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Abstract

Botulinum neurotoxins (BoNTs), the most potent naturally-occurring neurotoxins

known to humans, comprise seven distinct serotypes (BoNT/A-G), each of which

exhibits unique substrate specificity. Many methods have been developed for BoNT

detection, in particular for BoNT/A, with various complexity and sensitivity, while

substrate based FRET assay is considered as the most widely used approach due

to its simplicity and sensitivity. In this study, we designed a vesicle-associated

membrane protein 2 (VAMP2) based FRET assay based on the understanding of

the VAMP2 and light chain/B (LC/B) interactions in our previous studies. The

current design constituted the shortest peptide, VAMP2 (63–85), with FRET dyes

(EDAN and Dabcyl) labelled at position 76 and 85, respectively, which showed

minimal effect on VAMP2 substrate catalysis by LC/B and therefore enhanced the

sensitivity of the assay. The FRET peptide, designated as FVP-B, was specific to

LC/B, with a detection sensitivity as low as ,20 pM in 2 h. Importantly, FVP-B

showed the potential to be scaled up and used in high throughput screening of LC/

B inhibitor. The currently developed FRET assay is one of the most economic and

rapid FRET assays for LC/B detection.

Introduction

Botulinum neurotoxins (BoNTs), the most potent protein toxins identified to

date, cause food-borne, wound and infant botulisms [1]. There are seven different

BoNT serotypes, designated as A to G, and more than 30 different subtypes being

identified so far [2, 3]. Although large-scale outbreak of botulism rarely occurs
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nowadays, sporadic cases of natural botulisms and medical emergencies due to

clinical uses of BoNTs are still posing a threat to human health [4, 5, 6]. Most

importantly, due to its potency and ease of distribution, BoNT is listed as one of

the six most dangerous bioterrorist threats by the US Centres for Disease Control

and Prevention (CDC) (www.bt.cdc.gov/agent/agentlist-category.asp).

BoNTs are 150-kDa single chain proteins that are activated by proteolysis to

generate disulfide-linked di-chain proteins. BoNTs are typical A-B toxins that

comprise three independent domains: a 50 kDa N-terminal light chain that is

responsible for its enzymatic activity and zinc-dependent proteolysis; a 100 kDa

C-terminal heavy chain that is involved in receptor binding and cellular uptake

and composed of a translocation domain and a receptor binding domain [7, 8, 9].

BoNTs undergo a four-stage intoxication process when intoxicating cells: receptor

binding, internalization, membrane translocation and cleavage of substrates

[10, 11, 12]. The driving force in mammalian neuronal exocytosis process is the

formation of complexes between the family of soluble N-ethylmaleimide-sensitive

factor attachment protein receptors (SNAREs): the vesicle SNARE VAMP-2, the

plasma membrane SNARs, SNAP25 and syntaxin 1 [13], which are the targets of

BoNTs. Serotypes B, D, F and G cleave VAMP-2, serotypes A and E cleave

SNAP25, and serotype C cleaves both SNAP25 and syntaxin 1 [7]. Release of

neurotransmitter will be blocked upon the cleavage of any of the aforementioned

SNARE proteins, leading to the classical paralytic symptoms of botulism.

For BoNT/A, the estimated lethal dosage for humans is 1mg/kg in the case of

oral administration [1]. If diagnosed before the onset of symptoms, botulism can

be effectively treated immunologically by using an equine trivalent antitoxin

(www.bt.cdc.gov/agent/agentlist-category.asp). Early BoNT detection is critical to

timely treatment of botulism. Currently, the ‘‘golden standard’’ for BoNT

detection in culture, serum and food samples is mouse bioassay. It has a serotype

and subtype dependent sensitivity of between 10-100 pg/ml [14, 15], and can

detect all serotypes and subtypes both in their free and complex forms. However,

it is time-consuming [16], unable to be scaled up and often arouses serious ethical

concern, prompting a need to develop alternative assays to replace the mouse

bioassay. PCR-based techniques that aim at detecting bont genes by conventional

or quantitative amplification reactions, with detection limit of 103–105 genome

equivalents (GE) per ml, have been developed [17, 18, 19, 20]. Mass spectrometry

is a powerful tool in detecting different BoNT serotypes unambiguously

[21, 22, 23, 24, 25], an amino acid substitution database has been established by

Barr and co-workers, allowing for identification of multiple BoNT/B subtypes [3].

By far, the most commonly employed methods for BoNT detection in vitro is

ELISA (enzyme-linked immunosorbent assay)-based technologies, which exhibit

high sensitivity, simplicity, and robust performance [15, 26, 27, 28, 29]. Since the

identification of the substrates of BoNTs, substrate based activity assays of BoNTs

have been developed and improved, displaying the serotype-specific proteolytic

cleavage of SNAREs [30]. The combination of the endopeptidase assay with FRET

(Förster resonance energy transfer) that utilizes fluorescence donor and

fluorescence acceptor (or quencher) makes it very a powerful and sensitive BoNT
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detection method [31, 32]. Substrate based FRET assay has the advantages of

simplicity, rapidity, cost effectiveness and readiness for scale up, yet the detection

sensitivity was shown to be very low due to the reduced activity of FRET peptide.

In the current work, we developed a VAMP2 based FRET assay for BoNT/B

detection based on the understanding of the interactions between VAMP2 and

LC/B. Previous works have identified the minimal substrate, VAMP2(63,85), for

LC/B optimal substrate cleavage [33] and the contribution of each residue in this

fragment of VAMP2 to LC/B substrate hydrolysis. We then designed the minimal

FRET peptide with the modification resulting in minimal effect on LC/B cleavage.

This assay is one of the most economic and rapid FRET assays for LC/B detection.

Experimental Section

Recombinant BoNT LC purification

Recombinant LC/B protein was purified as previously described [33]. Other BoNT

LCs including LC/A (1–425), LC/E (1–408), LC/F (1–446), LC/D (1–442) and LC/

TeNT-(1–436) were expressed and purified as described previously [33, 34, 35, 36].

Fluorogenic peptide design

Previous studies showed that the optimal substrate for LC/B was VAMP2 (63,85).

Mutational analysis data also showed that Q76 of VAMP2 contributed limited effect

on the activity of LC/B [33]. Therefore, the FRET peptide was designed to include

residues 63,85 of VAMP2 with EDANS labelled L-Glu replaced Q76 and Dabcyl

labelled Lys located at the C-terminus. The peptide sequence was as follow, Leu-

Asp-Asp-Arg-Ala-Asp-Ala-Leu-Gln-Ala-Gly-Ala-Ser-L-Glu(EDANS)-Phe-Glu-

Thr-Ser-Ala-Ala-Lys-Leu-L-Lys (Dabcyl) (Figure 1B). EDANS (L-glutamic acid g-

[b-(5-naphthyl sulfonic acid)-ethylenediamine] ester) and Dabcyl (Ne-dimethyla-

minophenyldiazobenzoyl) is a FRET pair (Figure 1A). EDANS served as fluorescent

donor and Dabcyl acted as fluorescent dye. In this design, the FRET peptide showed

limited fluorescent signal. Upon cleavage by LC/B, EDANS was separated from

Dabcyl and fluorescent signal increased. The FRET peptide was named as FVP-B.

Fluorogenic peptide synthesis

All commercial materials (Sigma-Aldrich, Fluka of USA and GL Biochem of China)

were used without further purification. All solvents were reagent grade or HPLC

grade (DUKSAN). Dry dichloromethane was distilled from calcium hydride

(CaH2). All separations involved a mobile phase of 0.05% TFA (v/v) in acetonitrile

(solvent A)/0.05% TFA (v/v) in water (Solvent B). HPLC separations were

performed with a Waters HPLC system equipped with a photodiode array detector

(Waters 2996), using a Vydac C18 column (5 mm, 300 Å, 4.66150 mm) at a flow

rate of 0.6 mL/min for analytical HPLC, and Vydac Prep C18 column (10 mm,

300 Å, 226250 mm) at a flow rate of 10 mL/min for preparative HPLC. Low-
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resolution mass spectral analyses were performed with a Waters 3100 mass

spectrometer.

The solid phase peptide synthesis was carried out manually using 2-Chlorotrityl

chloride resin (loading 0.5 mmol/g). Peptides were synthesized under standard

Fmoc/t-Bu protocols. The following Fmoc amino acids from GL Biochem were

employed: Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Asn(Trt)-OH, Fmoc-

Asp(OtBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(EDANS)-OH, Fmoc-

Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-

OH, Fmoc-Lys(DABCYL)-OH, Fmoc-Met-OH, Fmoc-Phe-OH, Fmoc-Ser(tBu)-

OH, Fmoc-Thr(tBu)-OH. Fmoc removal was executed using a solution of 20%

piperidine in dimethylformamide (DMF) at room temperature for 30 min.

Coupling of Fmoc protected amino acid units was carried out by activation with

(O-(7-azabenzotriazol-1-yl)-N,N,N9,N9-tetramethyluroniumhexafluorophosphate

(HATU) using N,N-diisopropylethylamine (DIPEA) in DMF at room tempera-

Figure 1. Spectral properties of EDANS-Dabcyl pair [45] and the flowchart of the experimental design. (A) EDANS-Dabcyl is a widely used donor-
quencher pair. The optimal absorbance and emission wavelengths of EDANS are labs5336 nm and lem5490 nm respectively, and for Dabcyl, the
maximum absorbance wavelength is labs5472 nm, which, to a large extent, overlap with the emission spectra of EDANS. When they are in a close
proximity (10–100 Å), the energy emitted from EDANS will be quenched by Dabcyl, resulting in low or no fluorescence; when they are separated upon
substrate cleavage, for example in this design, the fluorescence will increase. Hence from the fluorescence intensity change, the enzyme could be detected
continuously and directly. (B) Based on the principle of FRETand our previous study, we chose the optical LC/B cleavage length of VAMP2 (63–85) as the
linker between EDANS-Dabcyl.

doi:10.1371/journal.pone.0114124.g001
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ture for 40 min. The Fmoc amino acids (2.0 equiv), HATU (2.0 equiv) and DIPEA

(5.0 equiv) were dissolved in DMF and subsequently mixed with the resin

manually. This procedure was repeated twice for each coupling. Upon completion

of synthesis, the peptide resin was subjected to a cleavage of cocktail (TFA/iPr3SiH/

H2O, 95/2.5/2.5, v/v/v) for 2 h. The resin was filtered and the combined filtrates

were blown off under a stream of condensed air. The crude product was triturated

with cold diethyl ether to give a white suspension, which was centrifuged and the

ether subsequently decanted. The remaining solid was purified by HPLC.

Proteolytic activities of LC/B and other LCs on FRET peptide

All LCs used in this study were quantified by SDS-PAGE using BSA standards. The

FVP-B was prepared in 21 mM stock in DMSO, aliquoted and stored at 220 C̊. It

was diluted in reaction buffer (10 mM Tris-HCl, 20 mM NaCl, pH 7.9) prior to the

assay. For LC/B activity assay, certain amounts of FVP-B were mixed with different

concentrations of LC/B and incubated in 500 ml of reaction buffer in eppendorf tubes

at 37 C̊ for different time courses. The reaction mixture was transferred to a quartz

fluorescence cuvette (Sigma-Aldrich Co. LLC. USA). Fluorescent intensity was

scanned using LS-55 Fluorescence Spectrometer (PerkinElmer Inc. Massachusetts,

USA), with the following parameters set: excitation: 336 nm (slit: 10 nm), emission:

380-650 nm (slit: 10 nm), speed: 100 nm/min. For EDTA inhibition assays, different

concentrations of EDTA were incubated with LC/B and FVP-B in the similar assay as

described above, but detected both in fluorescence cuvette and black 96 well plate

(PerkElmer, USA). All the data were repeated at least three times.

LC/MS analysis of FVP-B cleavage by LC/B

200 nM LC/B and 8.4 mM FVP-B were mixed in reaction buffer to a final volume

of 500 ml and incubated at 37 C̊ for 1 h. LC/MS analysis was then carried out on

an Agilent 6540 Ultra High Definition Accurate-Mass Q-TOF (Agilent-

Technologies Inc., Wilmington, United States of America) equipped with an

Agilent 1290 Infinity binary LC system. A 2 ml portion of sample was injected into

a C18 reverse column (Agilent Zorbax SB-C18, 2.16100 mm, 1.8 mm). The

mobile phase solvent system included solvent A, Milli-Q water with 0.1% formic

acid, and solvent B, acetonitrile with 0.1% formic acid. The sample was firstly

desalted with 5% solvent B at a flow rate of 0.3 ml/min for 3 min, eluted with a

17 min linear gradient of 5% to 90% solvent B at a flow rate of 0.3 ml/min. The

mass spectrometer was operated in positive electrospray ionization mode. Other

instrumental parameters were set as follow: capillary voltage: 3500 V, nozzle

voltage: 1000 V, fragmentor voltage: 175 V, skimmer: 65 V, octopole RF: 750 V.

Sensitive BoNT/B Detection Assay
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Result

LC/B specificity to FVP-B

The FRET assay is based on the detection of continuous signal increase resulting

from the hydrolysis of FVP-B to separate quencher Dabcyl from the fluorescent

donor EDANS. To verify the specificity of FVP-B to LC/B, FVP-B was used to test

the cleavage by different LCs of BoNTs. In this assay condition where 200 nM

each of the LCs were mixed with 8.4 mM FVP-B in reaction buffer in 500 ml

reaction volume for 1 h incubation at 37 C̊, the fluorescence intensity of each

reaction was quantified. The negative control was performed exactly the same as

other reactions, but without adding the LCs in the reaction. Figure 2 showed the

fluorescent intensity of each reaction and the negative control. The result showed

that dramatic increase of fluorescence intensity could be seen after incubating LC/

B with FVP-B, whereas incubation of other LCs with FVP-B did not produce

dramatic increase of fluorescence intensity, suggesting that FVP-B was specific to

LC/B cleavage (Figure 2).

The mixture sample of LC/B and FVP-B was then analysed by LC/MS to prove

the specific cleavage of FVP-B by LC/B. As shown in Figure 3, the FVP-B (

Figure 3A), C-terminal product of cleaved FVP-B (CT-product, Figure 3B) and N-

terminal product of cleaved FVP-B (NT-product, Figure 3C) could be detected.

The LC/MS results also proved that the sum of the molecular weights (Mr) of CT-

product (Mr51214.6) and NT-product (Mr51708.8) was about 2905.4 (with a

Figure 2. The specificity of the synthesized FVP-B. LCs (200 nM each) were mixed with 8.4 mM FVP-B in
reaction buffer to a final volume of 500 ml, incubated at 37˚C for 1 h, fluorescent intensity was measured by a
Fluorescence Spectrometer in quartz cuvette. The data obtained were processed with GraphPad Prism.

doi:10.1371/journal.pone.0114124.g002
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H2O molecular deducted), which was the same as that of FVP-B (Mr52906.4),

indicating that LC/B could specifically cleave FVP-B at the scissile bond.

FVP-B assay for LC/B activity detection

The effect of the cleavage of FVP-B by LC/B over a specific time period was

determined. Firstly, 228 nM LC/B was mixed with 8.4 mM FVP-B in reaction

buffer in 500 ml reaction system and incubated at 37 C̊. The fluorescent intensity

between 400 and 650 nm was measured every 30 min (except the last 1 h) over

480 min assay time. After 30 min incubation, dramatic increase of fluorescence

intensity could be observed. The signal increased steadily until reaching a steady

Figure 3. LC/MS analysis of specific cleavage of FVP-B by LC/B. Mixture sample of FVP-B (8.4 mM) and
LC/B (200 nM) from Figure 2 was analysed by LC/MS to detect the full length FVP-B (A), CT-product (B) and
NT-product (C).

doi:10.1371/journal.pone.0114124.g003
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stage at 480 min. Sharp increase of fluorescent intensity continued for at least

120 min and the rate of fluorescence increase slowed down after about 180 min

and finally reached to a steady state at 480 min (Figure 4A). LC/B velocity curve

was generated by recording the rate of increase in fluorescence intensity at

502 nm. The curve clearly indicated that fluorescence intensity increased over

time (Figure 4B). To optimize the assay and test the sensitivity of FVP-B for LC/B

detection, the LC/B concentration was titrated. First, FVP-B concentration was

fixed at 8.4 mM and 10-fold dilution of LC/B concentration was performed. A

dramatic fluorescent intensity increase was shown at LC/B concentration of

228 nM. Obvious fluorescent intensity increase can be seen at LC/B concentration

of 22.8 nM, yet no fluorescent intensity change can be observed at lower

concentration of LC/B (Figure 5A). Secondly, LC/B concentration was fixed at

22.8 nM and 5-fold FVP-B titration was performed. Significant fluorescent

intensity increase can be seen when FVP-B concentration was at 8.4 mM, and

relatively obvious fluorescent change can be seen at 1.68 mM of FVP-B, but not at

lower concentration (Figure 5B). However, when the concentration of FVP-B was

fixed at 1.68 mM, we further diluted the LC/B to 22.8 pM with extended

incubation time. After 2 h incubation at 37 C̊, obvious fluorescent intensity

change can be detected, and 4 h incubation showed even dramatic fluorescent

intensity change, but longer incubation time up to 8 h cannot produce any further

increase in fluorescent intensity. The fluorescent intensity was shown to be very

stable (Figure 5C and 5D). Taken together, the assay optimization results showed

that the detection sensitivity of the developed assay is about 20 nM of LC/B within

Figure 4. The feasibility of the synthesized FVP-B and our developed assay. (A) 228 nM purified LC/B was mixed with 8.4 mM FVP-B in reaction buffer
to a final volume of 500 ml. Reaction was incubated at 37˚C and the fluorescent intensity was measured in quartz cuvette every 30 min. The total duration of
measurement was 8 h. The data were processed by Origin85. (B) The fluorescent intensity peak at 502 nm was selected to represent the trend of the whole
data. The data were processed with Excel.

doi:10.1371/journal.pone.0114124.g004
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30 min, but the sensitivity can be improved to ,20 pM of LC/B with 2 h

incubation. Additionally, we have tested the effect of different concentrations of

zinc on LC/B activity and did not observe any association between zinc ion and

LC/B activity (data not shown).

To further illustrate the sensitivity of the developed system, various amounts of

LC/B were incubated with 8.4 mM FVP-B in 500 ml reaction volume for 1 h

incubation at 37 C̊. The limit of detection (LOD) was determined at about 4.1 ng/

mL (Figure 6).

FVP-B as LC/B inhibitor screening assay

To prove that this assay can be scaled up for BoNT/B inhibitor screening, EDTA

was used as an inhibitor of LC/B to test the validity of the assay. Different

Figure 5. Optimization of the developed assay system. To optimize the assay and test the sensitivity of our detection assay, ten-fold dilution of LC/B was
performed with the concentration of FVP-B fixed at 8.4 mM (A); five-fold dilution of FVP-B, with the LC/B concentration fixed at 22.8 nM (B); the fluorescent
intensity change at 502 nm of further diluted LC/B to 22.8 pM with 1.68 mM FVP-B and extended incubation time (C); and a spectrum representative of
22.8 pM LC/B incubated with 1.68 mM FVP-B for extended time span (D). Viewing from the data, the detection sensitivity of the developed assay is about
22.8 nM of LC/B within 30 min, but the sensitivity can be improved to 22.8 pM of LC/B with 2 h incubation. The data were processed by Origin85 and Excel.

doi:10.1371/journal.pone.0114124.g005
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Figure 6. Limit of detection of the developed LC/B detection system. Serial LC/B concentrations were
incubated with 8.4 mM FVP-B in 500 ml reaction volume for 1 h incubation at 37˚C. The fluorescence
intensities were potted versus the concentration of LC/B. For each concentration, at least five replicates were
carried out. LOD 53*S/k (S means standard deviation of negative control, k means slope).

doi:10.1371/journal.pone.0114124.g006

Figure 7. The inhibitory effect of EDTA on LC/B. 228 nM of LC/B was mixed with 8.4 mM FVP-B with reaction buffer to a final volume of 500 ml, incubated
at 37˚C for 1 h, and then the fluorescent intensity was measured by a Fluorescence Spectrometer in quartz cuvette (A); 100 ml reaction volume, which
contained 228 nM LC/B with 8.4 mM FVP-B, were carried out in 96 well plate after 1 h incubation at 37˚C (B). For simplicity, the fluorescent intensity peak at
502 nm was selected. The data obtained were generated from at least three times repeats, and then processed with Excel and GraphPad Prism, with the
negative control data subtracted.

doi:10.1371/journal.pone.0114124.g007
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concentrations of EDTA were tested in the assay, where 228 nM of LC/B and

8.4 mM FVP-B were mixed and incubated for 1 h at 37 C̊. The fluorescent

intensity was recorded at 502 nm, measured both in fluorescent cuvette (500 ml

reaction volume, Figure 7A) and 96 wellplate (100 ml reaction volume,

Figure 7B). At 0.1, 0.3, 0.5 and 1 mM EDTA, fluorescent intensity remained at

the same level as control (no LC/B added), while at 0 mM of EDTA, the

fluorescent intensity showed dramatic increase (Figure 7A and 7B). The data

indicated that FVP-B based assay is a useful tool for high throughput LC/B

inhibitor screening.

Discussion

BoNTs are the most potent naturally-occurring toxins known. Although BoNT/B

is not as clinically important as BoNT/A in term of its ability to cause human

botulism and its usefulness in various therapeutic processes, BoNT/B is still

frequently linked to human botulism, in particular infant botulism. Data from

CDC showed that 58.4% cases of infant botulism (387 out of 663) were attributed

to BoNT/B during a 2001 to 2007 surveillance [37]. In addition, BoNT/B is also

used as human therapy to treat dystonia in addition to BoNT/A. Moreover,

because of the many ethical and legal concerns over the standard mouse bioassay,

an alternative, simple and sensitive detection method is urgently needed to either

detect trace of BoNT/B in food or for designing new potent inhibitor to neutralize

the toxin. Recently, several new methods have been reported to detect BoNT/B

with higher sensitivity in the picomolar to femtomolar ranges [38]; these include

common methods like ELISA with comparable sensitivity as mouse bioassay

[37, 39], and fast detection methods such as micromachined BoNT/B detection

sensor for BoNT/B detection within minutes, but with lower sensitivity [40].

However, all these methods need complicated procedures, expensive apparatus

and are difficult to be scaled up. FRET coupled LC/B detection methods have been

reported before [31, 41]. However, the synthesized peptides were much longer

(either contained VAMP2 (residues 55–94) or VAMP2 (residues 60–94)) than the

peptide reported here. Most importantly, some have mutated or replaced the

residue F77 of VAMP2, which will dramatically reduce the efficiency of LC/B to

cleave this substrate according to our previous data that the P19 site played a very

important role in enzyme catalysis: the mutant VAMP2 (F77A) reduced the LC/B

cleavage efficiency to more than 320-fold [33]. In addition, there are several

versions of FRET based peptides available in market (List Biological Laboratories,

INC. USA), and one of them has been claimed to exhibit a LOD as low as 140 pg/

mL after 5 h digest or 8 pg/mL after 24 h digest. Christine Anne et al reported a

fluorogenic assay system for BoNT/B activity determination with a 3.5 pg/mL

detection sensitivity after 4 h incubation time [31]. However, it is questionable

that there is no effect of BoNT/B cleavage of peptide, as claimed by the authors, by

replacing the native phenylalanine in position 77 by a p-nitrophenylalanine.

Moreover, the cost of the claimed high sensitivity is the longer incubation time,

Sensitive BoNT/B Detection Assay
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4 h or even longer, when compared to the present assay which needs as short as

1 h incubation to reach a 4.1 ng/mL LOD. In addition, the different reaction

conditions, buffer system, sensitivity of spectrometer could also affect the LOD of

known commercial systems. The current assay seems more stable, reproducible

and more economic due to its shortest length compared to the commercial kits.

In this study, we developed a simple, fast and sensitive VAMP2 based FRET

peptide for LC/B detection. The detection sensitivity is about 20 pM of BoNT/B

with 2 h incubation. FRET based BoNTs detection method has been proven to be

very useful in both clinical application and research. SNAPtide, a commercial

13mer FRET peptide developed for BoNT/A detected has been widely used in

BoNT/detection and inhibitor screening in many researches [42, 43, 44]. However,

due to the lower cleavage efficiency by BoNT/A, the role of SANPtide as high

throughput assay was limited. Since FVP-B is designed based on the optimal

substrate for BoNT/B, the FRET peptide we developed has very similar cleavage

efficiency by BoNT/B as natural substrate VAMP2. We have designed another

version of FRET based peptide, the positions modified were A74 and T79, the

single-letter sequence is 63-L D D R A D A L Q A G E-(Edans) S Q F E K-(Dabcyl)

S S A K L K-85. Based on the previous investigation, the mutation or modification

on 74 or 79 has less effect on LC/B cleavage than that of 76 or 85 (the two sites

modified in the present FVP-B peptide) [33], but it showed much lower

sensitivity and lower LC/B cleavage efficiency than FVP-B (data not shown).

Therefore, FVP-B based assay represents a good FRET assay for BoNT/B detection

and also proved to be useful for high throughput BoNT/B inhibitor screening.
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