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Mitigating Voltage and Frequency Fluctuation in
Microgrids Using Electric Springs

Xia Chen, Member, IEEE, Yunhe Hou, Member, IEEE, Siew-Chong Tan, Senior Member, IEEE,
Chi-Kwan Lee, Senior Member, IEEE, and Shu Yuen Ron Hui, Fellow, IEEE

Abstract—Voltage and frequency fluctuation associated with
renewable integration have been well identified by power system
operators and planners. At the microgrid level, a novel device for
the implementation of dynamic load response, which is known
as the electric springs (ES), has been developed for mitigating
both active and reactive power imbalances. In this paper, a com-
prehensive control strategy is proposed for ES to participate in
both voltage and frequency response control. It adopts the phase
angle and amplitude control which respectively adjust the active
power and the reactive power of the system. The proposed control
strategy is validated using a model established with power system
computer aided design/electro-magnetic transient in dc system.
Results from the case studies show that with appropriate setting
and operating strategy, ES can mitigate the voltage and frequency
fluctuation caused by wind speed fluctuation, load fluctuation,
and generator tripping wherever it is installed in the microgrid.

Index Terms—Control, electric springs (ES), frequency,
microgrids, voltage, wind power.

I. INTRODUCTION

DUE TO the energy crisis and environmental concerns,
penetration of renewable energy has been increasing dra-

matically. Renewables can be utilized in large scale, i.e., large
wind farms connected with transmission systems, or in small
scale, i.e., wind turbines connected to microgrids. At all levels,
variability and uncertainty associated with renewable energy
sources, such as wind power and solar power, can signif-
icantly challenge the operating methodology of traditional
power systems [1].

In microgrids, the major challenges of adopting small-scale
wind generation are twofold. Firstly, the variation of active
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power and reactive power resulting from the wind speed
fluctuation will introduce a change in the voltage drop along
the power line. This in turn induces a nonnegligible bus volt-
age variation which may exceed the required power supply
limits [2], [3]. The voltage variation may cause serious prob-
lem for critical loads, which demand a high-quality voltage
supply. Secondly, a large deviation between the supply and
the demand due to a fluctuation in the wind power may result
in unexpected frequency fluctuation in microgrid systems [4].
Such challenges are well known and some relevant research
handling these issues has been reported in [5]–[7].

For microgrids, different measures have been developed to
alleviate the negative effects of the voltage disturbance and
to mitigate the power quality problems [8], [9]. To solve the
voltage dip and swell problems caused by renewable energy
fluctuation, static series compensators (SSC), or dynamic volt-
age restorers (DVR), are introduced to inject a compensating
series voltage into the system. In terms of voltage support,
these devices are costly and demand complicated protection
system due to the utilization in the transmission level com-
pared to the electric springs (ES) application in the distribution
with a lower voltage level [10].

For another critical problem in a microgrid, i.e., frequency,
some control schemes have been proposed to maintain it
within an acceptable region. Generally, these schemes based
on the idea that a power reserve bank is provided to smooth
the possible power deviations [11]. These methods may lose
their effectiveness when a large fluctuating power deviation
exceeds the preset power reserve bank [12]. Load shedding
has to be employed as the last action in the traditional power
systems [13]. Recently, with the development of the energy
storage system (ESS), it provides a promising solution for reg-
ulating of the wind farm fluctuation [14], [15]. Until now, the
cost of the required ESS is very high if the wind power output
variation is considerable large [16], [17].

In the context of smart grids, dynamic load response is well
identified as an efficient method for mitigating deviations of
voltage and frequency, not only for transmission systems, but
also for microgrids [18], [19]. Recently, the concept of ES has
been proposed as a simple and effective solution for achieving
grid voltage stabilization and active power factor compensa-
tion at the distribution level [20], [21]. With this solution, ES is
connected in series with a noncritical load to become a smart
load. The ES possesses an automatic mechanism of regulating
the power flow of the noncritical loads to provide the required
voltage support across the distribution grid. Therefore, the ES
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Fig. 1. Configuration of an ES.

operates only at a portion of the voltage instead of the full
voltage range of the utilization level [21]. The advantage lies
in that the ES contributes only a fraction of the power change
and relies heavily on the series noncritical load for shaping the
power flow. Hence, for buffering the same power variation, the
storage capacity requirement of ES is much smaller than that
of the ESS [22]. Also, compared to the SSC that are usu-
ally applied at the high-voltage transmission level, an output
coupling transformer would be needed in the SSC for voltage
conversion [10], whereas no such requirement is needed for
the ES. Furthermore, despite the fact that the application of
ES at the distribution level of standard power system has been
found promising [20]–[22], there has not been any report on
the application of ES in a microgrid system.

In view of this, the objective of this paper is to report the
study on the utilization of ES for maintaining the voltage and
frequency stability of a nine-bus microgrid system comprising
standard power generators and a variable and uncertain power
supply in the form of wind energy. Interestingly, this is the first
time that the ES is applied for frequency stabilization in addi-
tion to their original purpose of the line voltage stabilization.
In the following, the operating principle of the ES is firstly
analyzed for both the active and reactive power compensa-
tions. Then, based on the established mathematical model of
the ES, the required control strategy for performing both the
line voltage regulation and the load demand control is intro-
duced. Then, simulation results and discussion are presented.
Finally, the conclusion is covered.

II. SYSTEM CONFIGURATION AND MODELING

A. ES Configuration

Borrowing the concept of the mechanical spring, the ES has
the following functions: 1) provide the electric voltage support;
2) store electric energy; and 3) damp electric oscillations [20].
The configuration of an ES is shown in Fig. 1. The output of
the ES is serially connected to a noncritical load to form a
smart load. The noncritical load can be a single or a group
of electric loads which can tolerate some degrees of voltage
variation without causing significant inconvenience to the user.

B. Operational Principle

The vectorial sum of the noncritical load voltage Vo and the
compensation voltage Ves is equal to the supply voltage Vs.
Vo can be boosted or suppressed by Ves which is generated

Fig. 2. Phasor diagram of ES.

Fig. 3. Circuit diagram of the ES.

by the ES. Consequently, the power consumption of the non-
critical load can be controlled. Fig. 2 shows a phasor diagram
of the operation mode of which ES provides the voltage boost
function. The ES acts as a series compensator which could
provide a variable ac voltage that changes the voltage of the
load Z0, thus changing the power flowing to the load even
though the line voltage Vs and the load Z0 are unchanged.

The ES can, in principle, perform active and/or reactive
power control. For instance, the change of compensation
voltage Ves can simultaneously provide reactive power com-
pensation to the power system when the voltage Ves is
controlled in quadrature with the load current Io. Meanwhile,
the active power consumption can be performed when a battery
is equipped at the dc side. As far as the charging and discharg-
ing of the battery is concerned, during the normal condition,
this problem could be avoided. It is assumed that the battery
operates in an ideal mode and has good charge/discharge char-
acteristics in this paper. Actually, the batteries can be replaced
by other types of bidirectional dc voltage source or a dc/ac bi-
directional power converter of which the ac side is connected
to the power grid.

III. CONTROL STRATEGY

The ES may be implemented using a half-bridge
single-phase inverter with an inductor capacitor (LC) out-
put filter for eliminating the high-frequency pulse width
modulation (PWM) signal as shown in Fig. 3. The protection
of the capacitor in this configuration should be considered with
the elaborate design of LC filter. The ES output is connected
in series with the grid and also to the load and it can produce
either an active (±Pes) and/or reactive power (±jQes) differ-
ence between the power source and the load. At steady state,



510 IEEE TRANSACTIONS ON SMART GRID, VOL. 6, NO. 2, MARCH 2015

the power relationship between the grid, the load and the ES
could be obtained as follows:{

Ps = P0 ± Pes
Qs = Q0 ± Qes.

(1)

The ES power, the load power and the power source are
expressed below{

Pes = |Ves| × |I0| cos (δ + ϕv)

Qes = |Ves| × |I0| sin (δ + ϕv)
(2)

{
P0 = |V0| × |I0| cos θ

Q0 = |V0| × |I0| sin θ
(3)

{
Ps = |Vs| × |I0| cos δ

Qs = |Vs| × |I0| sin δ
(4)

where ϕv is the phase angle between the ES and power supply
voltage, δ and θ are the power factor angle of the power supply
and load, respectively.

From (1)–(4), the load power can be calculated as shown in{
P0 = |Vs| × |I0| cos δ − |Ves| × |I0| cos (δ + ϕv)

Q0 = |Vs| × |I0| sin δ − |Ves| × |I0| sin (δ + ϕv).
(5)

In [21], it is concluded that a change in the RMS value of the
ES voltage |Ves| and the displacement angle of ES voltage ϕv

may simultaneously affect both the active and reactive power
compensations. ES can provide active power to the grid and
to support the frequency control to reduce any sudden, large
load-generation imbalance.

The average model for the half-bridge inverter is written as
follows: ⎧⎨

⎩
Vs − Ves − Z0I0 = 0

I0 + If = Ic

Ic = Cf
dVes

dt

(6)

{
Lf

dIf
dt = Va − Ves

Va = Vdc
2 m

(7)

where Lf and Cf denote the filter inductance and capacitance,
respectively, Vdc is the dc-link voltage of the inverter, and Va

is the output ac voltage of the inverter.
The modulation index can be written as

m = (Vsref − Vs)

Vtri
Gc (t) (8)

where Gc(t) is the compensating function; Vtri is the amplitude
of the PWM triangular carrier; Vsref is determined according
to the voltage requirement by the critical load, and the rated
voltage is usually chosen.

The state space model of the ES is[ •
Ves•
If

]
=

[− 1
Z0Cf

1
Cf

− 1
Lf

0

] [
Ves
If

]
+

[
0

Vdc
2Lf

]

× (Vsref − Vs)

Vtri
Gc(t) +

[
Vs

Z0Cf

0

]
. (9)

The average linearized model of the ES is shown in Fig. 4.
The control of the ES is different from the tradi-

tional SSC using output-voltage control method. With the
“input-voltage control” mechanism, an ES regulates the line

Fig. 4. Average linear model of ES.

Fig. 5. ES with voltage control loop.

voltage Vs by controlling the power flow to the noncritical
load and allows the noncritical load voltage Vo to fluctuate
dynamically. The modulation index m can be obtained from
the control of the line voltage Vs given by (8). As illustrated
in Fig. 5, by controlling the m of the PWM inverter, high-
quality PWM voltage waveform at the line frequency can be
generated. With the use of the low-pass filter, a sinusoidal volt-
age (Ves) with the controllable magnitude by adjusting the m
obtained from the ac voltage controller, can be generated as the
output of the LC filter. The reactive power may be directly con-
trolled by varying the amplitude of the compensation voltage
Ves across the filter capacitor of the ES.

The input power equation of the dc-link of the inverter is

Pdc = VdcIdc = Vdc × C
dVdc

dt
= 1

2
C

dV2
dc

dt
. (10)

By assuming an ideal lossless power inverter, the ac output
power and the dc input power of the inverter have the following
relationship:

Pdc = Pes = Ps − P0. (11)

The ac side power fluctuation may result in the dc-link volt-
age variation. By controlling the dc-link voltage to be constant,
the power balance between the ac and dc link is maintained.
At the initial stage, the dc-link capacitor is charged to estab-
lish a constant dc voltage. A power fluctuation at the terminal
bus results in an error in the dc-link voltage. The dc voltage
controller adjusts the phase angle to ensure that the power is
balanced between the dc side and ac side of the inverter.

By adjusting the power flow in the ES branch, the active
power will be controlled and thus the frequency in the micro-
grid will be affected. A simplified control block diagram of
the ES is shown in Fig. 6. It is important to note that an
ES requires two closed-loop controllers to operate. The active
power is controlled by the shift angle difference between the
angle δ1 measured by the single phase-locked loop (SPLL) and
the angle δ2 generated by the controller. A classical voltage
proportional-integral controller is adopted to maintain the dc-
link voltage and the ac line voltage to be constant. In this
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Fig. 6. Overall control scheme for ES.

feedback mechanism, the amplitude and shift angle of the
modulation signal are respectively obtained from the compen-
sated line voltage and dc-link voltage errors. The signal m is
then compared with the reference triangular wave to generate
the trigger signal for the on/off of the switch.

For the single-phase system, since only one voltage com-
ponent can be obtained at any moment, the amplitude and
phase angle are not simultaneously available [23]. Time delay
is present in sensing the amplitude and phase angle. A PLL
composed of a phase detector, a filter, and a voltage-controlled
oscillator is utilized to obtain the phase angle information. The
structure of the SPLL adopted here is given in the Appendix.

To maintain the regulation of the line voltage, the ES voltage
and load voltage can be adjusted accordingly. Simultaneously,
the noncritical load power is instantaneously shaped to follow
the available power generated by the power system. This is
a new demand-side management method that can satisfy the
new control paradigm of enabling the load demand to follow
the power generation.

For the doubly-fed-induction-generator-based wind turbine
control, the wind turbines are operated in the maximum power
tracking mode. This operation mode will not reserve any
generation margin for frequency response control [24].

The maximum power obtained from a given wind speed is
commonly expressed by the following equation [25]:

Pmec = 1

2
Cp (λ, β) πR2ρv3

w (12)

where Pmec is the mechanical power extracted from the wind,
ρ is the air density in kg/m3, R is the turbine radius in m,
vw is the wind speed in m/s, and Cp(λ, β) is the aerodynamic
power coefficient, which is dependent on both the blade pitch
angle β in degrees and the tip speed ratio λ. The tip speed
ratio λ is given by

λ = ωrR

vw
(13)

where ωr denotes the turbine rotor speed.

IV. CASE STUDIES

The objective of this paper is to investigate the dynamic
behavior of a microgrid system with the ES in enhancing the
frequency response and maintaining the line voltage level in
the presence of the renewable variability. The ES can oper-
ate at various possible types of power compensation. Here,
the applications of active power and reactive power compen-
sations by the ES in coping with the frequency control and
the line voltage regulation of the microgrid are investigated.
A nine-bus system as shown in Fig. 7 is employed in the case

Fig. 7. Nine-bus system.

studies. The voltage level for the system is 35 kV and the rated
power for the generation 1 (G1), generation 2 (G2), and gen-
eration 3 (G3) are 8 MVA, 6 MVA, and 4 MVA, respectively.
The base value for active power is 1 MW. Each generator is
equipped with a governor. The governors are provided with the
speed-droop control to share the load change and participate
in the primary frequency control. The ES is installed in series
with the load in three-phase connection without the utilization
of the transformer. The model of the system is established with
power system computer aided design/electro-magnetic tran-
sient in dc system. The load on bus 5 is 4.167 + j1.667 MVA,
the load on bus 6 is 3 + j1 MVA, and the load on bus 8 is
3.333 + j1.167 MVA. Both the ES and the wind turbine are
installed at bus 6.

A. Case 1—Wind Speed Variation

In case study 1, the effect of the variable wind speed on the
microgrid with and without the ES is investigated. The ES is
located at the same bus with that of the wind turbine. Here, the
wind speed increases from 18 to 21 m/s at 6 s. The gust wind
lasts for 6 s. The output active power of the wind turbine varies
resulting from the gust wind as shown in Fig. 8(a). The three
generators respond accordingly and adjust the corresponding
output active power in Fig. 8(b). ES is activated in the whole
simulation process. The frequency response resulting from the
power imbalance is compared in the case of with and without
ES as shown in Fig. 8(c). With the ES outputting active power
as shown in Fig. 8(d), the frequency peak and nadir due to the
gust wind is improved by about 0.2 Hz as compared to the
case without the ES.

The voltage and power of the load in series with the ES are
regulated as shown in Fig. 9(a) and (b). With the aid of an
ES controller, the voltage across the load increases, and thus
the power consumed by the load changes following the wind
power. The bus voltage can be controlled to maintain almost
constant in Fig. 9(c). The voltage amplitude is reduced about
0.01 p.u., and the voltage fluctuation is mitigated with ES out-
putting reactive power as shown in Fig. 9(d). It should be noted
that the generators operate in droop mode. The output powers
of generators always remain proportional to their ratings. The
primary control is conducted to obtain a proper power-sharing
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(a)

(b)

(c)

(d)

Fig. 8. (a) Output power of wind turbine (p.u.). (b) Generators output
active power (p.u.). (c) Frequency response to wind power variation (Hz).
(d) ES active power.

between the generators. In Fig. 8(c), the gust wind starts from
6 s and lasts for 6 s. That is, at 6 s, the frequency rises due to
the increase power. Meanwhile, the generators begin the pri-
mary frequency adjustment to prevent the frequency increase.
At 12 s, due to the slow pitch angle adjustment, the output
power of the wind turbine keeps decreasing, resulting in the
continuous frequency decrease. The primary frequency regu-
lation will last for several seconds until the frequency settles
into the steady state. The short-time fluctuation of the wind
turbine output power as well as the delay in the power sharing,
results in a slow frequency recovery of the system. It can be
observed that the capability of the ES in supporting the line
voltage and in dynamic balancing the wind power and the load
power is demonstrated.

B. Case 2—Load Variation

In case study 2, the effect of load change on the micro-
grid with and without the ES is investigated. Here, the load
on bus 6 steps up to 4 MW at 6 s and then comes back to
3 MW at 10 s. A bypass switch is installed in parallel to the
inverter as shown in Fig. 7. The bypass switch keeps close
during the normal operation. When the load variation occurs
at 6 s, it is set to open at 6.01 s to activate the ES as soon
as possible in the simulation and close at 10.01 s once the

(a)

(b)

(c)

(d)

Fig. 9. (a) Load voltage, (b) load power, and (c) voltage on bus 6 (p.u.).
(d) ES reactive power.

load variation disappears. As shown in Fig. 10, the bus volt-
age is tightly regulated by the ES to maintain at 1 p.u. during
the load variation. With the ES, the frequency nadir occurs at
8 s and is enhanced from 59.6 (without the ES) to 59.8 Hz.
Moreover, with the ES active power support by controlling the
dc-link voltage at 40 kV, the settling time of the frequency is
much shorter than that without the ES as shown in Fig. 10(a).
Fig. 10(b) shows the voltage waveform of the ES during the
load change. It is shown that ES does provide the voltage sup-
port to prevent the voltage dip on bus 6. Fig. 10(c) shows the
line voltage on bus 6 being tightly regulated at 1% deviation
during the load variation. From this paper, it is shown that the
voltage and frequency fluctuation caused by the load varia-
tion could be mitigated by the ES through active and reactive
power compensation as shown in Fig. 10(d) and (e).

C. Case 3—Generator Tripping

In this case study, the effect of a generator trip on the micro-
grid with and without the ES is investigated. Here, the wind
turbine is not included and the same control strategy as that of
cases 1 and 2 is implemented. The total generation of the sys-
tem is 10.45 MW and the total load demand is 10.4 MW. There
is about 0.05 MW power losses in the lines. At 6 s, the G3 is
tripped and the lost power is about 2.8 MW as shown in
Fig. 11(a). Adopting the conventional load shedding approach,
the under-frequency relay is employed to operate after the fre-
quency falls below 58.5 Hz. The shedding of a 3 MW load
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(a)

(b)

(c)

(d)

(e)

Fig. 10. (a) Frequency response to load variation (Hz). (b) ES voltage (p.u.).
(c) Voltage on bus 6 (p.u.). (d) ES active power. (e) ES reactive power.

brings the system frequency back to 59.5 Hz [see Fig. 11(b)].
However, if the ES is controlled to inject 1 MW power shown
in Fig. 11(c) while only 2 MW noncritical load needs shed-
ding when the generator trips, a faster frequency recovery is
achieved, as depicted in Fig. 11(b). Moreover, with the ES,
the frequency nadir is enhanced from 56.3 (without using ES)
to 58 Hz. The frequency can be restored to above 59.5 Hz
and the steady-state frequency deviation is slightly improved.
Compared to the conventional load shedding, the ES scheme
avoids more critical loads shedding from the system and there-
fore, the power supply reliability for the critical loads could
be enhanced.

From these case studies, it is verified that the ES can support
the frequency response in a microgrid system in addition to its
conventional purpose of regulating line voltage. The effective-
ness of both the frequency control and line voltage regulation
functions in the microgrid is demonstrated in the cases of
power (wind speed) variation, load variation, and generator
tripping.

(a)

(b)

(c)

Fig. 11. (a) Generator active power (p.u.). (b) Frequency response to
generator tripping (Hz). (c) ES output active power.

(a)

(b)

(c)

Fig. 12. (a) Wind turbine output active power (p.u.). (b) Frequency response
to wind speed variation (Hz). (c) ES output active power.

D. Case 4—ES Located at the Different Bus With
Wind Turbine

To verify the effectiveness of ES in improving the frequency
response when it is installed on the different bus with the
wind turbine, the G2 is substituted by the wind turbine while
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the ES is still located at the bus 6 without the wind turbine
shown in case 1. The wind speed variation is implemented to
generate the same power deviation with that in case 1, about
0.2 MW in Fig. 12(a). The wind turbine is not involved in
the primary frequency control. The frequency rise is caused
by the wind power increase despite of the limited primary
frequency control of the remaining generators. Then the ES
responds to the frequency variation by absorbing the active
power to suppress the frequency rise and accelerate the fre-
quency recovery as shown in Fig. 12(b) and (c). The over
frequency is reduced and the under frequency is enhanced
about 0.2 Hz, respectively. It can be observed that when the ES
is located far away from wind turbine, ES could also improve
the frequency response by contributing the active power to
the grid. From the simulation results in cases 1 and 4, it
can be observed that the frequency variation could be sup-
pressed slightly when ES is located close to the variable and
uncertain renewable power source. The frequency deviation
has been reduced about 0.1 Hz in case 1 compared to the fre-
quency peak/nadir in case 4 for the sake of less power loss.
Wherever it is installed in the microgrid, the problem brought
by the disturbance could always be mitigated with the aid
of ES.

V. CONCLUSION

In this paper, a simple decoupling control scheme is pro-
posed for the power flow control of ES in a microgrid
with variable and uncertain renewables. The proposed strat-
egy could realize the active power and reactive power control
of ES by adjusting the shift angle and the amplitude of the
modulation signal. When connected to the load in series, the
ES provides the voltage support to prevent the voltage dip on
the bus it is installed, and the bus voltage could be tightly reg-
ulated at a given deviation during transients. In addition, the
frequency nadir could be enhanced for the sake of the active
power contributed by ES. Thus the steady-state frequency
deviation could be further improved. When ES is installed
on the different bus with the disturbance source, the prob-
lems concerned with the frequency in the microgrid could still
be mitigated effectively. It has been explored that ES could
be a potential key component in the future smart grid with
substantial renewable energy sources.

APPENDIX

Nine-Bus System Data
Machine Data:

Exciter Data for IEEE Type DC1A Excitation Model:

ES Parameters:
Filter inductance: 0.4 mH
Filter capacitance: 13 μF
DC link: CS = 4000 μF, Vdc = 40 kV, and Vac = 35 kV
PWM switching frequency: 1 kHz

Structure of a Single-Phase PLL:
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