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Engineering the electromagnetic environment of a nanoscale light emitter by a photonic 

cavity can significantly enhance its spontaneous emission rate through cavity quantum 

electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of 

the emitter
1–5

, providing the ultimate low-threshold laser system with small footprint, low 

power consumption and ultrafast modulation. A state-of-the-art ultra-low threshold 

nanolaser has been successfully developed though embedding quantum dots into photonic 

crystal cavity (PhCC)
6–8

. However, several core challenges impede the practical 

applications of this architecture, including the random positions and compositional 

fluctuations of the dots
7
, extreme difficulty in current injection

8
, and lack of compatibility 

with electronic circuits
7,8

. Here, we report a new strategy to lase, where atomically thin 

crystalline semiconductor, i.e., a tungsten-diselenide (WSe2) monolayer, is nondestructively 

and deterministically introduced as a gain medium at the surface of a pre-fabricated 

PhCC. A new type of continuous-wave nanolaser operating in the visible regime is achieved 

with an optical pumping threshold as low as 27 nW at 130 K, similar to the value achieved 

in quantum dot PhCC lasers
7
. The key to the lasing action lies in the monolayer nature of 

the gain medium, which confines direct-gap excitons to within 1 nm of the PhCC surface. 

The surface-gain geometry allows unprecedented accessibilities to multi-functionalize the 

gain, enabling electrically pumped operation. Our scheme is scalable and compatible with 

integrated photonics for on-chip optical communication technologies. 
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Monolayer transitional metal dichalcogenides (TMDCs) with chemical formula MX2 

(M=W, Mo; X=S, Se, Te. See Fig. 1a for crystal structure) are the first class of two-dimensional 

(2D) semiconductors with a direct band gap in the visible frequency range
9,10

, where tightly 

bound excitons with novel properties are discovered
11–13

. These structurally stable, mechanically 

strong, electrically tunable, and optically active materials have generated vast interest in the 

scientific community due to their great potential for spin-valleytronics
14,15

, field effect 

transistors
16

, light emitting diodes
17,18,19

, solar cells
20

 and photo-detectors
21

, expanding new 

realms in 2D-crystal-based science and device applications. 

 We here demonstrate the first nanoscale laser system based upon 2D quantum materials, 

harnessing the unique advantages of atomically thin crystals for coherent light generation. In our 

architecture, monolayer WSe2, as seen in the optical image in Fig. 1b, is selected as the gain 

medium due to its desirable bandwidth and relatively high photoluminescence (PL) quantum 

yield compared to other TMDC monolayers. The monolayer is coupled to a prefabricated PhCC 

on a gallium phosphide (GaP) thin membrane
22

 which is transparent to WSe2 emission (See 

Fig.1a and Methods). An L3 type of PhCC is employed
23

, where three neighboring holes in 

linear arrangement are missing, shown by the scanning electron microscopy (SEM) image in Fig. 

1c. The PhCC is carefully designed to yield the highest quality factor (Q-factor) mode with 

resonant energy around 740nm, which is in the band of the monolayer PL. 

 Controlled spontaneous emission was recently demonstrated in monolayer 

semiconductors, where low Q-factor PhCCs
24,25

 (~300) or distributed Bragg reflectors
26

 were 

used. In our devices, the as-fabricated PhCCs have Q-factors of ~10
4
 (Extended Data Fig. 1), 

improved by ~30 times. This results in a significant improvement of the Purcell factor
24,25

 

(Supplementary Information S1), which is crucial for lasing. To achieve such a high Q-factor in 

the visible region, we use a 125 nm thick membrane (see Methods), which is 55 nm thinner than 

our previously reported low-Q cavity where no lasing behavior was observed
25

. This design 

significantly improves the cavity Q-factors, due to an optimal thickness to lattice constant ratio, 

and more importantly, an improved sidewall-verticality due to the lower aspect ratio of the 

etched holes. Conical (non-vertical) etching of the holes leads to coupling to leaky TM modes of 

the slab
27

, which eventually decreases the Q. 
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 The gain-cavity coupling is achieved through directly transferring WSe2 monolayer on 

top of the PhCC, using methods that are well established for 2D materials. In the cartoon plot of 

Fig. 1a, we show the electric-field intensity profile (x-y plane) of the fundamental mode defined 

by our cavity, simulated by finite-difference time-domain (FDTD) method
23

. Fig. 1d illustrates 

the cross section (x-z plane) profile of the mode, where the orange dashed line indicates the ideal 

position of WSe2 monolayer. The corresponding electric field intensity at the monolayer 

maintains ~ 40% of the maximum located at the center, allowing for efficient overlap between 

the cavity mode and monolayer WSe2 on the surface. In our geometry, even though the gain 

medium is placed outside the cavity, the ultimate miniaturization in thickness (~0.7nm) of the 

monolayer allows the minimal degradation of gain-cavity coupling.  

 Lasing at a reduced threshold power is achieved by enhancing spontaneous emission into 

a resonant cavity mode. Fig. 1e shows a typical emission spectrum of the hybrid structure, taken 

under optical pumping by 632 nm continuous-wave (CW) laser at 80 K. The laser emission is the 

sharp feature located at 739.7 nm. We extract 0.3 nm linewidth at the half maximum of this 

spectrum. The peak is polarized in the “y” direction, consistent with the fundamental mode of the 

cavity. 

 One hallmark feature of a laser is the nonlinear “kink” that occurs around the lasing 

threshold in the log scale plot of the output light intensity (detected power by integrating over the 

spectrum) as a function of pump (L-L curve). In Fig. 2a-b, we present the L-L curves (red filled 

square) for the monolayer laser at temperatures of 130 K and 80 K, both showing the nonlinear 

“kink” at the laser threshold region. We estimate the typical emission power levels, after the 

objective, of our lasing devices at this region to be ~ 10 fW with 100 nW incident pump power. 

A set of power-dependent data for spontaneous emission off cavity resonance is also shown as 

contrast (violet half-filled square), where no “kink” signature is observed. The PL spectra 

corresponding to the denoted data points (arrows in Fig. 2b) are shown in Fig. 2c. The L-L curve 

is fitted by cavity laser rate equation (Supplementary Information S2), as shown by the solid 

lines.  

 In a nanocavity laser, the 𝛽 -factor is the figure of merit that characterizes the laser 

threshold, and is defined as the fraction of the spontaneous emission into the cavity mode 

(Supplementary Information S2). A large 𝛽-factor reduces the lasing threshold power. We find 
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that 𝛽 = 0.19 is the best fit to our observed data, while 𝛽 = 0.05 and 𝛽 = 1 are also plotted for 

reference. This indicates that in our WSe2-cavity system ~19% of the total spontaneous emission 

is coupled to the cavity mode, comparable to the performance achieved in quantum-dot photonic 

crystal cavity lasers. We extract the lasing threshold of our device to be 27 nW (~1 W/cm
2
) 

measured by the incident power. Such ultralow threshold lasing behavior demonstrates that the 

cavity-gain coupling in the surface-gain geometry is as efficient as the embedded quantum dot 

structure
6,7

.  

 The observed ultralow lasing threshold relies on the high Q cavity mode. This can be 

further supported by the data taken from the same device with lowered Q-factor, achieved by 

covering the device with a poly(methyl methacrylate) (PMMA) layer on top. In this situation, the 

lasing threshold increases up to around 100 µW (Extended Data Fig. 2). 

 We also study the linewidth evolution around the lasing threshold region. Fig. 2d shows 

the linewidth as a function of output intensity at 160 K. A pronounced “kink” appears around the 

threshold, similar to the L-L curve.  Below the threshold, the observed linewidth narrows from 

~0.75 nm to ~0.50 nm with increased output power. At the threshold regime, it re-broadens to 

~0.65 nm, and then continues to narrow to 0.55 nm. This linewidth dependence is a well-known 

feature that has been observed in semiconductor nanocavity lasers, such as quantum well
28

 and 

quantum dot nanolasers
7
. The “kink” arises during the phase transition from spontaneous 

emission into stimulated emission, where the coupling between intensity and phase noise (gain-

refractive index coupling) significantly influences the linewidth, and leads to a re-broadened 

emission spectrum
7,28,29

. Such observed linewidth plateau, together with the L-L curve, clearly 

reveals the lasing behavior in our monolayer semiconductor nanocavity system. 

 It is essential to lasing that the cavity mode dominates the emission. To illustrate this, we 

present a contrast experiment between on- and off-cavity regions, by performing a scanning 

micro-PL measurement on our device. In Fig. 3a, we plot a peak distinguishing map, where the 

normalized peak (739.7nm) height of the lasing spectrum is mapped out over the entire photonic 

crystal region, indicated by the dashed white line. The dashed orange line indicates the 

monolayer WSe2, as also shown in the inset SEM device image. The laser emission only comes 

from the cavity. A set of typical spectra taken on and off cavity (indicated by dashed circles in 

Fig. 3a) is shown in Fig. 3b. The on-cavity emission is dominated by the lasing mode while the 
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non-lasing spontaneous emission is prominently suppressed compared to the off-cavity emission. 

This is strikingly different from the similar observation in the low-Q device where the on-cavity 

yields similar broad emission from off-cavity
24,25

.  

 Temperature dependent emission behavior of the same device is presented in Fig. 3c. A 

redshift of the emission wavelength with increasing temperature is consistent with the energy 

shift of the cavity mode
22

. Lasing characteristics are examined at temperatures below 160K, 

above which the cavity emission is small compared to the background emission and challenging 

to extract its absolute intensity. Up to about 250 K, the cavity peak diminishes into the recovered 

background spontaneous emission. A possible explanation of this could be the degradation of the 

cavity resonance induced by the different thermal expansion between GaP membrane and WSe2 

monolayer. Nevertheless, in principle there should be no limitation to increase the lasing 

temperature. Further improvement of the Q factor by optimizing the cavity designs and 

fabrication procedures is one way to achieve room temperature lasing. An alternative way is to 

find other monolayers or their heterostructures that emit photons at energies compatible with 

silicon photonics. We could then use silicon PhCCs, which have much higher Q than GaP. 

 We finally discuss the reproducibility of our new lasing architecture based on a 

monolayer semiconductor and a PhCC. It is routine to fabricate multiple PhCCs on a single chip, 

while deterministic multiple-transfer of monolayer semiconductors onto different PhCCs can be 

achieved to make monolayer hybrid devices (Fig. 4a). In Fig. 4b, we present the lasing spectrum 

taken from three different devices in the same chip under similar conditions. The lasing devices 

can be robustly reproduced. It suggests that mass production can be achieved, especially if large 

area monolayers grown from chemical or physical vapor deposition are utilized. 

 Our design demonstrates the remarkable possibility to achieve scalable nanolasers using 

monolayer gain for integrated chip systems. In such a surface geometry, the advantage is that the 

construction of the optical nanocavity and gain material are naturally separated, allowing 

fabrication of both parts individually with high quality, before their nondestructive and 

deterministic combination as hybrids. This unprecedented ability enables their realistic 

applications in a scalable and designable way, compatible to integrated electronic circuits. 

Electrically pumped operation and electrostatic tuning the carrier concentration can also be 

achieved directly, in contrast to the conventional designs. Our monolayer surface-gain geometry 
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presents a versatile lasing technology and an advancement relative to quantum dot nanocavity 

lasers, with gain material being incorporated after the laser cavity fabrication, which eliminates 

the degradation of the gain medium during the fabrication process and enables its replacement if 

needed. We envision that a natural extension of exploring other 2D crystals, as well as their 

heterostructures, might give a birth to a nanolaser with emission energy compatible to silicon 

photonics technologies. Many exotic properties of 2D semiconductors may also lead to novel 

devices such as valley-selective lasers. Beyond nanolasers, many on-chip photonic 

implementations, such as the study of strongly coupled cavity quantum electrodynamics
30

, 

nonlinear optics and photonic quantum control, could open new horizons based on 2D quantum 

materials and their heterostructures. 
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Figure 1 

 

Figure 1 | Hybrid monolayer WSe2/PhCC nanolasers. a, Cartoon depiction of our device 

architecture, where the electric-field profile (in-plane, x-y) of the fundamental cavity mode 

(pristine cavity before WSe2 transfer) is embedded as the color plot. The inset is a cartoon of the 

atomic structure of monolayer WSe2. b, Optical image of monolayer (labeled as “ML”) WSe2 on 

PMMA before transfer. c, SEM image of the hybrid device. Q-factor is ~8000 in this cavity 

before WSe2 transfer. Scale bars: 3 µm. d, Cross section electric-field intensity profile (x-z) of 

the fundamental mode, where the dashed orange line indicates the ideal position of monolayer 

WSe2, the solid white rectangles for air holes and dashed white lines for cavity region. e, 

Polarization-resolved PL spectrum of our device taken at 80 K, showing a completely polarized 

narrow emission at ~740 nm. Black (red) line corresponds to detected linear polarization in x (y) 

direction. 
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Figure 2 

 

Figure 2 | Lasing characteristics. a, Light output intensity (detected power after spectrometer) 

as a function of the optical pump power (L-L curve) at 130 K. Red filled squares correspond to 

the cavity emission. Violet half-filled square corresponds to the spontaneous emission (SE) off 

cavity resonance. Solid lines are the simulated curves using the laser rate equation with different 

𝛽 factors. 𝛽 = 0.19 is the best fit to the lasing data. Dark dashed line corresponds to the defined 

laser threshold. b, L-L curve for the same lasing device at 80 K (red squares), where the solid 

line is a guide for the eye to the transition region. c, The PL spectra corresponding to the data 

points in b indicated by the colored arrows. The solid lines are Lorentzian fits to the PL spectra. 

d, Cavity linewidth as a function of the detected output power at 160 K (red empty squares). 

Dashed line is an eye-guide to the nonlinear linewidth re-broadening area, which corresponds to 

the lasing threshold region. 
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Figure 3 

 

 

Figure 3 | Spatially resolved emission and temperature-dependent device behavior. a, Peak 

distinguishing spatial map of our device, where peak height, i.e., normalized intensity difference 

between peak summit (739.7 nm) and bottom (738 nm), is mapped out at 80 K. Dashed white 

line indicates the photonic crystal area and the dashed orange line shows the area that is covered 

by monolayer WSe2. Inset is the corresponding device image in SEM. b, PL spectra taken on 

(red) and off (green) cavity region, indicated by the dashed color circles in the inset of a. c, 

Temperature dependence of the device emission spectra in grey-scale map.  
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Figure 4 

 

Figure 4 | Reproducibility and scalability of the 2D nano-lasers.  a, An example of 

deterministic fabrication of multiple devices on one chip. Here we show an optical image of a 

typical area with 5 PhCC devices in a row and the last two (indicated by the arrows) are covered 

with monolayer WSe2. Scale bar: 10 µm. b, Lasing spectra (three) can be reproducibly taken 

from different devices on the same chip under similar conditions.  
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Methods 

Purcell factor estimation 

We estimate the maximum achievable Purcell factor of the cavity, i.e., the peak enhancement of 

the emission rate, through: 

𝐹𝑚𝑎𝑥 =
3

4𝜋2

𝑄

𝑉
 (

𝜆𝑐

𝑛
)3 . 

Here, 𝐹𝑚𝑎𝑥 is the maximum Purcell factor, 𝑄 is the cavity quality factor, 𝑉 ~(
𝜆𝑐

𝑛
)3 is the mode 

volume, 𝑛~3.1 is the GaP refractive index and 𝜆𝑐~740 nm is the cavity emission wavelength. 

We obtain 𝐹𝑚𝑎𝑥  ~ 607 for the as-fabricated cavity 𝑄 = 8000. 

𝑄 factor can be smaller after the monolayer transfer. At room temperature, the Q factor measured 

after monolayer transfer reduces to ~ 1300, consistent with the PL emission at high temperatures. 

When cooling down to low temperatures, the Q factor recovers to ~ 2500. The spatial 

displacement (z direction), due to the surface-gain geometry, and the random dipole directions of 

the emitter could also affect the enhancement of the spontaneous emission rate. Considering 

these effects, the Purcell factor should be written as: 

𝐹 = 𝐹𝑚𝑎𝑥|𝜓(𝑠)|2 < cos2𝜉 >. 

Here |𝜓(𝑠)|2 = |
𝐸(𝑠)

𝐸𝑚𝑎𝑥
|2~0.4 is the field intensity ratio (Fig. 1d) between the surface and the 

central maximum of the cavity, describing the effect of spatial detuning. 𝜉 is the angle between 

emitter dipole direction (random in x-y plane) and the electric field polarization (y direction). 

< cos2𝜉 > =  
1

2𝜋
∫ cos2𝜉

2𝜋

0
 𝑑𝜉 =

1

2
. Therefore we estimate the Purcell factor as F ~ 37 for Q ~ 

2500, where we consider the monolayer exciton that is spectrally tuned on the cavity resonance 

and located right above the center of the cavity.  

In real situation, this value could be further reduced. For example, we may also need to consider 

the spatial displacement of exciton in lateral directions, which will require the knowledge of in-

plane exciton distribution that is yet unknown. Moreover, spectral fluctuations of the excitonic 

linewidth would lead to variation in the Purcell factor over time described by the Lorentzian of 

the cavity spectrum. However, the spontaneous emission coupling factor 𝛽 is estimated to be ~ 
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0.19 from the measurement (see next section and Fig. 2a of main text), reflecting an efficient 

Purcell enhancement in this geometry. 

Laser rate equation 

The spontaneous emission coupling factor 𝛽 is an essential figure of merit for a nanocavity laser. 

To extract its value, we use a rate equation
6
 model to describe the evolution of carrier (exciton) 

number 𝑁 and the cavity photon number 𝑃 in the monolayer-PhCC system: 

𝑁̇ = 𝑅𝑒𝑥 −
𝑁

𝜏𝑆𝐸
−

𝑎𝑁𝑃

𝜏𝑐𝑎𝑣
, 

𝑃̇ = −
𝑃

𝑡𝑐
+ 𝛤

𝑁

𝜏𝑐𝑎𝑣
+ 𝛤

𝑎𝑁𝑃

𝜏𝑐𝑎𝑣
, 

𝛽 =
𝜏𝑆𝐸

𝜏𝑐𝑎𝑣
 

Here, 𝑅𝑒𝑥 is the optical pumping rate. 𝜏𝑆𝐸
−1 is the total spontaneous emission rate. 𝜏𝑐𝑎𝑣

−1 is the 

emission rate into the cavity mode. 𝑡𝑐
−1 is the cavity photon decay rate. 𝑎𝑁𝑃 is the stimulated 

emission, which is proportional to 𝑁 ∙ 𝑃 with coefficient 𝑎. 𝛤 is the cavity confinement factor. 

We have ignored non-radiative relaxation processes. The rate of non-radiative decay in 

monolayer semiconductors is currently not known. Any non-radiative decay would induce 

additional loss which would result in a larger 𝛽 factor
31

.  The transparent carrier number is set to 

be zero, since it does not affect the fitting result significantly.  

We set 𝑁̇ = 0 and 𝑃̇ = 0 to obtain the steady state solution of above coupled equations. The 

solution is: 

𝑅𝑒𝑥 =
𝑃

Γ𝑡𝑐(1 + 𝑎𝑃)
(

1

𝛽
+ 𝑎𝑃) 

The lasing threshold is defined as the condition when the stimulated emission is equal to the 

spontaneous emission in the cavity, i.e., 𝑎𝑃 = 1. When 𝑎𝑃 > 1, stimulated emission dominates 

in the hybrid system and lasing behavior occurs. 

We fit our experimental L-L curve with above equation, as plotted in Fig. 2a in the main text. 

β = 0.19 is found to be the best fit to the data taken at 130 K.  
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PhCC fabrication:  

To fabricate the photonic crystal structures, a 125 nm thick GaP membrane was grown on the top 

of a 1 μm thick sacrificial Al0.8Ga0.2P layer on a GaP wafer via gas-source molecular beam 

epitaxy (GSMBE). The patterns were first defined in ZEP520 resist by electron-beam 

lithography (JEOL JBX 6300, 100 keV) and then transferred to the GaP membrane by a 

chlorine-based reactive ion etch. Excess resist was removed with Microposit remover 1165 

followed by oxygen plasma. The sacrificial layer was finally undercut with hydrofluoric acid to 

yield suspended membrane structures with high index contrast, followed by cleaning in dilute 

KOH to remove any by-products of the undercut.  

Hybrid device fabrication:  

The PhCC/WSe2 hybrid structure was fabricated through a standard polymer micro-transfer 

process. A monolayer WSe2 was first mechanically exfoliated onto a polymer-coated silicon 

substrate where water-soluble polyvinyl alcohol (PVA, 1%) followed by poly(methyl 

methacrylate) (PMMA, 950, 6%) was spin-coated on the chip. The stacked monolayer 

WSe2/PMMA/PVA/Si substrate was then placed on top of water, dissolving the PVA layer to 

separate the silicon substrate. The floating WSe2/PMMA membrane was transferred using a 

“perfect loop” (TED PELLA, INC), placing the monolayer onto the pre-fabricated PhCC under 

microscope followed by heating. The PMMA cover layer was dissolved by a 2-hour acetone bath 

and a 2-minutes isopropyl alcohol bath.  
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Extended Data Figure 1 | Cavity Q factor determination. a, SEM image of a typical PhCC.  b 

and c, Room temperature cross-polarized reflection taken from this cavity, before (b) and after 

(c) monolayer WSe2 transfer. The as-fabricated cavity (before transfer) of our lasing devices 

typically have Q-factors ranging from 5000 to 14000. After monolayer transfer, the Q factor is 

reduced from 8000 to 1300 in this device. After cooling down to cryogenic temperatures, the Q 

factor recovers to ~ 2500.  
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Extended Data Figure 2 | Device behavior with poly(methyl methacrylate) (PMMA) 

reduced Q-factor. a, PL spectra taken from the PMMA covered device at different pumping 

powers (30 K), showing pronounced cavity peaks. b, A zoom in of the cavity peaks. c, Power 

dependence of the integrated peak-intensity. A nonlinear “kink” appears around 100 μW. The 

PMMA layer reduces Q-factor to ~ 500, and also shifts the resonance to lower energy (750.7nm). 

This supports the conclusion that the ultralow lasing threshold in our device results from the high 

Q-factor, by significantly enhancing the spontaneous emission rate into the lasing mode. 
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Extended Data Figure 3 | The nonlinear “kinks” at 80 K. Both integrated emission intensity 

(a) and linewidth (b) are shown. The same set of data as in Fig. 2b. 


