doPost method is called, it will check what parameter is taken by the

request. If the parameter is “all“, all the food information will be displayed on the

Website Public Page, if the parameter is other, the food information belongs to

this category will be shown.

5.4 Order Food in Website Public Page

The food ordered by customers will be stored into the shopping cart temporarily.

The shopping cart is achieved with session and cookie.

protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 String foodId = request.getParameter("foodId");

	
 	
 67(82)	

	

 ShopCart buyCart = (ShopCart) request.getSession().getAttribute("buycart");
//Create shopping cart, cookie id is not null. Shopping cart shared within different
browsers

 if(buyCart == null){
 String sid = WebUtil.getCookieByName(request, "buyCartID");
 //session id is not null
 if(sid != null){
 HttpSession session = SiteSessionListener.getSession(sid);
 if(session != null)
 buyCart = (ShopCart) session.getAttribute("buycart");
 if(buyCart == null){
 SiteSessionListener.removeSession(sid);
 request.getSession().setAttribute("buycart", buyCart);

WebUtil.addCookie(response, "buyCartID",
request.getSession().getId(),

 request.getSession().getMaxInactiveInterval());
 }
 }
 }
 //Create shopping cart
 if(buyCart == null){
 buyCart = new ShopCart();
 request.getSession().setAttribute("buycart", buyCart);
 WebUtil.addCookie(response, "buyCartID", request.getSession().getId(),
 request.getSession().getMaxInactiveInterval());
 }

//put food into shopping cart
 if(foodId != null){
 FoodDao dao = new FoodDaoImpl();
 Foods food = dao.getFoodById(Integer.parseInt(foodId));
 ShopCart cart = new ShopCart();
 cart.setFoodId(food.getFoodId());
 cart.setFoodName(food.getFoodName());
 cart.setFoodPrice(food.getFoodPrice());
 //cart.setFoodNum(Integer.parseInt(amount.trim()));
 buyCart.addItem(cart);
 }
 request.setAttribute("buyCart", buyCart);
 request.getRequestDispatcher("shopCart.jsp").forward(request, response);
 }

Snippet 5. Shopping Cart View

The food purchased by customers will be added to the shopping cart. If there is no

shopping cart in the session, a new shopping cart with name ”buycart” will be

created in the session. Meanwhile the “buyCardID“ of this shopping cart will be

added into the cookie to response to the customer’s browser and the customer’s

browser will store the cookie with “buyCartID“. When the customer opens a new

browser, the server will receive the request with the cookie. The cookie is used

here to solve the problem that the shopping cart is shared within several browsers,

	
 	
 68(82)	

	

it will make sure that the previous shopping cart will not be lost when the

customer opens a new browser.

5.5 Display Food Information in Android Application

Step 1. Create connection between Android and website

public final static StringBuffer getConnectionPost(String url,
 HashMap<String, String> params) {
 StringBuffer sb = new StringBuffer();
 HttpPost request = null;
 HttpResponse response = null;
 try {
 if (url != null) {
 request = new HttpPost(url);
 List<NameValuePair> list = new ArrayList<NameValuePair>();
 for (Map.Entry<String, String> entry : params.entrySet()) {
 String name = entry.getKey();
 String value = entry.getKey();
 list.add(new BasicNameValuePair(name, value));
 }
 //packaging request data
 request.setEntity(new UrlEncodedFormEntity(list, HTTP.UTF_8));
 response = new DefaultHttpClient().execute(request);
 //make connection successfully
 if (response.getStatusLine().getStatusCode() == 200) {
 String temp = EntityUtils.toString(response.getEntity());
 if (temp.trim().length() > 0) {
 sb.append(temp);
 } else {
 sb.append("error response data length");
 }
 } else {
 sb.append("error response code:").append(
 response.getStatusLine().getStatusCode());
 }
 } else {
 return null;
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return sb;
 }

Snippet 6. Connection Method View

Because the information shown in the Android application comes from the

website, the first step is to make the connection between the Android application

	
 	
 69(82)	

	

and the website. The method in Snippet 6 illustrates how to make connection and

how to format the request data and response data.

Step 2. Decode response data from website

public final static ArrayList<Food> decodeResponseData(String sb) {

 ArrayList<Food> resData = new ArrayList<Food>();
 String itemStr = "";
 String name = "";
 String value = "";
 Food food;
 //split response data
 do {
 int a = sb.indexOf(',');
 if (a == -1) {
 itemStr = sb;
 food = new Food();
 while (true) {
 int n_last = itemStr.indexOf('=');
 name = itemStr.substring(1, n_last);
 System.out.println(name);
 int v_first = itemStr.indexOf('=');
 itemStr = itemStr.substring(v_first);
 int v_last = itemStr.indexOf(';');
 if (v_last == -1) {
 v_last = itemStr.indexOf(']');
 }
 value = itemStr.substring(1, v_last);
 System.out.println(value);
 //decode values of properties
 if (name.equals("foodId") && name != null) {
 food.foodId = Integer.parseInt(value);
 } else if (name.equals("foodPrice") && name != null) {
 food.foodPrice = Float.parseFloat(value);
 } else if (name.equals("foodType") && name != null) {
 food.foodType = Integer.parseInt(value);
 } else if (name.equals("foodDescri") && name != null) {
 food.foodDescri = value;
 } else if (name.equals("foodImage") && name != null) {
 food.foodImage = value;
 } else if (name.equals("foodName") && name != null) {
 food.foodName = value;
 } else {
 Log.e("-----", "error params");
 }
 itemStr = itemStr.substring(v_last);
 if (itemStr.trim().startsWith("]")
 || itemStr.trim().length() <= 2) {
 break;
 }
 }// end of while
 resData.add(food);
 break;
 }

	
 	
 70(82)	

	

 itemStr = sb.substring(0, a);
 food = new Food();
 while (true) {
 int n_last = itemStr.indexOf('=');
 name = itemStr.substring(1, n_last);
 System.out.println(name);
 int v_first = itemStr.indexOf('=');
 itemStr = itemStr.substring(v_first);
 int v_last = itemStr.indexOf(';');
 if (v_last == -1) {
 v_last = itemStr.indexOf(']');
 }
 value = itemStr.substring(1, v_last);
 System.out.println(value);
 Log.e("name" + name, "value" + value);
 if (name.equals("foodId") && name != null) {
 food.foodId = Integer.parseInt(value);
 } else if (name.trim().equals("foodPrice") && name != null) {
 Log.e("GetNet test", "---" + name);
 food.foodPrice = Float.parseFloat(value);
 } else if (name.equals("foodType") && name != null) {
 Log.e("GetNet test", "---" + value);
 food.foodType = Integer.parseInt(value);
 } else if (name.equals("foodDescri") && name != null) {
 food.foodDescri = value;
 } else if (name.equals("foodImage") && name != null) {
 food.foodImage = value;
 } else if (name.equals("foodName") && name != null) {
 Log.e("GetNet test", "---" + value);
 food.foodName = value;
 } else {
 Log.e("-----", "error params");
 }
 itemStr = itemStr.substring(v_last);
 if (itemStr.trim().startsWith("]")
 || itemStr.trim().length() <= 2) {
 break;
 }
 }// end of while
 resData.add(food);
 sb = sb.substring(a + 1);
 } while (true);
 return resData;
 }

Snippet 7. Decode response data from website

The Android application sends the request to the website, the website will

response food information to the Android application. Because the format of

response data is a List, the method in Snippet 7 descripts how to decode the

response data.

Step 3. Display Food Information Data in Android

	
 	
 71(82)	

	

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/widget39"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/bluebackground"
 android:orientation="vertical" >
 <ImageView
 android:id="@+id/zg_gridicon"
 android:layout_width="wrap_content"
 android:layout_height="50dp" />
 <TextView
 android:id="@+id/zg_gridname"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Name"
 android:textColor="#ff0000ff" />
 <TextView
 android:id="@+id/zg_gridprice"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Dish Price"
 android:textColor="#ff0000ff" >
 </TextView>
</LinearLayout>

Snippet 8. Food Display Layout file

In the layout file, name, price and image properties are provided. The related

response data value will be given to these properties. It means the customer can

view the information of food, such as food name, food price and food price in

android food display window.

5.6 Order Food In Android Application

In the Android Application, the shopping cart is achieved with Android’s own

database – SQLiteDatabase.

public long addFood(ShopCart food) {
 try {
 Cursor cur = sqllite.query(TABLE_SHOP_CART, COLS, null, null, null, null,
null);
 cur.moveToFirst();
 int foodId;
 int count = cur.getCount();
 //add food which exists in shopping cart, only update amount
 for (int i = 0; i < count; i++) {
 foodId=cur.getInt(0);
 if(food.getFoodId()==foodId){
 ContentValues value = new ContentValues();

	
 	
 72(82)	

	

 value.put("foodnum", food.getFoodNum()+cur.getInt(3));
 value.put("foodsumprices", food.getSumPrices()+cur.getFloat(4));

return sqllite.update(TABLE_SHOP_CART, value,
"foodid="+foodId, null);

 }
 cur.moveToNext();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 //add new food
 ContentValues value = new ContentValues();
 value.put("foodid", food.getFoodId());
 value.put("foodname", food.getFoodName());
 value.put("foodprice", food.getFoodPrice());
 value.put("foodnum", food.getFoodNum());
 value.put("foodsumprices", food.getSumPrices());
 value.put("foodimage", food.getImageName());
 return sqllite.insert(TABLE_SHOP_CART, null, value);
 }

Snippet 9. Add Food Information into SQLiteDatabase

When the customer purchases a food item, the information of the food item will

be stored into SQLiteDatabase.

private void callPost(Object[][] foods, String address,
 String email, String telephone, String suggest,
 String userId, String userName) {
 //request address
 HttpPost req = new HttpPost(
 com.yangfan.util.URL.url+"AddOrderServlet");
 List<NameValuePair> param = new ArrayList<NameValuePair>();
 //packaging customer deliver information
 param.add(new BasicNameValuePair("userName", userName));
 param.add(new BasicNameValuePair("userId", userId));
 param.add(new BasicNameValuePair("address", address));
 param.add(new BasicNameValuePair("email", email));
 param.add(new BasicNameValuePair("telephone", telephone));
 param.add(new BasicNameValuePair("suggest", suggest));
 param.add(new BasicNameValuePair("foodsNum", orderFoods.size()
 + ""));
 //packaging dish ordering information
 for (int i = 0; i < orderFoods.size(); i++) {
 param.add(new BasicNameValuePair("foodId" + i, orderFoods
 .get(i).getFoodId() + ""));
 param.add(new BasicNameValuePair("foodName" + i, orderFoods
 .get(i).getFoodName()));
 param.add(new BasicNameValuePair("foodNum" + i, orderFoods
 .get(i).getFoodNum() + ""));
 param.add(new BasicNameValuePair("foodPrice" + i,
 orderFoods.get(i).getFoodPrice() + ""));
 param.add(new BasicNameValuePair("sumPrices" + i,
 orderFoods.get(i).getSumPrices() + ""));

	
 	
 73(82)	

	

 }
 try {
 //send request
 req.setEntity(new UrlEncodedFormEntity(param, HTTP.UTF_8));
 try {
 HttpResponse res = new DefaultHttpClient().execute(req);
 if (res.getStatusLine().getStatusCode() == 200) {
 showDialog(1);
 }
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }
 });

Snippet 10. Add shopping cart and deliver information to request parameter

Using this method, the information of purchased food and customer delivery

information will be added into the request parameter. Android sends a request to

the website servlet shown below.

public class AddOrderServlet extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 int userId = Integer.parseInt(request.getParameter("userId"));
 String userName = request.getParameter("userName");
 String address = request.getParameter("address");
 String email = request.getParameter("email");
 String telephone = request.getParameter("telephone");
 String suggest = request.getParameter("suggest");
 OrderFoods orderfoods = new OrderFoods();
 orderfoods.setUserId(userId);
 orderfoods.setUserName(userName);
 orderfoods.setAddress(address);
 orderfoods.setEmail(email);
 orderfoods.setTelephone(telephone);
 orderfoods.setOrderSuggest(suggest);
 orderfoods.setCreateDate(new Date());
 orderfoods.setState(OrderState.WAITCONFIRM);
 FoodDao dao = new FoodDaoImpl();
 int orderId = dao.addOrder(orderfoods);
 int foodsNum =Integer.parseInt(request.getParameter("foodsNum"));
 ArrayList<ShopCart> list = new ArrayList<ShopCart>();
 //Add food to shopping cart
 for(int i=0;i<foodsNum;i++){
 ShopCart cart = new ShopCart();

	
 	
 74(82)	

	

 int foodId = Integer.parseInt(request.getParameter("foodId"+i));
 int foodNum= Integer.parseInt(request.getParameter("foodNum"+i));
 cart.setFoodId(foodId);
 cart.setFoodName(request.getParameter("foodName"+i));
 cart.setFoodNum(foodNum);
 cart.setFoodPrice(Float.parseFloat(request.getParameter("foodPrice"+i)));
 cart.setSumPrices(Float.parseFloat(request.getParameter("sumPrices"+i)));
 list.add(cart);
 boolean success = dao.addCartInformation(orderId, foodId, foodNum);/
 }
 ArrayList dingdan = new ArrayList();
 dingdan = dao.findOrderByOrderId(orderId);
 StringBuffer sb = new StringBuffer();
 int j=1;
 for(int i=0;i<dingdan.size();i+=3){

System.out.println(dingdan.get(i)+" "+dingdan.get(i+1)+"
"+dingdan.get(i+2));

 }
 out.flush();
 out.close();
 }
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }

}

Snippet 11. AddOrderServlet View

Android sends a request to AddOrderServlet on the website, the doGet method in

this servlet will be called. Through this method, the ordered food information and

customer information in the request parameter will be inserted into MySql

database.

These are the core functions of Mobile Food Ordering Application.

	
 	
 75(82)	

	

6 TESTING

The project has been deployed on the Tomcat server. All objectives of the

application were tested. The testing of the main features are described as the

following testing table:

Table 9. The application-testing table part 1

Test Case Description Predictions Result

V-1-01 Admin Login 1. Fill in username and password

2. The system validates whether user
account is valid.

OK

V-1-02 Adding Dish
Category

1. Click “Add Category” button

2. Fill in required data

OK

V-1-03 Modifying Dish
Category

1. Click “Modify” button

2. Modify category data

OK

V-1-04 Querying Dish
Category

1. Click “Query” button

2. Fill in category name

OK

V-1-05 Adding Dish 1. Click “Add” button

2. Fill in all data needed

OK

V-1-06 Modifying Dish 1. Click “Modify” button

2. Modify Dish data

OK

V-1-07 Querying Dish 1. Click “Query” button

2. Fill in query condition data.

OK

V-1-08 Stop Sale or Star Sale
dish

1. Select some dish item or all dish
items using checkbox.

2. Click “Stop Sale” button or “On
Sale” button.

OK

	
 	
 76(82)	

	

V-1-09 Change Dish Image 1. Click “Product Image Manage”
link

2. Click “Modify” button, change
image

OK

V-1-10 Adding Employee 1. Click “Add Employee” button

2. Fill in related data in fields

OK

V-1-11 Modifying Employee 1. Click “Modify” button

2. Modify employee data

OK

V-1-12 Marking Leave Click “Mark Leave” button OK

V-1-13 Querying Employee 1. Click “Query” button

2. Fill in query condition data

OK

V-1-14 Loading Order Click “Load Order” link OK

V-1-15 Changing Order State Click “Cancel Order” button, “Order
Examined” button, “Delivered”
button, “Delivered” button
according to request in different
order detail view page.

OK

Table 9 indicates that the core functions for the administrator in the Background

Management Platform had been successfully achieved, and the following Table

10 describes the test results of main functions for the customer on the Website

Public Page.

	
 	
 77(82)	

	

Table 10. The application-testing table part 2

V-2-01 View different

categories dishes

Click different categories links OK

V-2-02 View Dish Detail Click “Detail” button OK

V-2-03 Order Dish Click “Purchase” button OK

V-2-04 Register 1. Click “Register” button

2. Fill in required data

OK

V-2-05 Login 1. Click “Login” button

2. Fill in data needed

OK

V-2-06 Updating Dish

Amount

1. Modify dish amount

2. Click “Update” button

OK

V-2-07 Delete some dish item Click “Delete” button OK

V-2-08 Clear Shopping Cart Click “Clear Cart” button OK

V-2-09 Continue to Buy 1.Click “Continue” button, jump to

dishes displaying page

2. Continue shopping

OK

V-2-10 Produce Order Click “Produce Order” button to

finish shopping.

OK

Table 11 describes the test results of main functions for the customer in the
Android Application.

	
 	
 78(82)	

	

Table 11. The application-testing table part 3

V-3-01 Register 1. Click “Register” button in

launcher window

2. Fill in data needed

OK

V-3-02 Login Fill in data in related field OK

V-3-03 View Dishes

according to dish

categories

Click Tab View button responding

to category

OK

V-4-04 View Detail

Information of dish

1. Click some dish item

2.Click “View” optional button

OK

V-4-05 Purchase Dish 1. Click some dish item

2. Click “Purchase” optional button

3. Fill in dish amount

OK

V-4-06 Modify or Delete

some dish item

1. Click some dish item in shopping

cart

2. Click “Delete” button

3. Modify dish amount, click

“Update” button

OK

V-4-07 Clear Shopping Cart Click “Clear” button OK

V-4-08 Continue to Buy Click “Continue” button, jump to

dishes display window

OK

V-4-09 Produce Order 1. Click “Confirm” button in

shopping cart

2. Fill in customer deliver

information and Click “confirm“.

OK

	
 	
 79(82)	

	

7 CONCLUSIONS

This project contains three parts, Background Management Platform, Website

Public Page and Android Application. The Background Management Platform

was implemented with Struts2, Spring and JPA framework. Website Public Page

was achieved with Servlet/JSP and JavaBean. The Android framework was used

in the Android Application.

This project was a typical combination between a website and an Android

application. The aim of the project was to help the restaurant owner to improve

the efficiency of managing, meanwhile, help the customer to purchase dishes in

different platforms easily.

By now, the core function of this project has been implemented. The owner and

employees in the company can manage dishes and handle dish orders and so on.

On the public page, customers can view dish information and purchase dishes.

Also, the customer can order dishes from the Android platform.

Developing the application made it possible to learn and practice the whole

processes of agile development with S2SJ frameworks as well as Android

framework.

Main Challenges in Developing:

! Struts2, Spring, JPA frameworks Integration

The Background Management Platform was achieved with Struts2 framework,

Spring framework and JPA framework, the first challenge was how to integrate

these three frameworks. For this task, the framework version, jar packages and

configuration files needed to be considered and selected. Via checking related

books and videos, the challenge was overcome.

! Android Network Programming

Because the project was a combination between a website and an Android

application, the second challenge was how to transfer data between the website

	
 	
 80(82)	

	

and the Android application. In order to overcome this challenge, the knowledge

about the Android Network Programming was learned alone by means of different

ways.

! Debugging

HTTP 404 and 500 errors appeared frequently during the project testing. Some

errors often needed to be solved for a long time. Although the errors were a

nuisance, it helped the programmers to improve their debugging ability and

accumulate development experience.

Future Work:

! Internationalization

In the future, the system will support internationalization. At least, Finnish,

Chinese and English language environment will be provided, customers that

come from different countries can order dishes in their own language.

! Permission Management in Background Management Platform

The Permission Management will need to be developed in the future.

Although the owner and the employees can log in to the Background

Management Platform and make related operations, the owner should have a

higher permission than the employees. It means that some operation only can

be done by the owner, the employees have no privilege to do, for instance,

adding an employee account, modifying employee information and marking

employee leave.

! Query Dish Function in Website Foreground Public Page

On the Website Foreground Public Page, a Query Dish Function should to be

provided. With the number of dishes increasing, customers can search some

dish and view related information quickly by using this function.

! System Extension

	
 	
 81(82)	

	

Thanks to my friend’s idea, the system can be extended to a huge

food-ordering platform. This platform is used to display the dishes of several

restaurants, not only one. The restaurants can manage their own dish

information in the Background Management Platform. And customers can

view the dish information of different restaurants and select the restaurant

they like.

	
 	
 82(82)	

	

 REFERENCES

/1/Strut2 Framework Overview-Struts 2 Framework Overview (2014). Accessed

26.3.2014. http://struts.apache.org/development/2.x/

/2/Strut2 Framework Architecture Overview-Struts 2 Framework Architecture

(2014). Accessed 26.3.2014.

http://www.roseindia.net/struts/struts2/struts-2-architecture.shtml

/3/ Spring Framework Architecture Overview-Spring Framework

Archiecture(2013). Accessed 26.3.2014.

 http://www.tutorialspoint.com/spring/spring_architecture.htm

/4/ JPA Framework Overview-JPA Framework Overview (2013). Accessed

26.3.2014. http://en.wikipedia.org/wiki/Java_Persistence_API

/5/ Wikipedia Foundation. Android (operating system). Accessed 26.3.2014.

http://en.wikipedia.org/wiki/Android_%28operating_system%29#cite_note-googl

e_code-6

