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Abstract

In recent years, PCR-based pyrosequencing of 16S rRNA genes has continuously increased our understanding of complex
microbial communities in various environments of the Earth. However, there is always concern on the potential biases of
diversity determination using different 16S rRNA gene primer sets and covered regions. Here, we first report how bacterial
16S rRNA gene pyrotags derived from a series of different primer sets resulted in the biased diversity metrics. In total, 14
types of pyrotags were obtained from two-end pyrosequencing of 7 amplicon pools generated by 7 primer sets paired by 1
of 4 forward primers (V1F, V3F, V5F, and V7F) and 1 of 4 reverse primers (V2R, V4R, V6R, and V9R), respectively. The results
revealed that: i) the activated sludge exhibited a large bacterial diversity that represented a broad range of bacterial
populations and served as a good sample in this methodology research; ii) diversity metrics highly depended on the
selected primer sets and covered regions; iii) paired pyrotags obtained from two-end pyrosequencing of each short
amplicon displayed different diversity metrics; iv) relative abundance analysis indicated the sequencing depth affected the
determination of rare bacteria but not abundant bacteria; v) the primer set of V1F and V2R significantly underestimated the
diversity of activated sludge; and vi) the primer set of V3F and V4R was highly recommended for future studies due to its
advantages over other primer sets. All of these findings highlight the significance of this methodology research and offer a
valuable reference for peer researchers working on microbial diversity determination.
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Introduction

Bacteria are capable of populating nearly any living environ-

ment on the Earth (e.g. soil, water, air, human body, and even

extreme environments) and contribute greatly to the global matter

cycle and energy metabolism. Our understanding of bacteria and

their roles is largely limited because more than 99% bacterial

species cannot be isolated and cultivated with current laboratory

practices [1]. Over the past decades, both traditional culture

dependent and independent approaches (including isolation,

cloning, functional identification, DGGE (denaturing gradient

gel electrophoresis) [2], T-RFLP (terminal restriction fragment

length polymorphism) [3], FISH (fluorescence in situ hybridization)

[4], and Genechips [5] etc.) always cause bottlenecks in exploring

global bacterial diversities and their potential functions. To

overcome these limitations, high-throughput sequencing technol-

ogies have been well developed to promote the relevant research

fields [6]. The Roche 454, SOLID, Ion Torrent, and Illumina

platforms have dominated the next-generation sequencing market

and made notable contributions to the genomic and metagenomic

studies in the past five years [7]. Roche 454 pyrosequencing

technology, a high-throughput platform generating relatively long

length reads, has greatly promoted the exploration of bacterial

diversities in various environments [6]. Bacterial 16S rRNA gene

encodes the small subunit ribosomal RNA molecule that has been

thought to be the most versatile and reliable marker gene for

profiling bacterial populations. The 16S rRNA gene full length

usually contains nine hypervariable regions (V1–V9) flanked by

nine highly conserved regions (C1–C9) [8]. PCR-based pyrose-

quencing of 16S rRNA genes (commonly defined as ‘16S

pyrotags’) allows researchers to profile highly complex bacterial

community compositions in depth, especially for exploring

currently uncultivated and unknown bacteria.

All commonly used 16S rRNA gene universal primers are

designed in the highly conserved regions that are believed to exhibit

different coverage for different bacterial lineages. This has been

revealed by computational simulation (in silico prediction) using the

collected 16S rRNA gene databases [9–11]. Several case studies

have also pointed out that primer selections and targeted regions

could have a significant impact on the determination of bacterial

diversity based on 16S pyrotags from several environmental samples

[12–14]. However, the biased extent and depth have not been

investigated comprehensively. Moreover, the surveyed samples

including human feces [12], termite hindgut [13], and smoker

subgingival plaque [14] only contained low bacterial diversities and

could not represent the highly diverse bacterial populations across a

broad range of different environments. In this study, we employed

composite activated sludge samples from 11 municipal wastewater

treatment plants as the target system to figure out this commonly

concerned problem. The activated sludge is a highly complex open

system that harbors a variety of bacteria, archaea, fungi, algae,
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protozoa, and viruses. In this open system, bacteria are absolutely

dominant and responsible for the removal of various nutrients and

pollutants during wastewater treatment [15]. Hence, colonized

bacterial species in activated sludge could provide a widespread

bacterial coverage and serve as a representative sample for the

comprehensive evaluation in this study.

Employing high-throughput sequencing technology is the

current and future trend to explore highly complex bacterial

communities and their potential functions in any interested

environments. The objective of this study is to investigate how

the 16S rRNA gene primer sets and covered regions affect the

bacterial diversity metrics. The findings offer a valuable reference

on this commonly concerned issue for peer researchers working on

bacterial diversity determination using 16S pyrotags, and provide

useful information for improving the current 16S rRNA gene

pyrosequencing practices.

Materials and Methods

Experimental Design
PCR-based pyrosequencing of 16S rRNA genes was employed

to investigate the potential biased diversity metrics. The detailed

experimental design of this study is described in Figure 1. To

evaluate 16S primer sets and covered regions in regard to bacterial

diversity coverage and/or accurate taxonomic assignment, 4

forward primers (V1F, V3F, V5F, and V7F) and 4 reverse primers

(V2R, V4R, V6R, and V9R) targeting 16S rRNA gene different

regions were paired to generate 4 short amplicons covering V1V2,

V3V4, V5V6, and V7V8V9, and 3 long amplicons covering V1–

V4, V3–V6, and V5–V9. After individual PCR amplification, a

total of 7 fragments (named as Amplicon 1–7) ranging from 278 to

795 bp in length were obtained, as shown in Table 1 and Figure 1.

To minimize the unspecific amplification and investigate the

potential biases of 454 pyrosequencing technology, each 16S

primer only carried the oligonucleotide barcodes at the 59

terminus, but without 454 adaptors. After PCR, the purified

products were ligated with 454 A- and B-adaptors using TA

ligation strategy. Thus, the priming 454 A-adaptor was randomly

modified to two ends of the PCR fragments, and each amplicon

could be pyrosequenced twice (i.e. one pyrotag was sequenced

from the end of 16S forward primer and the other pyrotag was

sequenced from the end of 16S reverse primer). Finally, the 7

amplicons generated 14 pyrotags for subsequent bioinformatic

analysis. They were designed as eight S-type pyrotags (S-V1V2, S-

Figure 1. Schematic representation of experimental design employed in this study. The full length of E. coli 16S rRNA gene was used as
the reference scale. Fourteen blue arrow lines indicated all pyrotags analyzed in this study. S (L)-V1V2 represented the pyrotag contained 16S V1V2
region derived from a Short (Long) amplicon. Four small PCR fragments covered 16S V1V2, V3V4, V5V6, and V7V8V9 regions were defined as Short
amplicons. The remainder three large PCR fragments targeted 16S regions of V1–V4, V3–V6, and V5–V9 were defined as Long amplicons.
doi:10.1371/journal.pone.0053649.g001
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V2V1, S-V3V4, S-V4V3, S-V5V6, S-V6V5, S-V7V8V9, and S-

V9V8V7) and six L-type pyrotags (L-V1V2, L-V4V3, L-V3V4, L-

V6V5, L-V5V6, and L-V9V8V7). S-type and L-type pyrotags

represented pyrotags derived from 4 short amplicons and 3 long

amplicons, respectively.

Sampling and DNA Isolation
In this study, activated sludge samples were collected from 11

municipal wastewater treatment plants: Singapore (1), Hong Kong

(2), North America (3), and Mainland China (5). These samples

were taken from their respective aeration tank and immediately

mixed with 100% ethanol at a 1:1 volume ratio to fix microbial

cells. Samples were kept and transported using ice bath before

reaching this laboratory and stored at 220uC. The detailed

characteristics of these wastewater treatment plants and samples

Table 1. Primers used in this study.

Names
Barcodes
(59-39)

Sequences
(59-39) Positions References

V1F GAGCACTGTAG AGAGTTTGATCCTGGCTCAG 8–27 [36,37]

GTAGTATCAGC

V3F GACTACTATGT ACTCCTACGGGAGGCAGCAG 338–357 [32,33]

GTGATACGTCT

V5F GTCGTCGCTCG ATTAGATACCCNGGTAG 787–803 [38,39]

GATATCGCGAG

V7F GCGTGTCTCTA GYAACGAGCGCAACCC 1099–1114 [13,40]

V2R GATCAGACACG TGCTGCCTCCCGTAGGAGT 338–356 [36,37]

V4R GCTCGCGTGTC TACNVGGGTATCTAATCC 785–802 [35,41]

GACGAGTGCGT

V6R GAGACTATACT CGACAGCCATGCANCACCT 1046–1064 [42,43]

GACGCTCGACA

V9R GCATAGTAGTG GNTACCTTGTTACGACTT 1492–1509 [38,39]

GTACTGAGCTA

The positions of all primers are referred to the 16S rRNA gene of E. coli str. K12 substr. DH10B. The bold italic nucleotide ‘G’ fused into the 59 terminus of each barcode is
to offer an unbiased ligation between amplicons and 454 adaptors.
doi:10.1371/journal.pone.0053649.t001

Table 2. Overview of processed pyrotags.

Pyrotags
Number of raw
pyrotags

Number of clean
pyrotags

Average length
(bp)

97% cutoff
OTUs Chao1 richness Shannon diversity

S-V1V2 59940 36262 302 8223 19423 7.40

S-V2V1 69008 37293 303 7975 17522 7.37

S-V3V4 60061 32339 415 12326 40858 8.30

S-V4V3 66651 37853 415 13497 41773 8.26

S-V5V6 117035 78807 242 20456 66513 8.01

S-V6V5 162100 69337 242 20468 65285 8.17

S-V7V8V9 67198 42996 373 16238 52871 8.35

S-V9V8V7 38669 23609 373 9676 33611 8.03

L-V1V2 29916 4646 299 1786 4009 6.70

L-V4V3 26487 4468 413 2317 8977 7.14

L-V3V4 31663 3276 415 1658 6072 6.81

L-V6V5 35945 7311 242 2942 10901 7.02

L-V5V6 15539 8621 242 4085 15631 7.51

L-V9V8V7 19940 8900 373 3735 12120 7.34

No barcode 138923 N/A N/A N/A N/A N/A

Total 939075 395718 N/A N/A N/A N/A

The raw pyrotags were the original reads generated by the 454 run. After removal of low quality reads, short reads, chimera, noise, and archaea reads, the clean
pyrotags were finally obtained and used for downstream bioinformatic analysis.
doi:10.1371/journal.pone.0053649.t002
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were illustrated in a previous publication [16]. No specific permits

were required for the described field studies. We confirm that: i)

the locations were not privately-owned or protected in any way;

and ii) the field studies did not involve endangered or protected

species.

The FastDNAH SPIN Kit for Soil (MP Biomedicals, France)

was used to extract total DNA from the collected samples

individually according to the manufacturer’s manual. This kit was

the most suitable to isolate total DNA from activated sludge

compared with other commercial kits by empirically judging from

the purity and PCR ability of the DNA extracts. The concentra-

tion of each DNA extract was determined by Thermo NanoDrop

1000 Spectrophotometer. The 11 DNA extracts were pooled with

equal mass to obtain one mixed DNA sample used as the PCR

template.

PCR and 454 Pyrosequencing
The PCR amplification was performed by BioRad i-Cycler

under conditions of initial 5 min denaturation at 94uC; 35

cycles of 50 sec at 94uC, 30 sec at 40uC, and 90 sec at 72uC;

and final 5 min extension at 72uC. Each standard PCR volume

contained 50 ng DNA, 200 nM of each primer (Integrated

Figure 2. Rarefaction curves of 97%, 94%, and 90% OTUs for eight S-type pyrotags (S-V1V2, S-V2V1, S-V3V4, S-V4V3, S-V5V6, S-
V6V5, S-V7V8V9, and S-V9V8V7) and six L-type pyrotags (L-V1V2, L-V4V3, L-V3V4, L-V6V5, L-V5V6, and L-V9V8V7), respectively.
doi:10.1371/journal.pone.0053649.g002
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DNA Technologies, US), 200 mM dNTPs (Invitrogen, US),

2 mM MgSO4, 5 mL of 10 6 High Fidelity PCR Buffer, 0.2 mL

Platinum Taq High Fidelity (Invitrogen, US), and ddH2O up to

50 mL. Triplicate amplification was conducted for each

amplicon. The products from the same amplicons were pooled

together (,150 mL) for subsequent purification using PCRquick-

spinTM PCR Product Purification Kit (iNtRON Biotechnology,

Korea). The purified amplicons were quantified by Thermo

NanoDrop 1000 Spectrophotometer and mixed at a mole ratio

of 1:1.5 for short amplicons vs long amplicons. The pooled

sample was submitted to the Genome Research Centre at The

University of Hong Kong (GRC at HKU) to complete 454

adaptors ligation and pyrosequencing on the Roche 454 FLX

Titanium platform (Roche, US).

Sequence Trimming and Bioinformatic Analysis
All pyrosequencing reads were strictly trimmed and quality-

controlled. The 454 adaptors at the terminus of raw reads were

firstly removed by the staff of GRC at HKU. Then, 14 types of

pyrotags were assigned into different files based on the exact

matching with the unique barcodes. The Ribosomal Database

Project (RDP) Pyrosequencing Pipeline Initial Process Tool [17]

was employed to trim reads as follows: i) any ambiguous base was

not allowed, ii) reads shorter than 200 bp were filtered off, and iii)

reads containing both forward and reverse primers were kept after

the primer sequences were checked and removed. Afterwards, the

Chimera Slayer [18,19] was used to remove potential chimeras,

and pre.cluster [20,21] was further applied to denoise. Finally, the

clean pyrotags obtained after filtration were used for the

downstream bioinformatic analysis.

In this study, both OUT-based (operational taxonomic unit)

and classification-based analyses were performed by RDP online

tools. After sequence trimming processed, jobs of alignment,

complete linkage clustering, rarefaction, Shannon diversity, and

Chao1 richness were all finished by RDP’s Pyrosequencing

Pipeline. RDP Classifier, based on Naive Bayesian algorithm

[22], was carried out to assign all clean pyrotags into each

taxonomic unit (from phylum to genus) at a confidence threshold

of 50% cutoff. The generated taxonomic data were summarized

into an Excel table and visualized using OriginPro 8 software. The

PAST statistical software package [23] was used to perform cluster

analysis for all pyrotags.

Results

Overview of Processed Pyrotags and Overall Bacterial
Diversity

A total of 939,075 raw reads were produced in a complete run

by Roche 454 pyrosequencing platform. After following strict

criteria by filtering the reads of low quality, noise, and chimera,

the number of accepted reads decreased dramatically with only

395,718 reads passed for the downstream analysis. The detailed

filtering data, 97% OTU numbers, Shannon and Chao1 indices

for each pyrotag were summarized in Table 2. Considering the

highly different numbers of clean reads between S-type and L-type

pyrotags, the two types of pyrotags were compared at different

sequencing depths (23,609 for S-type and 3,276 for L-type) by

subsampling the first 23,609 reads and 3,276 reads for S-type and

L-type pyrotags, respectively. Analyzing all available clean

pyrotags was also performed and attached in the Supporting

Information.

OTU-based analysis of rarefaction curves with different cutoffs

revealed a high level of species richness in activated sludge

(Figure 2). Assigned by RDP Classifier at a 50% cutoff threshold,

pyrotags classified into six different taxonomic units indicated high

levels of unclassified or unknown bacteria contained in the sample

(Figure 3 and Figure S1). Similarly, classification-based analysis

also displayed a large bacterial diversity including 31 phyla

(Figure 4) and 913 genera (Figure 5) for equal depth subsampled

pyrotags, as well as 31 phyla (Figure S2) and 1010 genera (Figure

S3) for all clean pyrotags. According to nomenclatural taxonomy

and Bergey’s Manual, the current RDP Classifier data set has 39

phyla and 1712 genera, most of which are covered by this study.

All these consistent results demonstrated that bacteria populated in

activated sludge with a large diversity.

Figure 3. S-type and L-type pyrotags classified into six
different taxonomic units assigned by RDP Classifier at 50%
bootstrap cutoffs. The equal sequencing depths of 23609 reads and
3276 reads were subsampled to make fair comparison for S-type and L-
type pyrotags, respectively.
doi:10.1371/journal.pone.0053649.g003
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Diversity Metrics Highly Depends on Primer Sets and
Covered Regions

In this study, 7 primer sets paired by 1 of 4 forward primers

(V1F, V3F, V5F, and V7F) and 1 of 4 reverse primers (V2R, V4R,

V6R, and V9R) were used to create 7 amplicons and 14 pyrotags

(Figure 1 and Table 1). According to the used primer sets and

available 454 read length, the covered 16S rRNA gene hyper-

variable regions were divided into four groups: V1V2 (S-V1V2, S-

V2V1, L-V1V2), V3V4 (S-V3V4, S-V4V3, L-V4V3, L-V3V4),

V5V6 (S-V5V6, S-V6V5, L-V6V5, L-V5V6), and V7V8V9 (S-

V7V8V9, S-V9V8V7, L-V9V8V7). Rarefaction curves of 97%,

94%, and 90% cutoffs (Figure 2) showed minor biased OTU

numbers among pyrotags covering regions of V3V4, V5V6, and

V7V8V9, but significantly decreased OTU numbers of pyrotags

containing V1V2 region. At the phylum/class level (Figure 4), a-,

b-Proteobacteria, and Bacteroidetes varied more, while c-, d-, e-

Proteobacteria, Actinobacteria, and Firmicutes varied less. Detection of

Verrucomicrobia, Planctomycetes, and Chlamydiae was highly dependent

on the choice of primer sets and the covered regions while

detection of Nitrospira, Acidobacteria, Chloroflexi, and TM7 was not.

The taxonomic results at the genus level (Figure 5) revealed more

diversity dependence on primer sets and covered regions. Among

the Ranking 1–20 genera, the abundance in most of them were

highly varied with the 16S regions, such as Hydrogenophaga (V1V2.

V3V4. V5V6. V7V8V9), Ferruginibacter (V3V4 or V7V8V9.

V1V2 or V5V6), Haliscomenobacter (V7V8V9. V1V2 or V3V4.

V5V6), and Acidovorax (V5V6. V1V2. V3V4 or V7V8V9). A

large number of genera assigned in Ranking 21–100 also showed

the varied abundance was closely dependent on the selected 16S

regions. For example, Sporacetigenium (Ranking 23) showed high

abundance for V1V2 and V3V4, extremely low abundance for

V5V6, and no detection for V7V8V9. However, Peptostreptococcus

(Ranking 37) displayed high abundance for V7V8V9 but no

detection for V1V2, V3V4, and V5V6. Similar cases also occurred

for Terrimonas, Iamia, Azoarcus, Curvibacter, Chitinophaga, Haliea, and

Proteocatella in Ranking 21–40 and other genera not mentioned

here in Ranking 41–100. Such inconsistencies could be largely

attributed to the used primer sets and covered regions. The

similarity of all pyrotags was clustered based on the relative

abundance of Top 100 genera in Figure 6 which could reflect the

overall variation. The pyrotags covering the same region (V1V2,

V3V4, V5V6, or V7V8V9) were clustered together with the first

priority, of which the paired pyrotags derived from each short

amplicon shared the closest distance.

Paired Pyrotags Derived from Each Short Amplicon
Reveal Biased Diversity Metrics

In this study, four short amplicons (Amplicon 1, 3, 5, and 7, as

described in Figure 1) that were randomly modified with 454

adaptors after PCR to achieve equal chance to sequence-through

from either forward or reverse terminus showed biased diversity

with varying degrees. This phenomenon was unexpected since no

biases were introduced in the steps of PCR and ligation. Each

paired pyrotags (e.g. S-V1V2 and S-V2V1) had no PCR bias at all

since they were sequenced using the same PCR product (e.g.

Amplicon 1). To avoid the ligation bias, the terminuses of all

amplicons were modified with nucleotide ‘G’ by fusing it into the

59 terminus of each primer (Table 1). At the phylum/class level

(Figure 4), pairs of S-V3V4 & S-V4V3 and S-V7V8V9 & S-

V9V8V7 that were derived from Amplicon 3 and Amplicon 7

respectively, showed minor differences when comparing any one

pair independently. However, pairs of S-V1V2 & S-V2V1

(Amplicon 1) and S-V5V6 & S-V6V5 (Amplicon 5) displayed

major biases during each pair internal comparison. For instance,

Figure 4. Relative abundance at phylum or class (only for Proteobacteria) level assigned by RDP Classifier at 50% confidence
thresholds. The extremely low percentage phyla of ‘Aquificae, BRC1, Caldiserica, Chlorobi, Cyanobacteria, Deferribacteres, Deinococcus-Thermus,
Fibrobacteres, Fusobacteria, Gemmatimonadetes, Lentisphaerae, OD1, OP10, OP11, Spirochaetes, SR1, Synergistetes, Tenericutes, Thermotogae, and WS3’
were not displayed in detail and summarized as rare phyla.
doi:10.1371/journal.pone.0053649.g004

Biased Diversity Metrics from Different Primers
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S-V2V1 surveyed the abundance of Nitrospira several-fold higher

than that investigated by S-V1V2. Comparison of each paired

pyrotags derived from the four short amplicons indicated that a-,

c-, d-, and e-Proteobacteria matched well, and less biases occurred for

Actinobacteria and Firmicutes, but more biases occurred for b-

Proteobacteria and Bacteroidetes. At the genus level (Figure 5), such

biases between each group of paired pyrotags were displayed even

more obviously. Moreover, the biased extent and depth seemed to

be dependent on genus specificity and covered regions. Four

genera of Nitrospira (Ranking 6), Tetrasphaera (Ranking 9), Haliea

Figure 5. Relative abundance of Top 100 genera assigned by RDP Classifier at 50% bootstrap cutoffs and percentage of ten divided
subsets for all ranked genera. The genera were ranked based on the average relative abundance for each pyrotag. All rankings in each subfigure
were sorted from high to low level and displayed in the right column from bottom to top accordingly. For instance, Ranking 1, 2, 3, …, and 100
represented genera of Zoogloea, Dechloromonas, Flavobacteria, …, and Pseudorhodobacter, respectively. Greek letters of a, b, c, d, or e modified in the
terminus of genus name represented classes of a-, b-, c-, d-, or e- Proteobacteria, respectively. Similarly, A, Acido, B, Chla, Chlo, F, N, O, P, S, T, and V,
indicated phyla of Actinobacteria, Acidobacteria, Bacteroidetes, Chlamydiae, Chloroflexi, Firmicutes, Nitrospira, OD1, Planctomycetes, Spirochaetes, TM7,
and Verrucomicrobia, respectively. The total number of these Top 100 genera assigned into the phyla/class was summarized as: a (13), b (27), c (9), d
(5), e (1), A (9), Acido (3), B (13), Chla (1), Chlo (1), F (9), N (1), O (1), P (2), S (1), T (1), and V (3).
doi:10.1371/journal.pone.0053649.g005

Biased Diversity Metrics from Different Primers
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(Ranking 36), and Nocardioides (Ranking 97) showed major

differences between paired pyrotags of S-V1V2 & S-V2V1. Six

genera of Propionivibrio (Ranking 20), Rhodoferax (Ranking 24),

Proteocatella (Ranking 38), Myroides (Ranking 73), Ideonella (Ranking

75), and Methylophilus (Ranking 92) significantly differed in paired

pyrotags of S-V5V6 & S-V6V5, of which Ideonella and Methylophilus

had additional major biases in S-V1V2 & S-V2V1 and S-V7V8V9

& S-V9V8V7, respectively. Figure 7B further illustrated the

detection biases of the Top 100 genera. However, it is noteworthy

to point out that most genera exhibited favorable matches or less

differences within each paired pyrotags. The comparison at both

phylum/class and genus levels was concluded that V1V2 and

V5V6 regions appeared to be inclined to produce biases rather

than V3V4 and V7V8V9 regions, also demonstrated by the cluster

analysis in Figure 6.

Determination of Abundant Bacteria Using Relative
Abundance does not Rely on the Sequencing Depth

From the same sequencing depths (subsampled 23,609 reads for

S-type pyrotags and 3276 reads for L-type pyrotags) to original

sequencing depths (including all clean reads after filtration), the

number of each pyrotag used for downstream analysis increased

53.6% (S-V1V2), 58.0% (S-V2V1), 37.0% (S-V3V4), 60.3% (S-

V4V3), 233.8% (S-V5V6), 193.7% (S-V6V5), 82.1% (S-V7V8V9),

0% (S-V9V8V7), 41.8% (L-V1V2), 36.4% (L-V4V3), 0% (L-

V3V4), 123.2% (L-V6V5), 163.2% (L-V5V6), and 171.7% (L-

V9V8V7), respectively (Table 2). Although the percentages of

analyzed reads increased at significantly different levels (from 0 to

233.8%), all profiles of corresponding pyrotags were compared to

reveal very slight differences at both the phylum/class level

(Figure 4 vs Figure S2) and Top 100 genus level (Figure 5 vs Figure

S3). In addition, the classification curves (Figure 3 vs Figure S1)

also displayed similar profiles at six different taxonomic units. It is

implied that high sequencing depth made few contributions to the

determination of abundant bacteria. The total of 208,528 reads

which subsampled for equal depth analysis covered 913 genera,

while all trimmed clean reads which contained 395,718 reads

covered 1010 genera. The reads nearly doubled, but only 97

genera increased. Moreover, none of 97 genera were belonged to

the Top 500 ranking genera which accounted for more than 99%

of the classified reads (Figure 5). In conclusion, relative abundance

analysis indicated that the sequencing depth affected the

determination of rare bacteria but not abundant bacteria.

Primers of V1F and V2R Underestimate Diversity Metrics
Comparing all pyrotags in this study, three of them (including S-

V1V2, S-V2V1, and L-V1V2) seemed to underestimate the

diversity of composite activated sludge sample. They were all

covered by V1V2 region, which were derived from two primer sets

of V1F & V2R and V1F & V4R. Rarefaction curves at three

different cutoffs all revealed similar trends for most pyrotags except

for S-V1V2, S-V2V1, and L-V1V2, which appeared to signifi-

cantly underestimate the diversity (Figure 2). At the phylum level

(Figure 4), S-V1V2 and S-V2V1 displayed the incapacities of

detecting the phyla of Verrucomicrobia, Planctomycetes, and Chlamydiae.

Among the Top 500 genera, S-V1V2 and S-V2V1 remarkably

showed more genera not detected than other pyrotags in every 100

divided ranking subset (Figure 7A). Both S-V1V2 and S-V2V1

occupied the highest percentages (over 80%, the statistical

subfigure of Figure 5) of the Top 100 genera, but the least genera

covered (Figure 7B). Figure 3A showed that the highest

percentages of reads could be classified at genus level for S-

V1V2 and S-V2V1, implying that the most classified reads

covered the least genera. In conclusion, both OTU-based and

classification-based analyses demonstrated the worst performance

of V1F and V2R that could result in the underestimate of diversity

metrics.

Primer Set of V3F and V4R is Highly Recommended for
Future Studies

Summarizing the results, V3V4 region covered by the primer

set of V3F and V4R showed the best performance: i) less biases

occurred between S-V3V4 and S-V4V3 at both phylum/class and

genus levels (Figure 4 and Figure 5); ii) V3F and V4R covered

more genera than other primer sets (Figure 7); and iii) the profile of

average abundance of Top 100 genera for the 14 pyrotags were

clustered with V3V4 region (Figure 6). To achieve relatively

accurate diversity metrics, here we highly recommended V3F and

V4R as the preferred primer set in future studies.

Discussion

Although conventional isolation and collection of 16S rRNA

genes has been continuously enlarging the 16S rRNA gene

database and our understanding on microbial diversity, it is not

sufficient to profile the microbial communities in highly complex

environments. To solve this problem, pyrosequencing of PCR

amplified 16S rRNA gene fragments has been demonstrated as the

current most promising approach [24,25]. However, more

attention should be paid to the selected 16S primer sets since

different primer sets can give biased diversity pictures, as

illustrated by the results of this and other studies [12–14,26–28].

Although activated sludge has been displayed to be populated by

highly diverse bacteria and serves as a representative sample in this

methodology study, we believe that another environmental sample

with a high bacterial diversity may also be equally suitable to this

study. The abundant bacteria at both phylum and genus levels

revealed in this study showed similar profiles with several case

Figure 6. Cluster analysis of all pyrotags based on relative
abundance of Top 100 genera. ‘Average’ represented the average
relative abundance. The Past statistical software was used to calculate
the distance using Bray-Curtis similarity measure.
doi:10.1371/journal.pone.0053649.g006
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studies on activated sludge using 16S V4 pyrosequencing [16,29].

The experimental design of this study mainly focuses on the

current 454 FLX Titanium version (,400 bp, four short

amplicons) and the future 454 FLX+ upgraded version

(,700 bp, three long amplicons). Potential deviations may exist

within the pyrotags derived from long amplicons, since less clean

reads were obtained for downstream analysis, especially for

subdominant bacteria since the limited reads covered them

randomly. However, the profile of abundant bacteria was less

affected by the sequencing depth, as demonstrated in this study.

Generally, the sequencing direction should not produce biased

diversity determination, but in this study this phenomenon

occurred in 4 groups of paired pyrotags obtained from 4 short

amplicons, especially for S-V1V2 & S-V2V1 and S-V5V6 & S-

V6V5. It is not due to the PCR bias since the 454 adaptors were

modified to the same PCR product for each paired pyrotags.

Theoretically, it is possible to introduce bias at the ligation step,

but such probability is very low as pointed out by Claesson et al

[12]. Moreover, the 59 terminus of each amplicon was modified

with nucleotide ‘G’ (Table 1) and the 39 terminus was introduced

with nucleotide ‘A’ during PCR, so the same terminal frame (59-

CA-39) was formed for TA ligation using Roche 454 kit (like TA

cloning model) with equal possibility. The most likely explanation

is largely attributed to the innate sequencing bias of Roche 454

Figure 7. Statistical data of Top 500 (a) and Top 100 (b) genera not detected for each S-type pyrotag. Every subset of 100 genera was
divided and calculated independently (a). Genera detected by all S-type pyrotags simultaneously were not listed and the not detected genera were
all marked with crosses (b).
doi:10.1371/journal.pone.0053649.g007
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platform, for instance, sequencing from one terminus works well

but sequencing from the reverse terminus might be interrupted.

Here, it is of particular importance to note that 454 platform only

works on two kinds of fragments: A-adaptor fused to 59 terminus &

B-adaptor fused to 39 terminus (reading from forward primer end)

and A-adaptor fused to 39 terminus & B-adaptor fused to 59

terminus (reading from reverse primer end), but it does not work

on those fragments with the same adaptor (A or B) fused to both 59

and 39 terminuses. It is necessary to carry out further investigation

to clarify this interesting phenomenon.

In most cases, it is well accepted that a longer 16S fragment

carries more classification information and less discrimination in

the phylogenetic analysis. However, it is not always true and

depends on the frequency of nucleotide substitution during the

long-term evolution. As demonstrated in this study, although the

average length of V5V6 region (242 bp) is much shorter than

V3V4 region (415 bp), it has relatively equal ability to assign reads

into genus level, at least for the Top 100 genera (Figure 7B). For

instance, both regions of V3V4 (Peptostreptococcus and Myroides) and

V5V6 (Caenimonas and Kofleria) have two genera out of detection.

The V5V6 region carrying sufficient classification resolution on a

shorter length is very promising and could be applied in the

improved Illumina paired-end sequencing platform [30] by

assembling paired-end reads to obtain the complete length of

V5V6 region.

It is not surprising that S-V1V2 and S-V2V1 underestimated

the diversity metrics. Several possible explanations might be useful

in understanding this problem. Firstly, as mentioned above, V1V2

region may not carry enough classification resolution to make

accurate assignment, though it is longer than V5V6 region.

Secondly, the primer set of V1F and V2R covers limited bacterial

populations experimentally. In this study, an abnormal phenom-

enon was observed that the Top 4 genera including Zoogloea,

Dechloromonas, Flavobacteria, and Hydrogenophaga displayed a total of

,30% abundance in both S-V1V2 and S-V2V1, while other

pyrotags only revealed less than 20% (Figure 5). Therefore, the

over-amplified proportions of some bacterial populations leading

to the repression of other bacterial populations might be another

interpretation. However, these potentials need to be validated by

further investigation.

Roche 454 pyrosequencing technology usually has advantages

over other sequencing platforms applied in microbial ecological

studies to explore global diversities and monitor population shifts

[6]. Accurate determination of microbial diversity using 16S

pyrotags could be influenced by a number of factors, such as

sample preparation, DNA isolation, primer set selection, PCR

amplification, etc. 16S primer set selection is just one determinant,

but perhaps the most important one. Many efforts have been paid

to figure out which primer set or region could offer the most

accurate taxonomic assignment. Different groups reported differ-

ent results supported by experiments or/and in silico predictions

that is largely influenced by the samples [9–14]. For example,

Claesson et al. reported that V3V4 and V4V5 regions were

supported by in silico evaluation but experimental pyrosequencing

of V3V4 showed the worst performance compared to other 16S

regions [12]. It is due to the fact that they used human feces as the

studied sample which revealed a low bacterial diversity that was

completely different from activated sludge. According to our

findings, here we highly recommend the combined V3 and V4

regions using primer set of V3F and V4R, though only a few

studies employed this primer set [12,31] while primer sets

targeting single V3 or V4 region are used more frequently [32–

35]. In addition, V1F and V2R are not recommended, even

though they were widely used in early studies [36,37]. In

conclusion, it is impossible to achieve unbiased diversity metrics,

but it is possible to set up standard approaches to reach this goal

and compare microbial diversity from different environments

fairly.

Supporting Information

Figure S1 The same figure legend with Figure 3. All

trimmed clean reads were used for analysis.

(TIF)

Figure S2 The same figure legend with Figure 4. All

trimmed clean reads were used for analysis.

(TIF)

Figure S3 The same figure legend with Figure 5. All

trimmed clean reads were used for analysis.

(TIF)
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