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Abstract

In this study, metagenomics was applied to characterize the microbial community and to discover carbohydrate-active
genes of an enriched thermophilic cellulose-degrading sludge. The 16S analysis showed that the sludge microbiome was
dominated by genus of cellulolytic Clostridium and methanogenesis Methanothermobacter. In order to retrieve genes from
the metagenome, de novo assembly of the 11,930,760 Illumina 100 bp paired-end reads (totally 1.2 Gb) was carried out.
75% of all reads was utilized in the de novo assembly. 31,499 ORFs (Open Reading Frame) with an average length of 852 bp
were predicted from the assembly; and 64% of these ORFs were predicted to present full-length genes. Based on the
Hidden Markol Model, 253 of the predicted thermo-stable genes were identified as putatively carbohydrate-active. Among
them the relative dominance of GH9 (Glycoside Hydrolase) and corresponding CBM3 (Carbohydrate Binding Module)
revealed a cellulosome-based attached metabolism of polysaccharide in the thermophilic sludge. The putative
carbohydrate-active genes ranged from 20% to 100% amino acid sequence identity to known proteins in NCBI nr
database, with half of them showed less than 50% similarity. In addition, the coverage of the genes (in terms of ORFs)
identified in the sludge were developed into three clear trends (1126, 296 and 86) in which 85% of the high coverage
trend (1126) mainly consisted of phylum of Firmicutes while 49.3% of the 296 trend was affiliated to the phylum of
Chloroflexi.
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Introduction

Second generation of biofuels derived from lignocellulosic plant

biomass represent an important renewable alternative for fossil

fuels [1]. Lack of cost-effective technology to overcome the

recalcitrant nature of the lignocellulosic substrate impediments its

industrial-scale production. Enzymatic deconstruction of plant

biomass which could greatly improve lignocellulose hydrolysis with

no side-effect of generating fermentation inhibitors was applied as

a promising strategy in the popular lignocellulosic biofuel

production processes like Simultaneous Saccharification and

Fermentation (SSF) or Separate Saccharification and Fermenta-

tion (SHF) [2]; nevertheless the relatively low activity of currently

available hydrolytic enzymes stands in the way. Thereby retrieving

novel effective cellulolytic enzymes from biomass-degrading

microbial community is of great potential to boost lignocellulosic

biofuel production and the thermo-stable cellulase was especially

attractive in this concept for its suitability for industrial applica-

tion.

Metagenomics, direct analysis of DNA fragments from

environmental sample, offers a powerful tool to understand

microbial consortium and to discover diverse genes/enzymes in

the system. Metagenome-derived cellulase has been successfully

identified and isolated from cellulolytic consortia in several studies

[3–7]. However before the widely introduction of next generation

sequencing (NGS) technologies in recent 10 years, metagenomic

library construction by cloning was a heavy labor job which

suffered from the difficulty in discovery of whole genes. Nowadays

with the help of the dramatically increased sequencing depth of

NGS, metagenomic had stepped into a new chapter that vast gene

mining become literally possible. However, among the various

metagenomic studies, a good many of them merely focused on

community structure characterization, for example the metage-

nomic characterization of natural ecosystems like the ocean [8],

soil [9], permafrost [10], etc. Although several work had

demonstrated great practice in metagenomic gene discovery, for

example metagenomic biomass-degrading gene discovery from

cow rumen and termite gut[11–13], the field of NGS metage-

nomic gene mining still at its infancy with many potential sources

untapped.

In addition, metagenomic projects with NGS technologies are

now severely challenging the current computational resources.

While not mutually exclusive, there are few alternative methods to

ensure coverage completeness of a complicated communities other

than enlarging sequencing depth which, due to the giant data set

required, may bring up the processing and computational cost to

more than a million dollars for a metagenomic project, for

instance, it was estimated that a minimum of 6 billion base pairs

would be required to obtain the genome sequence of the most
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dominant population in soil sample, and many times more to

obtain genomes from less dominant populations [14]. By contrast,

metagenomics of reactors with certain intentionally enhanced

functions, for example, enhanced biological phosphorus removal

reactor (EBPR), cellulose-degrading reactor, phenol decomposing

reactor, sludge digester etc., makes more practical sense for most

research institutions lack of such admirable resources, and thus is

crucial for wide application of metagenomic techniques. Unfor-

tunately although Albertsen et al. had demonstrated a good

example with microbiome in EBPR [15], not much attention had

been put in such kind of reactor communities.

As a result, given in mind the application value of novel thermo-

stable biomass-degrading enzymes in lignocellulosic biofuel

production and the practical power of metagenomic approach in

genes mining, in the present study, an effectively enriched

thermophilic cellulolytic sludge from a lab-scale methanogenic

rector was selected for metagenomic gene mining and community

characterization. Functions of different phylotypes within this

intentionally enriched microbiome were compared against each

other to reveal their individual contribution in cellulose conver-

sion. De novo assembly of the metagenome was conducted to

discover putative thermo-stable carbohydrate-active genes in the

consortia. Additionally, a common flaw in metagenomic analysis

only based on either assembled ORFs/contigs or short reads was

pointed out and amended by mapping reads to the assembled

ORFs.

Results

Metagenomic Assembly and Coverage Analysis of the
Sludge Metagenome

To exploit the metagenome of the enriched thermophilic

cellulolytic sludge, short reads generated from the Illumina

sequencing was assembled by velvet assembler. Sequences were

effectively utilized during the assembly: 75% of the 11,930,760

reads were used in the assembly and 96% of the used reads were

assembled into contigs greater than 1 kb, which indicated a

sufficient coverage of the metagenome by the current sequencing

depth (11.9 million 100 bp reads, total 1.2 Gb; the coverage was

further illustrated in Figure 1). The contigs longer than 1 kb were

28.5 Mb in total with N50 of 1141 bp and the largest contigs

being 202,468 bp (Table S1). Finally, 31,499 ORFs with an

average length of 852 bp were predicted from these contigs; and

64% of these ORFs were predicted to present full-length genes.

The numbers of reads aligned to individual ORFs developed

into three distinct coverage trends as shown in Figure 1. The

coverage values of the three trends were respectively 1126, 296
and 86 (equals to the product of the slope and the read length of

100 bp). Among the 31,499 defined genes (in term of ORFs),

58.6% of them could be phylogenetically classified at phylum level

by the LCA algorithm of MEGAN4 against NCBI nr database.

Based on the taxonomic classification of ORFs, genes in the high

coverage of 1126 were largely (85.5%) belong to the phylum of

Firmicutes while Choloflexi took 49.3% of the ORFs in the 296 trend

(Figure 1 insert). The phylum of Euryarchaeota (4907 ORFs) evenly

distributed in the lower coverage trends of respectively 17.5% in

296 trend and 17.0% in the 86 trend (Figure 1 insert). Unlike the

even distribution of Euryarchaeota, the major proportion of Firmicutes

(72% of 3870 ORFs) was fitted into the higher coverage trend

(1126). In addition, even under the coverage as high as 1126, it

still had 12.8% of the ORFs longer than 1kb could not be

phylogenetically assigned into any known phylum which revealed

our limited understanding of the microbial world, even for some

dominant populations in this enriched simple microbial commu-

nity.

Community Structure of the Sludge Metagenome Based
on 16S/18S rRNA Genes

Three different databases of 16S/18S rRNA genes, i.e. Silva

SSU, RDP and Greengenes, were used to determine community

structure via MG-RAST at E-value cutoff of 1E-20. A major

agreement was followed by the three databases that 16S/18S

rRNA gene occupied around 0.15% of the total metagenomic

reads. According to Silva SSU, 83.4% of the rRNA sequences

affiliated to Bacteria, 11.1% to Archaea, 1.3% to Eukaryota, 0.3% to

virus and 4.0% unable to be assigned at domain level. Clostridium,

taking 55% of the population, was the major cellulose degraders in

the sludge microbiome, while the methanogens in the sludge

consortium were belong to the genus of Methanothermobacter and

Methanosarcina which accounted for respectively 11.2% and 1.3%

of the microbial population (Figure S1). A rarefaction curve was

drawn by MEGAN with the 16S/18S reads from the metage-

nomic dataset. Satisfactory coverage of the reactor microbiome

was illustrated in the rarefaction curve that the curve already

passed the steep region and leveled off to where fewer new species

could be found when enlarged sequencing depth (Figure S2).

Phylogenetic Analysis of the Sludge Metagenome Based
on Protein Coding Regions

Besides reads analysis based on 16S rRNA gene, community

structure of the sludge metagenome was further studied based on

the protein coding regions. Both the reads and assembled ORFs

were used in this approach: Reads were annotated via the MG-

RAST online sever against GenBank database with E-value cutoff

of 1E-5 while Annotation of ORF was carried out by blast against

NCBI nr database at E-value cutoff of 1E-5. It’s interesting to

notice that the community structure revealed by ORFs annotation

were noticeably inconsistent with annotation based on reads. For

example, Phylum Firmicutes taken relative small proportion (14%)

of the annotated ORFs evidently dominated the reads distribution

by taking 55% of the annotated reads (Figure 2 insert). The

correlation coefficient between community structure at phylum

level revealed by reads and ORFs annotation was as low as 0.4.

Furthermore the read annotation were somewhat problematic for

its low annotation efficiency that only less than 10% of the

11,930,760 pair-end reads could be annotated.

With in mind the defects of individual reads and ORFs

annotation, a method combining these two approaches was

applied at last. ORFs were firstly annotated as mentioned above

and then the 11,930,760 pair-end reads were aligned to the ORFs

for accurate quantification. Taxonomy classification based on this

combined annotation method was in consistency with classification

based on 16S/18S in the taxon down to order level (Figure S3)

with an exception that the class Anaerolineae occupying 14.6% of the

BLAST-annotated reads was not found in the 16S/18S annotation

(Figure S3a). The dominant classes of the thermophilic consortia

included (listed quantitatively): Clostridia (3151066 reads, 3297

ORFs), Anaerolineae (677470 reads, 2633 ORFs), Methanobacteria

(237280 reads, 2334 ORFs) and Methanomicrobia (155074 reads,

2501 ORFs) (Figure 2).

Functional Analysis
930,939 reads was annotated by the SEED subsystem in MG-

RAST server at E-value cutoff of 1E-5; their annotation revealed a

confined functional (584 of 1519 possible functions in Subsystems)

and taxonomic (detection of 421 putative GenBank taxa) diversity

Metagenomic Mining of Cellulolytic Genes
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in the reactor sludge metagenome. Relative abundance of the

SEED subsystems was shown in Figure S4.

Figure S5 demonstrated the comparison of Bacteria and Archaea

in the SEED subsystems on Carbohydrate metabolism (Figure S5)

and One-carbon metabolism (Figure S5 insert). The number of

reads assigned to a specific subsystem (primary y axis) indicates the

relative contribution of the domain in the corresponding function

category, whereas the percentage of reads assigned (secondary y

axis) represents the domain’s preference to the functional category.

As shown in Figure S5, considering the evident dominance of

Bacteria in the community, it is not surprising to find that Bacteria

played an important role in all subsystems involved in carbohy-

drate metabolism except for the one-carbon metabolism in which

Archaea was crucial as it exclusively contributed to the methano-

genesis process (Figure S5 insert). Additionally, the functions of

genera Clostridium and Thermoanaerbacterium were studied in the

same manner. Clostridium in the sludge metagenome showed

stronger selection in degrading polysaccharides and di-and

oligosaccharides while Thermoanaerobacterium preferred more on

metabolizing monosaccharides (Figure S6).

The KEGG methanogenesis modules were shown in Figure 3;

the complete pathway of ‘‘Format/Hydrogen/CO2 to methane’’

and ‘‘Methanol to methane’’ was revealed in the consortia while

the acetyl-CoA decarbonylase/synthase complex subunit alpha

[EC:1.2.99.2] (shown as box of ‘‘Cdh, A,B,C,D,E’’ in Figure 3)

was not observed indicating unfavorable ‘‘Acetate to methane’’

process of the consortia. In addition, the high proportion of

formate dehydrogenase [EC:1.2.1.2] and formylmethanofuran

dehydrogenase subunit A [EC:1.2.99.5] (Figure 3 insert) pointed

out a more active metabolizing of formate/hydrogen/CO2 to

methane in the thermophilic sludge consortium. Comparing to the

functional annotation by assembled ORFs, many key enzymes in

the methane production process especially the enzymes involved in

the ‘‘Co-enzyme M synthesis module’’ was missing in the read

annotation, indicating that short reads was not suitable for

functional analysis of metagenome due to the low annotation

efficiency.

Mining of Thermo-stable Carbohydrate-active Genes in
the Sludge Metagenome

To identify candidate carbohydrate-active genes from the

sludge metagenome, we performed de novo assembly and predicted

31,499 ORFs with an average length of 852 bp and 64% of the

31,499 ORFs were predicted to represent full-length genes. To

examine the validity of the de novo assembly, we experimentally

testified a random subset of 10 putative carbohydrate-active genes

(length from 98 to 917 Amino Acids (AA)). The target gene

fragments were amplified by specifically designed primers with the

DNA extract used to generate the metagenomic data as PCR

template. Using single set of PCR condition, we obtained 9 out of

10 candidate genes (90%) with the predicted size (Figure S7). For

Figure 1. Plot of the number of reads aligned to each ORF as a function of the length of the ORF. The ORFs were generated from contigs
longer than 1000 bp. The number of reads aligned to each ORF was determined by SAMTools package. The ORFs were colored according to their
taxonomy classification by MEGAN’s LCA algorithm at phylum level. The number of ORFs assigned to each phylum was listed following the phylum
name. Insert: taxonomy distribution of ORFs in the three coverage trends demonstrated in the outside frame.
doi:10.1371/journal.pone.0053779.g001
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further validation, the PCR product was sequenced. The

sequenced PCR products showed .99% ungapped sequence

identity to the computationally predicted putative genes (Table

S2).

To find out the carbohydrate-active genes in the predicted gene

pool, the ORFs were firstly searched against the PfamA database

based on the Hidden Markol Model (HMM) at E-value cutoff of

1E-4 [11]. The searching results against PfamA database was

further screened against the CAZy database for candidate

carbohydrate-active genes. Only those CAZy families having clear

Pfam models were counted to ensure the accuracy of gene mining

(Table S3 and S4). 253 candidate genes were identified with a

significant match to at least one relevant glycoside hydrolase

domain or carbohydrate-binding module as classified in the CAZy

database (Table S3 and S4). The candidate genes found in the

enrich sludge metagenome fell into a variety of CAZy families (30

out of 130 GH families and 5 out of 64 CBM families defined in

the CAZy database). The major GH families were GH3, GH2 and

GH9, respectively taking 17.4%, 16.7% and 13.8% of the total

annotated genes in GH families, while CBM3 and CBM6 each

took 38.6% of genes belongs to CBM families (Table S3 and S4).

The retrieved genes were then blast against the NCBI nr

database to found out their similarities to known genes. The results

showed that around half of the predicted thermophilic cellulolytic

genes in the sludge metagenome had quite low (less than 50%)

similarity to known genes in nr database (Figure 4). This poor

demonstration of retrieved genes in comprehensive database like nr

indicated a high potential of existence of novel thermo-stable genes

in the sludge metagenome.

Discussion

Metagenomic Assembly and Coverage Analysis of the
Sludge Metagenome

Adequate coverage is critical for the flawless understanding of a

metagenome. Hess et al. (2011) had showed a satisfying coverage

of a cow rumen metagenome with 65% of the 267.9 Gb Illumina

data set used in the assembly (Table S5). Delmont et al. estimated

a data size of 120.1 Gb of 454 sequences (equivalent to 405

Titanium runs) to fully cover the grassland soil metagenome [9].

Not mentioning the high sequencing and processing cost, the huge

metagenome dataset required to cover such complex metagenome

inevitably proscribed the application of this technique within

Figure 2. Taxonomy classification of the metagenome at class level based on RMORF approach. ORFs were assigned by default MEGAN
LCA algorithm; only nodes with over 5 ORFs and 1000 reads assigned are shown. The circles are drawn based on the number of reads assigned to the
particular node. The number after description denotes, respectively, the sum of reads and ORFs assigned below the particular node. The circles are
colored according to its classification at phylum level as in Figure 1. Insert: the relative distribution of annotated reads and ORFs in the major phyla.
doi:10.1371/journal.pone.0053779.g002
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several countable top institutions with the super computational

capacity. Nevertheless the present study investigating an enriched

reactor microbiome with a compact scale of dataset (1.2 Gb), may

demonstrate an applicable practice of metagenomic technology

which could be referred to in common research conditions.

Similar to the coverage trends illustrated in Figure 1, two

coverage trends were observed in a recent study of soil

metagenome [9]. Delmont et al. stated that Proteobacteria genomes

from the lower coverage trend might be assembled more rapidly

than Firmicutes and Verrucomicrobia in the higher coverage trend.

Correspondingly, the phylogenetic annotation of the three

coverage trends in this study revealed that genomes of Choloflexi

and Euryarchaeota might be assembled more effectively than those

from Firmicutes who took 85.5% of the 1126 trend (Figure 1). It

was supposed by Delmont et al. the presence of regions that limit

assembly (for example, insertion sequences regions) and the

complexity of diversity among taxa was part of the reasons for

the higher coverage requirement of genomes in the high coverage

trend. However to the opposite of their claim, the harder-to-

assembled Firmicutes showed a more uniform phylogenetic

structure than Euryarchaeota in the lower trend. The major

proportion of Firmicutes (72% of 3870 ORFs) was fitted into the

higher coverage trend (1126), whereas Euryarchaeota evenly

distributed in the 296 trend and the 86 trend. Our previous

16S rRNA gene analysis results also demonstrated the simple

structure under phylum Firmicutes that Clostridium, the major

cellulose degrader, had taken over 95% of the phylum [16]. Thus

the complexity of diversity among taxa might not contribute to the

coverage scattering in this study, instead the clear dominance of

phylum Firmicutes was in good part responsible for its high

coverage and the relatively limited assembly efficiency because the

velvet assembler showed a coverage saturation at around 30–406
coverage that further increasing read coverage over 30–406could

not improve assembly in terms of N50 and length of longest contig

[17].

Phylogenetic Analysis of the Sludge Metagenome Based
on Protein Coding Regions

It is important to make function-based phylogenetic assignment

in order to understand the functional contribution of different

taxonomy units in the metagenome. However such approach

based on short reads has a shortage of low annotation efficiency at

certain annotation accuracy like in this study only less than 10%

reads were annotated by MG-RAST comparison against SEED

subsystem at E-value cutoff of 1E-5. In addition, reads annotation

may result in overlook of some important functional information,

for example, the ‘‘Co-enzyme M synthesis’’ which is the functional

core of methanogenesis was completed undetectable by short reads

annotation in the present study (Figure 3). On another hand, the

annotation based on assembled results, such as contigs or ORFs,

was hardly representative because the information of reads

coverage of the contigs/ORFs was not counted in such

quantification. For a metagenome with scattering coverage like

the enriched consortia used in the present study (Figure 1),

Figure 3. ORF and Reads assignment to KEGG Methanogenesis Pathway. Blue square indicates this enzyme has at least one ORF assigned;
Yellow square indicates this enzyme has at least one read assigned. Insert: numbers of ORFs and reads assigned to enzymes in the pathway.
Metabolism modules are highlighted in different colors: blue, ‘‘Formate to Methane’’; green, ‘‘Acetate to Methane’’; purple, ‘‘Methanol to Methane’’;
yellow, ‘‘Coenzyme M synthesis’’; red, enzymes shared among different modules.
doi:10.1371/journal.pone.0053779.g003
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incorrect taxa distribution would be easily resulted based on

annotation of ORFs (Figure 2 insert). Such annotation inconsis-

tency between reads and ORFs was also found in the metagenome

of the grassland soil [9]. However, due to the high computational

cost of direct phylogenetic annotation of protein coding reads,

assemblies like contigs/ORFs were still used for phylogenetic

quantification in many studies, for example the metagenomic

characterization of EBPR by Albertsen et al. [15], which

apparently requires some sort of correction.

In order to correct the ORFs annotation as well as to overcome

the defects of reads annotation, an alternative method based on

the annotation of ORFs and mapping reads to ORFs was applied

in the present study. The result of this combined method was in

consistency with classification based on 16S/18S in the taxon

down to order level (Figure S3). The discrepancy at lower levels of

family and genus might be in part explained by the unavoidable

phylogenetic ambiguity of functional genes. About 39.8% of the

reads were assigned by this method, which was 4 times higher than

the direct taxonomic annotation of short reads.

Functional Analysis
It is not surprising to find that more functional information

could be covered by the assembly results like ORFs, for example

the ‘‘acetate to methane’’ and ‘‘coenzyme M synthesis’’ modules

which were undetectable by short reads, were revealed in ORF

annotation (Figure 3). However, since the current version of

MEGAN software package was unable to parse the reads to ORFs

alignment result into functional systems like SEED subsystem or

KEGG pathway, the functional comparison between different

taxonomic units showed below was based on the direct annotation

of short reads using MG-RAST at E-value cutoff of 1E-5.

Cooperation between Bacteria and Archaea was demonstrated in

the metagenome that Bacteria initiated metabolism of cellulose by

converting the polysaccharide and resulted oligosaccharides

(Polysaccharides and Di- and oligosaccharides metabolism, Figure

S4) into mono-sugars which could enter the central carbohydrate

metabolism where via glycolysis to release energy to the

consortium as well as provide NADH (Nicotinamide adenine

dinucleotide) for the following anaerobic fermentation, while

methanogens (main part of Archaea) further anaerobically oxidize

fermentation intermediates to methane (Methanogenesis, Figure

S4 insert) to achieve final oxidation of carbohydrate and remove

inhibitory products for Bacteria metabolism (Figure S4).

Both genera of Clostridium and Thermoanaerobacterium had been

reported to be able to metabolize lignocellulosic feedstock [2],

however, our previous study found that growth of Thermoanaer-

obacterium over Clostridium under acidic condition (pH ,6.0) will

significantly reduce the cellulose degrading capacity of the

consortia [16]. This phenomenon could be explained by the

results shown in Figure S6 that genus Thermoanaerobacterium of the

sludge metagenome displayed deficient capacity towards polysac-

charides, and Di- and oligosaccharides metabolism comparing to

Clostridium.

Mining of Thermo-stable Carbohydrate-active Genes in
the Sludge Metagenome

Lignocellulose degradation requires a broad array of enzymes

and associated proteins. Most of the enzymes involved in the

process are GH (glycoside hydrolase) families which hydrolyze the

glycosidic bond between carbohydrates or between a carbohydrate

and a non-carbohydrate moiety [18]. Additionally, the CBMs,

bringing the biocatalyst into intimate and prolonged association

with its recalcitrant substrate, determine the rate of catalysis [2].

Therefore, the present study mainly focused on the GH families

and CBM families. The CAZy database maintains updated

information on GH families and CBM families according to their

Figure 4. Similarity distribution of predicted ORFs with thermo-stable carbohydrate-active genes against NCBI nr database by
BLASTp (E-value #1E-5).
doi:10.1371/journal.pone.0053779.g004
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classifications of amino acid sequences similarity. Currently there

are 130 GH families and 64 CBM families. The searching results

by HMM based on PfamA database was further screened against

the CAZy database for candidate carbohydrate-active genes

(Table S3 and S4). Glycoside hydrolase (GH) families are assigned

to different categories based on the classification published by

Pope et al. [19].

It is interesting to notice that: first, there is a wide diversity of

GH catalytic modules in the thermophilic sludge microbiome,

indicated by the 236 modules belonging to 30 GH families, which

was comparable to bovine rumen with 35 GH families [20]. But to

great contrast, only 16 carbohydrate-binding modules from 5

families (CBM2, CBM3, CBM6, CBM20 and CBM25) were

observed (Table S4). Comparing to rumen [11] and termite gut

microbiomes [12], the high fraction of CBM3, a common

component of cellulosomes [2] (Figure 5), indicated a thermo-

stable cellulosome-based metabolism system, in which initial

attachment of the microorganisms to the recalcitrant substrate

surface played a critical role in the sludge metagenome. Nearly all

of the CBMs were found in ORFs affiliated to Firmicutes (31 out of

33 CBMs), which was probably resulted from the cellulosome

based attached growth model adopted by the dominant cellulolytic

Clostridium strains under that phylum. For the GH families, most of

the GH genes were Bacteria originated (116 out of 236 GHs), while

12 were assigned as Archaea. However, around half of the GH

families (108 out of 236 GHs) came from the ORFs which were

unable to be assigned to any known phylum in the NCBI nr

database at E-value cutoff of 1E-5, demonstrating that many of the

thermo-stable carbohydrate-active genes in the sludge were

contributed from the populations which were not well phyloge-

netically characterized. Comparing to other two mesophilic plant

fed microbiomes [11,12], the thermophilic sludge metagenome

showed high proportion of endoglucanases as GH9 (13.8% of GH

families, Table S3) whose C-terminus catalytic domain usually has

rigidly attached a CBM3 family [21]. The dominance of GH9 and

CBM3 in the thermophilic sludge metagenome indicated a

beneficial thermo-stable cellulosome based polysaccharide metab-

olism pathway as compared to mesophilic system of rumen and

termite gut [11,12] (Figure 5). More importantly, a round half of

the thermophilic cellulolytic genes identified in the sludge

metagenome had less than 50% similarity to known genes in nr

database (Figure 4), indicating the possible existence of novel

thermo-stable genes which had never be identified elsewhere.

Further experiments are undergoing to validate the cellulose-

degrading activity and thermo-stability of these predicted genes

from the sludge metagenome. Apart from enzymes devoted to the

hydrolysis of the main chain of cellulose (GH5, GH9), hemicel-

lulose (GH10, GH11), and pectins (GH28), the sludge metagen-

ome displayed a larger diversity of enzymes that digested the side

chains of these polymers and oligosaccharides thereof (Figure 5).

The families GH2 and GH3, which contain a large range of

glycosidases were particularly abundant, with .34% of GH

families (Table S3).

Materials and Methods

Thermophilic Anaerobic Cellulolytic Sludge
Anaerobic digestion sludge (collected from Shek Wu Hui

wastewater treatment plant Hong Kong SAR, China) was used

to enrich cellulolytic methanogenic consortia in a sequential batch

reactor (SBR) for two years at 55uC and pH .6.0 by feeding

microcrystalline cellulose as substrate and glucose as co-substrate

at COD ratio of 10:1. Our previous study showed that the

enriched sludge had a volatile suspended solid (VSS) of 1.4 g/l and

was capable to convert cellulose at 1.15 kg cellulose m23 d21 [16].

DNA Extraction
Genomic DNA was extracted from 500 mg sample with

FastDNA SPIN Kit for Soil (MP Biomedicals, LLC, Illkirch,

France). The exacted DNA was 186 ng/ml and had a 260/280

ratio of 1.89 (Nanodrop, ND-1000). DNA library of ,180 bp was

prepared following the manufacturer’s instruction (Illumina).

Briefly, DNA fragmentation was carried out by Covaris S2

(Covaris, 01801-1721). The flow cell was sequenced by BGI

(Shenzhen, China) using Illumina HiSeq2000 technology gener-

ating 26100 bp paired-end reads. The base-calling pipeline

(version Illumina Pipeline-0.3) was used to process the raw

fluorescence images and call sequences.

Metagenome Assembly and Coverage Statistics
The paired-end sequences were quality-checked by discarding

any read containing ambiguous base of letter N and then trimming

off the sequencing adaptors to get reads of 100 bp in length. Reads

after quality control (11,930,760 reads, 1.2 Gb) had been

submitted to NCBI SRA database under accession number of

SRA057365. Reads after quality check were assembled using

velvet (version 0.7.62) [17] by options: k = 31, cov_cutoff = 3, and

exp_cov = 14. Only contigs longer than 1 kb were used in the

following analysis [11]. The read coverage of each ORF/contig

was quantified via aligning the paired-end reads to ORFs/contigs

by Bowtie (0.12.7) [22]. For each read, only the best alignment was

kept, allowing up to 2 mismatches over the entire length (Bowtie

options: -k 1 -f –v 2–best –pairtries 200–chunkmbs 50000). Gap

was not allowed during the alignment. And the statistics of

alignment coverage was carried out by the SAMtools package

[23].

The assembled contigs longer than 1 kb were subject to gene

prediction using online MetaGeneMark [24] under Kingdom of

mixture of Bacteria and Archaea with 6-LBA model (Di-codon

frequencies fit by logistic regressions on GC content). Totally

31,499 open reading frames were defined by the MetaGeneMark

tool.

Validation of Metagenome Assembly
To verify the accuracy of assembly, a random subset of 10

assembled candidate genes were selected to design specific primer

sets. PCR (polymerase chain reaction) were conducted using the

designed primers, respectively, with the same extracted DNA as

the template. The PCR condition was as follow: an initial 5 min

denaturation at 94uC, 35 cycles of 1 min at 94uC and 3.5 min at

68uC, and a final 5 min extension at 68uC. Each PCR volume

contained 50 ng DNA, 200 nM of each primer (Integrated DNA

Technologies, US), 25 mL 2 6Premix Ex Taq (TaKaRa, China),

and ddH2O up to 50 mL. If the determined sizes of the PCR

products matched the sizes of the assembled genes, the purified

product (PureLinkTM PCR Purification Kit, Invitrogen, US) was

sent out for Sanger sequencing (GRC, The University of Hong

Kong). Genes longer than 400 AA were sequenced from both

forward and reverse ends.

Carbohydrate-active Gene Prediction
Next, amino acid sequences of the predicted ORFs were

screened against PfamA database version 26.0 [25] by Pfam_scan

(E-value cutoff of 1E-4) [26] for particular glycoside hydrolase

(GH) families and carbohydrate binding module (CBM) as
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classified by the CAZy (Carbohydrate Active enZyme) database

[27].

Taxonomy and Functional Annotation
Reads passed primary quality control at BGI (11.9 million

reads, 1.2 Gb) were submitted to the MG-RAST server (v 3.0)

[28] for taxonomic and functional annotation. The default quality

control pipeline (QC pipeline) of MG-RAST was used to remove

technological duplicates resulted from sequencing bias. Taxonom-

ic annotation based on 16S/18S rRNA genes was performed

against rRNA gene databases of RDP, Silva SSU and Greengenes

using E-value cutoff of 1E-20 [10], while taxonomy of protein-

coding reads was performed against GenBank with E-value cutoff

of 1E-5. Functional annotation was conducted against SEED

subsystem and KEGG database using E-value cutoff of 1E-5 and

hierarchical classification algorithm.

The predicted ORFs were subject to BLAST [29] search against

NCBI nr database using E-value cutoff of 1E-5, num_alignments

50 and num_descriptions 50 before being assigned to various

taxonomy and functional units using the lowest common ancestor

(LCA) algorithm with default parameters by MEGAN4.0 [30]. In

addition to guarantee annotation accuracy of ORFs, the LCA

algorithm was applied to avoid the influence of chimera, as any

chimeric ORF with contradictory annotation will be discarded in

the LCA assignment. The distribution, as the percentage of reads

assigned to an item in the total number of annotated sequences for

each database or annotation method, was used for comparison.

Supporting Information

Figure S1 Relative distribution of microbial genera (in
percentage of the total annotated reads) in the enriched
thermophilic cellulolytic sludge metagenome.

(DOC)

Figure S2 Rarefaction curve derived from the 16S/18S
reads from the metagenome.

(DOC)

Figure S3 Relative reads distribution (in percentage of
reads annotated) among major taxonomy levels anno-
tated by two independent methods: white bar: based on
reads aligned to ORFs classified by blast against NCBI
nr database; Gray bar: based on reads annotated by
MG-RAST using Silva SSU database. Chart a, b, c and d

respectively represents the Class, Order, Family and Genus levels.

(DOC)

Figure S4 Relative Abundance of SEED subsystems.
Percentage of each subsystem was shown above the corresponding

bar.

(DOC)

Figure S5 Relative distribution of different metabolism
subsystems of Archaea and Bacteria in the enriched
thermophilic cellulolytic consortia using SEED subsys-
tems in the MG-RAST server. Outside: Carbohydrates

Figure 5. Comparison of predicted carbohydrate-active genes (top chart) and carbohydrate-binding modules (bottom chart) in
three cellulosic materials fed metagenomes: rumen microbiome [11], termite hindgut microbiome [12] and the enriched
thermophilic cellulolytic sludge microbiome from this study. Glycoside hydrolase (GH) families are assigned to different categories based on
the classification published by Pope et al. [19] PFAMs associated with particular GHs and CBMs are listed in Table S3 and S4. Gene counts include
both complete ORFs and ORF fragments.
doi:10.1371/journal.pone.0053779.g005
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Metabolism (Level 2 subsystem); Insert: One-carbon Metabolism

(Level 3 subsystem).

(DOC)

Figure S6 Relative distribution of different metabolism
subsystems of genus Clostridium and Thermoanaero-
bacterium in the enriched thermophilic cellulolytic
sludge metagenome using SEED Carbohydrates Metab-
olism subsystems in the MG-RAST server.

(DOC)

Figure S7 Gel analysis results of the predicted putative
genes. Gene size of each band was shown in unit of amino acids.

The incorrect gene size was marked in red frame.

(DOC)

Table S1 Velvet assembly statistics.

(DOC)

Table S2 Properties of the 10 predicted carbohydrate-
active enzyme candidates tested for assembly authority.

(DOC)

Table S3 Glycoside hydrolases from the enriched
thermophilic cellulolytic culture.
(DOC)

Table S4 Carbohydrate binding modules from enriched
thermophilic cellulolytic culture.
(DOC)

Table S5 Comparison between metagenomic study of
cow rumen microbes (10) and this study.
(DOC)
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