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Abstract (Word count: 148) 

Interactions between particulate matter with aerodynamic diameter less than or equal 

to 2.5µm (PM2.5) and temperature on mortality have not been well studied, and results 

are difficult to synthesize. We aimed to assess modification of temperature on the 

association between PM2.5 and cause-specific mortality by stratifying temperature into 

low, medium, and high stratum in Hong Kong, using data from 1999 to 2011. The 

mortality effects of PM2.5 were stronger in low temperature stratum than those in high. 

The excess risk (%) per 10µg/m3 increase in PM2.5 at lag 0-1 in low temperature 

stratum were 0.94% (95% confidence interval: 0.65, 1.24) for all natural, 0.88% (0.38, 

1.37) for cardiovascular, and 1.15% (0.51, 1.79) for respiratory mortality. We found 

statistically significant interaction of PM2.5 and temperature between low and high 

temperature stratum for all natural mortality. Our results suggested that temperature 

might modify mortality effects of PM2.5 in Hong Kong. 

 

Keyword: Interaction; Fine particulate matter; Temperature; Mortality; Hong Kong 

 
Capsule:  
 

Statistically significant interaction of PM2.5 and temperature between low and high 

temperature stratum was found for all natural mortality in Hong Kong. 
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1.  Introduction 

Numerous epidemiological studies around the world have found short-term 2	  

associations between exposure to ambient particulate matter (PM) and mortality 

(Ostro et al., 2008; Pope III et al., 2002; Wong et al., 2002a). These findings are 4	  

consistent with many multicity studies conducted in western (Katsouyanni et al., 1997; 

Samet et al., 2000) and eastern countries (Chen et al., 2013; Wong et al., 2008b). 6	  

Recently, research interest has been focused on the potential role of modifiers for 

ambient PM on adverse health outcomes. Some studies have investigated the 8	  

modification of meteorological conditions on PM-associated mortality such as season 

(Kan et al., 2008; Peng et al., 2005; Wong et al., 2002a), demographic characteristics 10	  

such as sex (Cakmak et al., 2006), socioeconomic status (SES) (O'Neill et al., 2003; 

Wong et al., 2008a), and pre-existing health status such as chronic obstructive 12	  

pulmonary disease (COPD) (Bateson and Schwartz, 2004). Exploring potential 

modifiers of PM effects can aid to understand the underlying mechanism of PM 14	  

triggered diseases, benefit risk assessment (Bellinger, 2000), and direct public policy 

making.  16	  

 

Temperature is an important modifier for PM, which has a great impact on mortality. 18	  

Multicity studies have provided clear and convincing evidence that exposure to both 

hot and cold temperature was associated with increased risks of morbidity and 20	  

mortality (Curriero et al., 2002; Ma et al., 2014). The independent effect of 

temperature on mortality has been extensively reported (Anderson and Bell, 2009; Xu 22	  

et al., 2013; Zhou et al., 2014), but only a few studies have examined the effects of 

temperature modification on PM-associated mortality. Most of these studies identified 24	  

significant interaction between PM and temperature (P<0.05), with stronger health 
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effects of PM in high temperature days for all natural (Qian et al., 2008; Ren and 26	  

Tong, 2006,), and cardiovascular mortality (Li et al., 2011). Cheng and Kan (2012) 

found significant interaction (P<0.05) with higher PM effects in low temperature days 28	  

(<15th temperature percentile) for all natural and respiratory mortality. However, one 

multicity study conducted in Italy (Stafoggia et al., 2008) reported non-significant 30	  

interaction (P >0.05). Therefore, the findings of PM-temperature interaction on 

mortality are not consistent. 32	  

 

In Hong Kong, air quality is deteriorating with pollutant levels and the associated 34	  

health hazards are similar to or even greater than those in other developing cities in 

South Asia (Wong et al., 2008b; Wong et al., 2002b). In addition, in contrast to 36	  

multicity studies which reported stronger health effects of PM10 in warm seasons 

(Spring and Summer) than those in cool seasons (Autumn and Winter) (Peng et al., 38	  

2005; Stieb et al., 2002), a study in Hong Kong showed higher health effects in cool 

seasons (October to March) than those in warm seasons (April to September) (Wong 40	  

et al., 2002a). Season may be a good proxy for temperature, but it is not a reliable 

indicator to classify low and high temperature days. Owing to the increasing of global 42	  

warming and urbanization, it may induce misclassification.    

 44	  

Thus far no study has assessed the interaction between PM and temperature in Hong 

Kong for cause-specific mortality. So we aimed to evaluate the effect modification of 46	  

temperature on mortality effects of fine particulate matter (PM2.5). We first identified 

temperature cut-offs based on temperature-mortality relationships (TMRs) for 48	  

cause-specific mortality to classify temperature into low, medium and high three 

strata, and then determined the extent to which the effects of PM2.5 on mortality were 50	  
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modified by these temperature strata.  

 52	  

2.  Materials and methods 

2.1. Mortality data 54	  

Daily mortality data from 1999 to 2011 were collected from the Hong Kong Census 

and Statistics Department. Cause-specific mortality was coded according to the 56	  

International Classification of Diseases (ICD) by the Department of Health, 9th 

revision (ICD-9) before 2001 and 10th revision (ICD-10) from 2001. In our study, 58	  

mortality for all natural cause was coded as ICD-9:1-799 or ICD-10:A00-R99; 

cardiovascular disease (CVD) as ICD-9:390-459 or ICD-10:I00-I99; respiratory 60	  

disease (RD) as ICD-9: 460-519 or ICD-10: J00-J98. The agreement between these 

two mortality ICD coding systems was over 90% in Hong Kong (Hong Kong 62	  

Department of Health, 2005). 

 64	  

2.2. Pollutant and meteorological data 

Daily 24-hour average concentration of air pollutants, including particulate matter 66	  

with aerodynamic diameter less than or equal to 2.5µm (PM2.5), particulate matter 

with aerodynamic diameter less than or equal to 10µm (PM10), nitrogen dioxide (NO2), 68	  

and sulfur dioxide (SO2), and daily 8 hour (10:00-18:00 hours) average concentration 

of ozone (O3) were collected by the Environmental Protection Department of Hong 70	  

Kong from ten general monitoring stations, including Central and Western, Eastern, 

Kwai Chung, Kwun Tong, Sha Tin, Sham Shui Po, Tai Po, Tung Chung, Tsuen Wan, 72	  

and Yuen Long. The ten monitoring stations are all general stations situated at an 

average of 20m above ground level. Data were regarded as missing if numbers of 74	  

hourly concentration for one particular day were less than 75% (18 hours for PM2.5, 
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PM10, NO2, SO2, and 6 hours for O3). For meteorological data, we extracted daily 76	  

mean temperature in Celsius and relative humidity in percentage from the Hong Kong 

Observatory. 78	  

 

2.3. Statistical methods and data analysis 80	  

2.3.1. Identifying temperature cut-offs  

Two main steps were adopted in sequence to identify temperature cut-offs. 82	  

Step 1: identifying the best lag day of temperature  

First, we built a core model for cause-specific mortality using quasi-Poisson 84	  

generalized additive modeling (GAM). In the core model, we included dummy 

variable for the day of the week (dow), a natural smoothing spline for time trend and 86	  

relative humidity with four degrees of freedom, and daily admission numbers of 

hospitalization due to influenza. The core model is shown as follows: 88	  

 

  

Log[E(Yt | X )]= µ + ns(time,df )+ ns(relative humidityt ,df = 4)+
dowt + Influenzat , t = 1,…n,

            (1)     90	  

                                                                                   

where t  refers to the day of study; ( | )tE Y X  denotes expected daily death on day t ; 92	  

µ is the mean number of deaths; ( )ns •  denotes natural smoothing spline function; df 

denotes degree of freedom; dow denotes day of the week; Influenza denotes daily 94	  

admission numbers of hospitalization due to influenza; n denotes number of days.  

 96	  

We used the partial autocorrelation function (PACF) to guide the selection of degrees 

of freedom (dfs). Specifically, we used 3 to 10 dfs per year for time trend for each 98	  

disease category (all natural, cardiovascular, and respiratory mortality). We regarded 
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time trend was adequately controlled for if the absolute values of PACF coefficients 100	  

were <0.1 for the first 2 lag days and no systematic patterns in the PACF plots were 

observed (Wong et al., 2008a). The PACF plots are shown in Supplementary 102	  

Material. 

 104	  

Following selection of dfs for time trend for each disease category, we selected the 

best lag day to identify cool and warm temperature cut-offs. We adopted similar 106	  

approach to a previous study of our group (Xu et al., 2013). Temperatures with log 

relative risk equal to zero in temperature-mortality relationship (TMR) would be 108	  

selected as cut-offs. We used the average temperature of current and previous day (lag 

0-1) to identify warm temperature cut-off. After including a smoothing temperature 110	  

term with different lag days by natural spline function with four dfs in the core model, 

we selected the best lag day for cool temperature cut-off using the minimum 112	  

generalized cross-validation (GCV). We found 14 lag days within two weeks before 

the day of death, including single lag days from lag 0, lag 1, lag 2, lag 3, lag 4, lag 5, 114	  

and lag 6 and average lag days from lag 0-1, lag 0-2, lag 0-3, lag 0-4, lag 0-5, and lag 

0-6, and lag 7-13.  116	  

 

Step 2: Classifying temperature strata 118	  

Temperatures below the cool temperature cut-off were defined as low temperature 

stratum, temperatures above the warm temperature cut-off were defined as high 120	  

temperature stratum, and temperatures between cool and warm cut-offs were defined 

as medium temperature stratum. 122	  

 

2.3.2. Temperature-stratified generalized additive model (GAM)  124	  
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We categorized temperature into three strata: low, medium and high using cool and 

warm temperature cut-offs. The model of GAM to estimate mortality effects of PM2.5 126	  

in temperature strata is formulated as follows (Roberts, 2004): 

  

Log[E(Yt | X )]= µ + ns(time,df )+ ns(temperaturet ,df = 4)+ ns(relative humidityt ,df = 4)+

dowt + Influenzat + βk PM2.5Ttk
k=1

3

∑ , t = 1,…n,
      (2)                                                          128	  

where Tt1, Tt2, and Tt3 are temperature stratum indicator variables corresponding to 

low, medium, and high temperature strata, respectively; β1, β2, and β3 are effects of 130	  

PM2.5 on mortality in the corresponding temperature stratum. We used 2-day (lag 0-1) 

average concentration of PM2.5 because the average of 2 days’ pollution correlates 132	  

better with mortality than a single day’s exposure (data not shown). 

 134	  

2.3.3. Temperature modified PM2.5 on mortality 

We tested for the statistical significance of differences between effect estimates of 136	  

temperature strata (eg, the effect of PM2.5 on high temperature vs low temperature 

stratum) by calculating the 95% confidence interval (CI) as 138	  

   (β1
! − β3
!) ±1.96 Var(β1

!)+Var(β3
!)− 2Cov(β1

! , β3
" )              (3) 

where   β
!

1  and   β
!

3  are effects of PM2.5 on mortality in low and high temperature 140	  

stratum respectively,    Var(β1
!)  and    Var(β3

!) are their respective variances, and 

   Cov(β1
! , β3
" )  is the covariance between   β

!
1  and   β

!
3 (Schenker and Gentleman, 2001). 142	  

 

We examined two-pollutant model by adjustment for each of the three air pollutants 144	  

NO2, SO2, and O3 in turn in 2-day average (lag 0-1) to check whether interactions 
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between PM2.5 and temperature were robust. 146	  

	  

2.3.4. Trend of temperature modification on PM2.5 148	  

TMR can identify reliable cut-offs to classify temperature for each disease category. 

But in order to fully understand the trend and sensitivity of the effect modification of 150	  

temperature on PM2.5 for cause-specific mortality, we used a range of temperature 

percentiles as cut-offs. We increased the cool temperature cut-off from 5th to 50th, and 152	  

warm temperature cut-off from 50th to 95th by 5-percentile increment, respectively. 

We then estimated health effects of PM2.5 in both low and high temperature strata for 154	  

each disease category.  

 156	  

All calculations were performed with R software (version 3.1.0) with ‘mgcv’ to fit 

GAM model. Our results were presented as excess risk in percent per 10µg/m3 158	  

increase of PM2.5 concentration. 

 160	  

3.  Results 

3.1. Summary statistics of data 162	  

There was a total of 4,748 days from Jan 1, 1999 to Dec 31, 2011, with 456,317 

deaths from all natural causes, of which cardiovascular disease accounted for 27.4%, 164	  

and respiratory disease accounted for 19.4%. Table 1 shows the basic characteristics 

of cause of mortality, air pollutants, and meteorological conditions. On average, 96 all 166	  

natural mortalities died per day in our study period, of which cardiovascular and 

respiratory accounted for 26 and 19 deaths, respectively. During the study period, the 168	  

24-hr mean values in µg/m3 were PM2.5: 36.9; PM10: 52.1; NO2: 57.3; SO2: 18.7; and 

O3: 44.9. The range of temperature varied from 8.2 oC to 31.8 oC with mean 170	  
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temperature 27.1 oC in warm season (April to September) and 19.8 oC in cool season 

(October to March). Relative humidity (%) was relatively high, with mean value 172	  

77.8%. Daily all natural mortality counts, PM2.5 concentration levels and temperature 

exhibited marked seasonal patterns with higher mortality counts and air pollution 174	  

levels in cool seasons, than that in warm seasons (Figure 1). Daily cardiovascular and 

respiratory mortality counts and air pollutants (NO2, SO2 and O3) are shown in 176	  

Supplementary Material. 

 178	  

Table 1. Summary statistics for cause-specific mortality, air pollutants and 
meteorological conditions in Hong Kong, 1999 to 2011. 180	  
 

 Mean SD 
Percentile 

Min 25th  50th  75th  Max 
Cause of mortality (per day)        
 All natural 96.1 16.4 49.0 85.0 95.0 106.0 168.0 
 Cardiovascular 26.4 6.8 6.0 22.0 26.0 31.0 56.0 
 Respiratory 18.7 6.3 3.0 14.0 18.0 22.0 52.0 
Pollutant concentration (µg/m3)        
 PM2.5 36.9 21.7 5.4 19.4 32.7 49.3 179.7 
 PM10 52.1 28.3 7.9 30.0 47.2 68.8 573.0 
 NO2 57.3 20.5 9.8 42.4 55.0 68.8 166.6 
 SO2 18.7 12.6 3.0 10.6 15.7 22.7 135.2 
 O3 44.9 27.5 3.6 23.2 38.6 60.9 196.0 
Meteorological conditions        
 Temperatures (oC) 23.5 5.0 8.2 19.5 24.7 27.8 31.8 
 Relative humidity (%) 77.8 10.3 27.5 73.0 79.0 84.5 98.1 
Abbreviations: SD: standard deviation; Min: minimum; 25th: 25th percentile; Max: 182	  
maximum; PM2.5: particulate matter with an aerodynamic diameter less than or equal 
to 2.5µm; PM10: particulate matter with an aerodynamic diameter less than or equal to 184	  
10µm; NO2: nitrogen dioxide; SO2: sulfur dioxide; O3: ozone.
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Figure 1. Daily observed all natural mortality, daily mean PM2.5 concentration 186	  
and daily mean temperature in Hong Kong, 1999 to 2011.  
 188	  
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3.2. Spearman correlations 

The Spearman correlation coefficients between air pollutants and meteorological 190	  

conditions are reported in Table 2. The correlation coefficients between PM2.5 and 

other pollutants (PM10, NO2, SO2 and O3) were all high and positive, in particular the 192	  

Spearman correlation between PM2.5 and NO2 ( r >0.8). Temperature was negatively 

correlated with PM2.5, PM10, NO2， and O3, but positively correlated with SO2. 194	  

 

Table 2. Spearman correlation coefficients between air pollutants and 196	  
meteorological conditions in Hong Kong, 1999 to 2011. 
 198	  

 
 200	  
3.3. Temperature cut-offs 

For each disease category, we fitted the core model using PACF to guide the selection 202	  

of degrees of freedom for time trend, and used minimum GCV to select the best lag 

day for cool and warm temperature. 204	  

 

For all natural mortality, natural spline function for smoothing time trend with seven 206	  

dfs per year was adequately controlled for long-term trend and seasonality, and 

temperature at lag 0-6 was selected to identify cool temperature cut-off, temperature 208	  

at lag 0-1 was selected to identify warm temperature cut-off; for cardiovascular 

mortality, five dfs per year to control for long-term trend and seasonality, and 210	  

temperature at lag 0-6 to identify cool temperature cut-off, temperature at lag 0-1 to 

identify warm temperature cut-off; for respiratory mortality, six dfs per year to control 212	  

Variable PM10 NO2 SO2 O3 Temperature Humidity 
PM2.5 0.96 0.82 0.37 0.59 -0.48 -0.46 
PM10  0.79 0.35 0.61 -0.47 -0.50 
NO2   0.44 0.46 -0.48 -0.35 
SO2    0.01 0.08 -0.28 
O3     -0.08 -0.60 
Temperature      0.14 
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for long-term and seasonality, and temperature at lag 7-13 to identify cool temperature 

cut-off, temperature at lag 0-1 to identify warm temperature cut-off.  214	  

 

Figure 2 shows TMRs for cause-specific mortality. For TMRs to identify cool 216	  

temperature cut-off, a reversed J-shape relationships between temperature and all 

natural, cardiovascular, and respiratory mortality were all observed, with cool 218	  

temperature cut-offs were 22 oC for these three disease categories. For TMRs to 

identify warm temperature cut-off, we found a U-shape relationships between 220	  

temperature and all natural and respiratory, but not for cardiovascular mortality. We 

found warm temperature cut-offs at 25 oC for both all natural and respiratory 222	  

mortality.  

 224	  

3.4. Temperature–stratified GAM and temperature modification on PM2.5 

Based on the identified temperature cut-offs, we stratified temperature into three strata: 226	  

low, medium and high, and then used GAM to estimate the health effects of PM2.5 for 

these three temperature strata. In general, stronger mortality effects were found in low 228	  

temperature stratum, followed by medium, and then high. For example, the estimated 

excess risk (%) of PM2.5 per 10 µg/m3 increase for all natural mortality were 0.94% 230	  

(95% confidence interval: 0.65, 1.24) in low temperature stratum, 0.90% (0.56, 1.26) 

in medium, and 0.47% (0.18, 0.76) in high.  232	  
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Figure 2. Temperature-mortality relationships of (A) Low temperature and (B) 
High temperature for all natural, cardiovascular, and respiratory mortality in 234	  
Hong Kong, 1999 to 2011. Lag 0-1: average temperatures of current and lag 1 
day; lag 0-6: average temperatures from current to lag 6 day; lag 7-13: average 236	  
temperatures from lag 7 to lag 13. The density of the vertical bars on the x-axis 
shows the distribution of the temperature in Celsius. 238	  

 
 240	  
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Statistical significance differences (P<0.05) between low and high temperature strata 

were observed for all natural mortality, but not for cardiovascular and respiratory 242	  

mortality. Table 3 shows the mortality effects of PM2.5 in three temperature strata with 

and without adjustment for co-pollutant. Patterns of magnitude in change of mortality 244	  

effects of PM2.5 after adjustment for a co-pollutant (NO2, SO2 or O3) were the same 

for all these three temperature strata, for which mortality effects of PM2.5 showed little 246	  

changes after adjustment for SO2 or O3, however, reduced markedly for all natural, 

cardiovascular, and respiratory mortality after adjusting for NO2. Adjustment for a 248	  

co-pollutant did not alter the overall conclusions about interaction between PM2.5 and 

temperature for each disease category. 250	  

 

3.5. Trend of temperature modification on PM2.5 	  252	  

Mortality effects of PM2.5 for each disease category in temperature strata defined by 

incrementing temperature percentiles are reported in Figure 3, where effect estimates 254	  

are expressed as excess risk (%), and 95% confidence intervals, corresponding to a 

10µg/m3 increase in PM2.5 at average concentration of lag 0-1 days. The mortality 256	  

effects of PM2.5 in low temperature stratum were stronger than those in high 

temperature stratum. For low temperature stratum, although the mortality effects of 258	  

PM2.5 fluctuate, they were all statistical significant (P < 0.05), except for 5th 

temperature percentile. For high temperature stratum, health effects of PM2.5 were 260	  

decreasing and reached their minimum at about 85th highest temperature percentile 

and then increased with temperature decreasing.262	  
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Table 3. Estimated excess risk (%) and 95% confidence interval per 10µg/m3 
increase in PM2.5 (lag 0-1) with and without adjustment for a co-pollutant.  264	  
 

Mortality Temperature stratum 
Low  Medium  High 

All natural <22 oC 22 oC – 25 oC ≥25 oC 
  PM2.5 0.94* (0.65, 1.24) 0.90 (0.56, 1.26) 0.47 (0.18, 0.76) 
  PM2.5 + NO2 0.37* (0.03, 0.71) 0.27 (-0.13, 0.67) -0.34 (-0.73, 0.04) 
  PM2.5 + SO2 0.90* (0.58, 1.21) 0.86 (0.49, 1.23) 0.41 (0.07, 0.74) 
  PM2.5 + O3 0.87* (0.57, 1.17) 0.78 (0.42, 1.15) 0.25 (-0.11, 0.62) 
    
Cardiovascular <22 oC NA ≥22 oC 
  PM2.5 0.88 (0.38, 1.37) NA 1.03 (0.56, 1.50) 
  PM2.5 + NO2 0.05 (-0.56, 0.66) NA 0.01 (-0.63, 0.65) 
  PM2.5 + SO2 0.96 (0.42, 1.51) NA 1.14 (0.59, 1.69) 
  PM2.5 + O3 0.63 (0.10, 1.15) NA 0.54 (-0.04, 1.11) 
    
Respiratory <22 oC 22 oC – 25 oC ≥25 oC 
  PM2.5 1.15 (0.51, 1.79) 0.39 (-0.40, 1.17) 0.26 (-0.38, 0.91) 
  PM2.5 + NO2 0.60 (-0.16, 1.35) -0.24 (-1.14, 0.67) -0.53 (-1.39, 0.34) 
  PM2.5 + SO2 1.10 (0.41, 1.79) 0.33 (-0.50, 1.17) 0.20 (-0.54, 0.94) 
  PM2.5 + O3 1.10 (0.45, 1.76) 0.31 (-0.52, 1.14) 0.12 (-0.69, 0.94) 
All pollutants (PM2.5, NO2, SO2, O3) were using 2-day average (lag 0-1) concentration; 266	  
*: significantly different from high temperature stratum; NA: not applicable because 
only one temperature cut-off was identified.268	  
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Figure 3. Estimated excess risk (%) of mortality and 95% confidence interval per 
10µg/m3 increase in PM2.5 (lag 0-1) for temperature strata defined by 270	  
temperature percentiles for (A) Low temperature stratum and (B) High 
temperature stratum. Low temperature stratum: temperatures< cool 272	  
temperature cut-off; High temperature stratum: temperatures≥warm 
temperature cut-off. 274	  

 
 276	  



20 
	  

4. Discussion  
 278	  
We tested for interactions between PM2.5 and temperature for all natural, 

cardiovascular, and respiratory mortality in Hong Kong and estimated the mortality 280	  

effects of PM2.5 across three temperature strata. The mortality effects of PM2.5 were 

much stronger in low temperature stratum than those in high temperature stratum. 282	  

Interaction was statistically significant between low and high temperature strata for all 

natural mortality.  284	  

 

4.1. Temperature cut-offs identifying methods  286	  

For the analysis of interaction between PM2.5 and temperature on cause-specific 

mortality, different analytical methods have been proposed. Ren and Tong (2006) 288	  

employed bivariate response surface model to visually examine whether potential 

interaction exists between temperature and PM10, and then fitted 290	  

temperature-stratification parametric model with percentile-based temperature as 

cut-offs to define temperature strata, and then to estimate health effects of PM10 in 292	  

different temperature strata. Li et al. (2011) also used bivariate response surface 

model, and then suggested using turning points of TMR as cut-offs to stratify 294	  

temperature, and then to fit temperature-stratification parametric model. Temperature 

stratification uses fewer parameters and gives a simple, quantitative comparison of the 296	  

mortality effects of PM in different temperature strata, which has been widely used by 

many studies (Morris and Naumova, 1998; Roberts, 2004). However, there is no 298	  

consensus on the choice of temperature cut-offs. Some authors used percentile-based 

temperature threshold such as 1th and 99th (Wang et al., 2014), 5th and 95th (Qian et al., 300	  

2008), 15th and 85th (Cheng and Kan, 2012), and 50th and 75th (Stafoggia et al., 2008). 

This percentile-based method is based solely on the range of temperature, without 302	  
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taking into consideration of cause-specific mortality. Our studies used TMRs of low 

and high temperature to identify cool and warm temperature cut-offs separately. 304	  

Temperatures with log relative risk equals to zero in TMR were selected as cut-offs. 

The shape of TMR accounts for lag day of temperature. Further, the use of different 306	  

lags to identify cut-offs for cool and warm effects according to their distinct lag 

pattern reduces the underestimation of thermal stress effect (Braga et al., 2001; Guo et 308	  

al., 2011).  

 310	  

4.2. Interaction between PM2.5 and temperature 

We found greater mortality effects of PM2.5 in low temperature stratum than that in 312	  

high stratum for all natural and respiratory mortality. When compared with high 

temperature stratum, statistically significant interaction was found for all natural 314	  

mortality. These findings were robust after adjustment for single co-pollutant of NO2, 

SO2, or O3. 316	  

 

Our results are consistent with a study conducted in Shanghai, which found higher 318	  

PM10 effects in low temperature stratum compared with medium and high temperature 

stratum for all natural, cardiovascular, and respiratory, and statistically significant 320	  

interaction (P<0.05) was found in low temperature stratum, but not in high (Cheng 

and Kan, 2012). Possible reasons for statistically significant interaction of PM2.5 and 322	  

temperature between low and high temperature stratum in Hong Kong are: First, 

personal and ambient exposure to PM can vary across seasons because of changing of 324	  

human behavior (Keeler et al., 2002). Residents in Hong Kong may be more likely to 

go outdoors and open windows in cool temperature days, whereas staying at home 326	  

with air conditioner on in warm days. The change of activity may introduce higher 
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mortality risks of PM in cool temperature days, while reducing mortality risks of PM 328	  

in warm days. Second, chemical compositions of PM2.5 may vary in cool and warm 

seasons. Yuan et al. (2013) found that local pollutants and non-local pollutants 330	  

contributed different in cool and warm seasons. The reason may due to East Asian 

Monsoon; the southwest monsoon brings clean oceanic air to Hong Kong in summer, 332	  

while the northeast monsoon brings pollutants from inland in winter. Finally, because 

of the inter-correlation among pollutants, higher PM2.5 effects in low temperature 334	  

stratum may be due to high level of other pollutants (Table 2). However, after 

adjustment of co-pollutant, interaction of PM2.5 and temperature between low and 336	  

high temperature stratum remained statistically significant. 

 338	  

Although the underlying mechanism of the interaction between air pollution and 

temperature for daily mortality is still unclear, several possible explanations have 340	  

been advanced. Low temperature can cause physiologic stress, thus reducing 

physiologic response ability to air pollution, making people more susceptible to air 342	  

pollution. Williams et al. (1996) hypothesized that temperature below an optimal 

temperature would have adverse impact on respiratory mucociliary function, which 344	  

result in reducing its ability to clear pollutants. Brunekreef and Holgate (2002) 

reported that air particles might increase inflammatory cytokines release, alter cardiac 346	  

autonomic function to increase the risk of cardiopulmonary mortality. Therefore, an 

interaction between PM2.5 and temperature on mortality is biologically plausible. 348	  

 

4.3. Temperature modification on causes of mortality 350	  

The association between PM2.5 and respiratory mortality is more affected by 

temperature than the association between PM2.5 and cardiovascular mortality. The 352	  
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mortality effects of PM2.5 decreased more for respiratory mortality than for 

cardiovascular mortality as temperature increases (Table 3). Chemical compositions 354	  

of PM2.5 vary in cool and warm seasons may be the main reason. Yuan et al. (2013) 

reported that vehicle exhaust, such as organic carbon (OC) and elemental carbon (EC), 356	  

showed equal contribution in winter (16 November to 15 March) and summer (16 

May to 15 September), but sulfate was 3-5 times higher in winter than in summer in 358	  

Hong Kong. EC is more associated with cardiovascular mortality (Mar et al., 2000; 

Peng et al., 2009), and sulfate is particular associated with respiratory mortality (Dai 360	  

et al., 2014). With temperature increasing, the proportion of sulfate contributes less to 

PM2.5, which results in substantial decrease in the health effects of PM2.5 on 362	  

respiratory mortality, while the health effects of PM2.5 on cardiovascular mortality 

remain unchanged because of stable proportion of vehicle exhaust in PM2.5 all over 364	  

temperature range. 

 366	  

4.4. Study strengths and limitations 

There are two major strengths in this study. First, we examined temperature 368	  

modification on PM2.5 using two shifting cut-offs from 50th temperature percentile to 

5th for cool and to 95th for warm to define three temperature strata in order to find 370	  

trends of mortality effects of PM2.5, which has not thoroughly studied previously. 

Second, the availability of 13 years data with 4,748 consecutive days increases the 372	  

statistical power to detect possible interactions. Some limitations of our study need to 

be addressed. Data on meteorological conditions and air pollutants were based on the 374	  

daily average of whole Hong Kong instead of individual data, so measurement error 

may be present.376	  
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5. Conclusions 

We found consistently higher PM2.5 effects in low temperature stratum for all natural 378	  

and respiratory mortality in Hong Kong. We identified statistically significant 

interaction of PM2.5 and temperature between low and high temperature stratum for all 380	  

natural mortality. Our findings provide evidence to support the effect modification of 

temperature on the association between PM2.5 and cause-specific mortality.  382	  
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