<table>
<thead>
<tr>
<th>Title</th>
<th>Impacts from initialization techniques – An optimal computational resource allocation problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sun, MY; Li, VOK</td>
</tr>
<tr>
<td>Citation</td>
<td>The Workshop On Computational Intelligence, City University Of Hong Kong, Hong Kong, China, 5-7 December 2014</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/217389</td>
</tr>
<tr>
<td>Rights</td>
<td>Creative Commons: Attribution 3.0 Hong Kong License</td>
</tr>
</tbody>
</table>
Background & Purpose

• Initialization techniques are always considered as "computational-resource-free"
• Not true under computational expensive environment where single FE costs a lot
• Optimally allocate the limited computational resources becomes important

Optimal Computational Resource Allocation Problem (OCRAP):
Under given amount of computational resources \(R \), objective function of the base problem \(f \), initialization technique \(IniT \) and optimization algorithm \(OA \), to find an resource allocation scheme \(RA=IniR/(IniR+OptR) \) where \(IniR \) and \(OptR \) are the resources consumed by \(IniT \) and \(OA \) so that either the optimal solution \((y=y^*) \) of the objective function \((y=f(x)) \) is achieved with the least total resources \(IniR+OptR<R \) or the best suboptimal solution \((y\neq y^*) \) is achieved when resources are used up \((IniR+OptR=R) \).

Computational resource is defined as number of FE used under computational expensive environment. Due to the extreme long time required by FE, other calculations are negligible.

Problem Formulation:

• General version:
 \[
 \min_{IniT,OA,RA} [((IniR + OptR), |y - y^*|)] = F(RA) \\
 \text{s.t. } IniR + OptR \leq R \\
 IniR > 0 \\
 OptR > 0
 \]

• Simulation version:
 \[
 \min_{IniT,OA,RA} [((IniFE + OptFE), |y - y^*|)] = F(RA) \\
 \text{s.t. } IniFE + OptFE \leq \text{TotalFE} \\
 IniFE > 0 \\
 OptFE > 0
 \]

Simulation cases
Initialization techniques:
• Pseudo Random Number Generator (PRNG)
• Opposition-Based Learning (OBL) [1]
• Quasi-Opposition-Based Learning (QOBL) [2]
• Quadratic Interpolation (QI) [3]

Optimization algorithms:
• Differential Evolution (DE) [4]
• Chemical Reaction Optimization (CRO) [5]

Benchmark functions:
• CEC14 computational expensive problem set

Simulation results

• Notations & settings:
 • M1: without considering \(IniR \)
 • M2: \(IniR \) considered
 • \(M3 = \frac{r_{init}}{r_{rand}} \), the ratio between results from using \(IniT \) and using PRNG.
 M3<1 means \(IniT \) better
 M3>1 means PRNG better
 • \(D=10,30 & 100; \text{MaxFE}(R)=50*D; \text{No. of run}=50 \)
 • Comparison between \(IniR \) considered and not considered:

Some curves
• Using QI with DE to test different RA ratios
• Comparing QI, OBL under different RA

Conclusion
• Formulate and solve the optimal computational resource allocation problem
• Define the computational resource under the expensive environment
• Conduct simulations analyze performances from different initialization techniques

Reference