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Summary

Matched-pair design is often used in clinical trials to increase the efficiency of establishing equiv-

alence between two treatments with binary outcomes. In this article, we consider such a design

based on rate ratio in the presence of incomplete data. The rate ratio is one of the most frequently

used indices in comparing efficiency of two treatments in clinical trials. In this paper, we propose

ten confidence interval estimators for the rate ratio in incomplete matched-pair designs. A hybrid

method that recovers variance estimates required for the rate ratio from the confidence limits for sin-

gle proportions is proposed. It is noteworthy that confidence intervals based on this hybrid method

have closed-form solution. The performance of the proposed confidence intervals is evaluated with

respect to their exact coverage probability, expected confidence interval widths, and distal and mesial

non-coverage probability. The results show that the hybrid Agresti-Coull CI based on Fieller’s theo-

rem perform satisfactorily for small to moderate sample sizes. Two real examples from clinical trials

will be used to illustrate the proposed confidence intervals.
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1 Introduction

Incomplete matched-pair data are often encountered in comparison studies of two treatments/diagnostics

/reviewers of two different status for the same treatment. For instance, Osoba et al. (1986) consid-

ered a clinical trial with the objective of comparing methylprednisolone sodium succinate (MPRED)

and metoclopramide (METCLO) with respect to efficacy in the prevention of vomiting induced by

moderately emetogenic chemotherapy in patients with previously untreated cancer. 157 patients

were randomized to receive either 250 mg MPRED or 10 mg METCLO for the first chemotherapy

period, and then crossed over to the other study drug for the second chemotherapy cycle. After

each chemotherapy cycle, patients are asked to complete a questionnaire measuring the number of

episodes of vomiting. Define X (or Y ) = 1 if a patient vomited at least once during the last six-hour

period (i.e., hour 18 - 24) after receiving MPRED (or METCLO); = 0 otherwise. It was reported

that amongst the 157 eligible patients, (i) 115 received both treatments in the two cycles (i.e., with

both X and Y being observed); (ii) 16 received only MPRED for the first cycle but not METCLO

for the second cycle (i.e., with only X being observed); and (iii) 26 received only METCLO for the

first cycle but not MPRED for the second cycle (i.e., with only Y being observed). For scenario (i),

it was reported that 106 patients experienced vomiting in both treatments, 6 had vomiting only in

MPRED treatment, 23 had vomiting only in METCLO treatment, 9 had no vomiting experience.

For scenarios (ii) and (iii), assume that 12 and 14 patients vomited at least once, respectively. Then,

the final data consist of two parts: the complete observations which correspond to a 2 × 2 table

from correlated series, and the incomplete observations which correspond to a 2× 2 table from two

independent binomial populations. We summarize the data in Table 1.

Table 1 here

Suppose that we would like to test the equivalence between MPRED and METCLO with respect

to their rates of vomiting experience for the above crossover clinical trial. For this purpose, we can

compute a (1 - α)100% confidence interval for the ratio of the two rates of vomiting experience.

If the resultant confidence interval lies entirely in the interval (δ0, 1/δ0) with δ0 (> 0) being some

prestated clinically acceptable threshold, then we could conclude the equivalence between the two

treatments at the α significance level. As a result, reliable confidence intervals for rate ratio in the

presence of incomplete data are necessary.
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Tests of non-inferiority/equivalence based on rate ratio of two independent treatments have been

widely studied in the literature (see, for example, Miettinen and Nurminen, 1985; Farrington and

Manning, 1990; Chan, 1998; Chen et al., 2000). Parallel development for matched-pair designs

have not been discussed until recently. Lachenbruch and Lynch (1998) proposed two statistics for

establishing equivalence of a new HIV screening test to a current standard based on the rate ratio

measure in a matched-pair design setting. Tang et al. (2003) empirically demonstrated that both

statistics proposed by Lachenbruch and Lynch (1998) could produce empirical type I error rates that

can be more than twice the pre-chosen nominal level in many cases and a score statistic perform

satisfactorily in general situation. Tang et al. (2002) derived a score-test-based confidence interval

for assessing equivalence based on the rate ratio. Zou and Donner (2008) proposed a so-called hybrid

method to form approximate confidence intervals for rate ratio. However, all the above-mentioned

work were confined to matched-pair data without missing data. Tang et al. (2009) proposed the

exact and approximate unconditional confidence intervals for proportion difference in the presence of

incomplete data. But these methods could be computationally intensive for moderate to large sample

sizes and simple explicit formulas are impossible. Besides, the score test-based and likelihood-ratio-

based confidence intervals have not yet been considered in incomplete matched-paired data. Hence,

it is the aim of this article to consider the score test-based and likelihood-ratio-based confidence

intervals and to generalize the aforementioned hybrid method to matched-pair studies based on rate

ratio in the presence of incomplete data. These methods can be used for analysis of incomplete data

as well as complete data.

In this article, we develop ten confidence interval estimators for correlated rate ratio with incom-

plete matched-pair data. A hybrid method that recovers variance estimates required for the rate

ratio from the confidence limits for single proportions is also considered. The rest of this paper is

organized as follows. In Section 2, we describe confidence intervals with incomplete matched-pair

data based on the asymptotic method. The hybrid approach for confidence interval construction is

presented in Section 3. In Section 4, numerical evaluations are conducted to investigate the per-

formance of the proposed confidence intervals in terms of their exact coverage probability, expected

confidence width, the ratio of mesial non-coverage probability and total non-coverage probability.

We will illustrate our proposed methodologies with real examples from two clinical studies in Section

5. A brief discussion is given in Section 6.
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2 Confidence intervals for rate ratio with incomplete data based

on asymptotic approach

LetX and Y be the outcomes of two different treatments applied to each subject with joint probability

Pr(X = i, Y = j) = πij , i, j = 0, 1. Suppose that the dichotomous response is observed on n subjects

for both treatments, and in addition m1 subjects are observed only for the first treatment (i.e., X)

and m2 only for the second treatment (i.e., Y ). The observed counts and the corresponding cell

probabilities for the n complete data and m1 + m2 partially incomplete data can be summarized in

Table 2.

Table 2 here

Here, nij is the number of subjects who go through both treatments with X = i, Y = j for

i, j = 0, 1, u is the number of subjects who go through ONLY treatment X with X = 1, and v

is the number of subjects who go through ONLY treatment Y with Y = 1. It is assumed that the

probabilities governing the complete and the incomplete data are the same, and that the mechanisms

causing incomplete data are independent of the outcomes of the trials; all trials are assumed to

be independent (see, Choi and Stablein, 1982; Tang and Tang, 2004; Lin et al.(2009)). With no

missing data, i.e., m1 = m2 = 0, the random vector n = (n00, n01, n10, n11) is then multinomially

distributed with parameters n and (π00, π01, π10, π11). The random variable u and the random

varible v, respectively, follow Binomial(m1, π1+) and Binomial(m2, π+1), where π1+ = π10 + π11

and π+1 = π01 + π11. Under the random mechanism (i.e., independent of treatment and outcome),

the observed data Yobs = {n00, n01, n10, n11, u,m1 − u, v,m2 − v} can be assumed to come from the

following multinomial distribution:

Pr(Yobs|n,m1,m2,π) = c · (π00)n00(π01)n01(π10)n10(π11)n11

×(π1+)u(1− π1+)m1−u(π+1)v(1− π+1)m2−v
(1)

where c = n!
n00!n01!n10!n11

m1!
u!(m1−u)!

m2!
v!(m2−v)! and π = (π00, π01, π10, π11).

Let δ = π1+/π+1. We have π11 = π+1 - π01, π10 = (δ - 1)π+1 + π01, and π00 = 1 - δπ+1 - π01.

Therefore, the log-likelihood function for the observed data is given by

l(π|Yobs) = constant+Σnijlogπij+(m1−u)log(1−δπ+1)+ulog(δπ+1)+(m2−v)log(1−π+1)+vlogπ+1.
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Here, δ is the parameter of interest, π01 and π+1 become the nuisance parameters. In this paper,

our main purpose is to construct confidence interval for the correlated rate ratio δ = π1+/π+1. We

describe various confidence interval estimators for the rate ratio as follows.

2.1 Likelihood-Ratio-Test-Based Confidence Interval(TlCI)

Let π̌+1, π̌01 and δ̌ be maximum likelihood estimator (MLE) of π+1, π01 and δ. There is no analytical

solution for the MLE of π+1, π01 and δ, but the MLE of π+1, π01 and δ satisfy the following equations:

∂l(π,δ|Yobs)
∂δ = −n00π+1

1−δπ+1−π01
+ n10π+1

(δ−1)π+1+π01
+ u

δ −
(m1−u)π+1

1−δπ+1
,

∂l(π,δ|Yobs)
∂π01

= −n00
1−δπ+1−π01

+ n01
π01

+ n10
(δ−1)π+1+π01

− n11
π+1−π01

,

∂l(π,δ|Yobs)
∂π+1

= −δn00
1−δπ+1−π01

+ n10(δ−1)
(δ−1)π+1+π01

+ n11
π+1−π01

+ u+v
π+1

− δ(m1−u)
1−δπ+1

− m2−v
1−π+1

.

Let π̃+1 and π̃01 are respectively the constrained maximum likelihood estimates(CMLE) of π+1

and π01 under the null hypothesis H0 : δ = δ0. The CMLE of π+1 and π01 can not be expressed

explicitly, hence we use the expectation-maximization (EM) algorithm to find CMLE. By the EM

algorithm, the M-step finds the complete-data CMLE. Hence, we introduce latent vectors ui =

(ui0, ui1)T , i = 0, 1 and vj = (v0j , v1j)T , j = 0, 1 such that u00 + u01 = m1 − u, u10 + u11 =

u, v00 + v10 = m2 − v, and v01 + v11 = v. Denote these latent ( or missing ) data by Ymis =

{u00, u01, u10, u11, v00, v01, v10, v11} and the complete data by Ycom = {Yobs, Ymis}. Consequently, the

complete-data likelihood function is

L(π|Ycom) ∝
∏1
i=0

∏1
j=0 π

nij+uij+vij
ij

which is a Dirichlet distribution up to a constant. Thus, the complete-data log-likelihood function

under H0 is given by

l(π01, π+1|Ycom) = (n11 + u11 + v11)log(π+1 − π01) + (n10 + z10 + v10)log[(δ − 1)π+1 + π01]+

(n01 + u01 + v01)logπ01 + (n00 + u00 + v00)log(1− δπ+1 − π01) + constant. (2)

The complete-data CMLE solve the following equations
∂l(π01,π+1|Ycom)

∂π01
= −n11+u11+v11

π+1−π01
+ n10+u10+v10

(δ0−1)π+1+π01
+ n01+u01+v01

π01
− n00+u00+v00

1−δ0π+1−π01
= 0,

∂l(π01,π+1|Ycom)
∂π+1

= n11+u11+v11
π+1−π01

+ (n10+u10+v10)(δ0−1)
(δ0−1)π+1+π01

− δ0(n00+u00+v00)
1−δ0π+1−π01

= 0,
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This is equivalence to the following equations
n10+u10+v10

(δ0−1)π+1+π01
+ n01+u01+v01

π01
= n11+u11+v11

π+1−π01
+ n00+u00+v00

1−δ0π+1−π01
,

(n10+u10+v10)δ0
(δ0−1)π+1+π01

+ n01+u01+v01
π01

= (δ0+1)(n00+u00+v00)
1−δ0π+1−π01

,

Following the arguments of Tang et al.(2003), the CMLE of π+1 and π01 under H0 are respectively

given by

π̃01 = {−b+ (b2 − 4ac)
1
2 }/(2a), (3)

π̃+1 = (
(n+m1 +m2)− (n00 + u00 + v00)

n+m1 +m2
− π̃01)/δ0, (4)

where a = (n+m1+m2)(1+δ0), b = (n11+u11+v11+n01+u01+v01)δ20−(n11+u11+v11+n10+u10+v10+

2n01+2u01+2v01), and c = (n01+u01+v01)(1−δ0)[(n+m1+m2)−(n00+u00+v00)]/(n+m1+m2). The

E-step of the EM algorithm is to replace ui, i = 0, 1 and vj , j = 0, 1 by their conditional expectations

which are given by

E(uij |Yobs, π) = (m1 − u) πijπi+
, i = 0, j = 0, 1,

E(uij |Yobs, π) = u
πij
πi+

, i = 1, j = 0, 1,

E(vij |Yobs, π) = (m2 − v) πijπ+j
, i = 0, 1, j = 0,

E(vij |Yobs, π) = v
πij
π+j

, i = 0, 1, j = 1.

When there are no missing data, the maximum likelihood estimates π̌+1, π̌01 and δ̌ of π+1, π01

and δ can be obtained by solving the above same equation for incomplete data with m1 = 0, m2 = 0,

u = 0 and v = 0. The CMLE π̃+1 and π̃01 of π+1 and π01 under H0 have been given by Tang et

al.(2003).

The likelihood-ratio statistic based on both complete and missing data for testing H0 : δ = δ0 is

given by

Tl = 2{l(π̌01, π̌+1, δ̌|Yobs)− l(π̃01, π̃+1, δ0|Yobs)},

which is asymptotical distributed as the chi-squared distribution with one degree of freedom under

H0. Therefore, the approximate (1− α)100% likelihood-ratio-test-based confidence interval is given

by [δL, δU ], where δL and δU are the solutions to the following equation:

Tl(δ) = χ2
1,α,

where χ2
1,α is the upper α percentile point of central χ2 distribution with one degree of freedom.

There are no closed-forms for δL and δU . Hence, the bisection searching algorithm can be used to

obtain δL and δU .
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2.2 Score-Test-Based Confidence Interval (TsCI)

The score function with respect to δ and the Fisher information matrix with respect to δ, π01 and

π+1 under δ = δ0 are given by

∂l(π, δ|Yobs)
∂δ|δ = δ0

=
−n00π+1

1− δ0π+1 − π01
+

n10π+1

(δ0 − 1)π+1 + π01
+
u

δ0
− (m1 − u)π+1

1− δ0π+1
,

I(π01, π+1) =


I11 I12 I13

I12 I22 I23

I13 I23 I33

 ,

respectively, where

I11 =
nπ2

+1

1−δ0π+1−π01
+

nπ2
+1

(δ0−1)π+1+π01
+

m1π2
+1

δ0π+1
+

m1π2
+1

1−δ0π+1
,

I12 = nπ+1

1−δ0π+1−π01
+ nπ+1

(δ0−1)π+1+π01
,

I13 = n(1−π01)
1−δ0π+1)−π01

− nπ01
(δ0−1)π+1+π01

+ m1
1−δ0π+1

,

I22 = n
1−δ0π+1−π01

+ n
π01

+ n
(δ0−1)π+1+π01

+ n
π+1−π01

,

I23 = nδ0
1−δ0π+1−π01

+ n(δ0−1)
(δ0−1)π+1+π01

− n
π+1−π01

,

I33 = δ20n
1−δ0π+1−π01

+ n(δ0−1)2

(δ0−1)π+1+π01
+ n

π+1−π01
+ m1δ0+m2

π+1
+ m1δ20

1−δ0π+1
+ m2

1−π+1
.

Thus, the left upper element I11 of I−1 can be expressed as

I11 = [I11 −
(
I12 I13

)  I22 I23

I23 I33

−1  I12

I13

]−1

Hence, the score statistic for testing H0: δ = δ0 is given by

TS(δ0) = (∂l(π,δ|Yobs)∂δ |δ=δ0,π01=π̃01,π+1=π̃+1)(I
11|δ=δ0,π01=π̃01,π+1=π̃+1)

1
2

which is asymptotically distributed as standard normal distribution under H0. When data are

complete, Ts is the same to that of Tang et al.(2003). Therefore, the approximate (1 − α)100%

score-test-based confidence interval for complete and incomplete data is given by [δL, δU ], where δL

and δU are the solutions to the following equation:

TS(δ) = ±zα/2,

where zα/2 is the upper α/2 percentile point of the standard normal distribution, and the plus and

the minus signs correspond to the lower limit δL and the upper limit δU , respectively. These two

limits can be easily obtained by secant method (see, Tango, 1998).
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2.3 Wald-Test-Based Confidence Interval (TwCI)

Noticing that n1+/n and u/m1 are two unbiased point estimates for π1+, Choi and Stablein (1982)

suggested the following unbiased estimator for π1+ and π+1, which utilizes both the complete and

incomplete data:

π̂1+ = ψ1n1+

n + (1−ψ1)u
m1

,

π̂+1 = ψ2n+1

n + (1−ψ2)v
m2

,

where ψ1 = n/(n + m1) and ψ2 = n/(n + m2). The asymptotic expectation of δ̂ is E(δ̂) = δ, the

asymptotic variance and covariance of π1+ and π+1 can be estimated by

v̂ar(π̂1+) = n1+(n−n1+)ψ2
1

n3 + u(m1−u)(1−ψ1)2

m3
1

,

v̂ar(π̂+1) = n+1(n−n+1)ψ2
2

n3 + v(m2−v)(1−ψ2)2

m3
2

,

ĉov(π̂+1, π̂1+) = (n00n11−n10n01)ψ1ψ2

n3 .

The asymptotic variance of δ̂ can be given by

v̂ar(δ̂) = v̂ar(π̂1+)
π̂2
1+

+
π̂2
1+v̂ar(π̂+1)

π̂4
+1

− 2 π̂1+

π̂3
+1
ĉov(π̂+1, π̂1+),

Hence, an approximate (1 − α)100% confidence interval for δ on the basis of Wald-type statistic

Tw = (δ̂ − δ)/
√
v̂ar(δ̂), which is asymptotically distributed as the standard normal distribution, is

given by

[max{0, δ̂ − zα/2

√
v̂ar(δ̂)}, δ̂ + zα/2

√
v̂ar(δ̂)].

When data are complete, let ψ1, ψ2 be one in the above equations, we can obtain the Wald-type

confidence interval.

2.4 Log-test-Based Confidence Interval (TlogCI)

The log statistic for testing H0: δ = δ0 is given by

T log(δ0) = logδ̂−logδ0√
v̂ar(logδ̂)

,

which is asymptotically distributed as standard normal distribution under H0, where

v̂ar(logδ̂) = v̂ar(π̂1+)
π̂2
1+

+ v̂ar(π̂+1)
π̂2
+1

− 2ĉov(π̂+1,π̂1+)
π̂1+π̂+1

,
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Hence, an approximate (1− α)100% confidence interval for logδ on the basis of log statistic is given

by

[max{0, logδ̂ − zα/2

√
v̂ar(logδ̂)}, logδ̂ + zα/2

√
v̂ar(logδ̂)].

A 100(1− α)% confidence interval for δ can then be obtained as [exp(Llog), exp(Ulog)]. When there

are no missing data, let ψ1, ψ2 be one in the above equations, we can obtain the log-test-based

confidence interval.

3 Confidence intervals for rate ratio with incomplete data based

on hybrid approach

Zou and Donner (2008) considered a so-called method of variance estimates recovery (MOVER) to

construct confidence intervals for correlated rate ratio. The basic idea of their method is to construct

hybrid confidence limits for single proportions based on Wilson score intervals by recovering variance

estimates required for the rate ratio. In this article, we generalize their hybrid (i.e., MOVER)

approach to situations in which incomplete data are present. For this purpose, we first briefly describe

their MOVER for difference between two parameters. Let θ1 and θ2 denote any two parameters of

interest. Let θ̂1 and θ̂2 be two estimates of θ1 and θ2, respectively. By the Central Limit Theorem

and under the assumption of independent between θ̂1 and θ̂2, an approximate two-sided (1−α)100%

confidence interval for θ1 - θ2 can be constructed as (L, U), where

L = θ̂1 − θ̂2 − zα/2

√
V ar(θ̂1) + V ar(θ̂2), and

U = θ̂1 − θ̂2 + zα/2

√
V ar(θ̂1) + V ar(θ̂2),

where V ar(θ̂i) is the variance estimate for θ̂i (i = 1, 2). Unfortunately, this procedure performs well

only if sample sizes are large or the sampling distributions of θ̂i(i = 1, 2) are close to normal. To

improve the performance, we can obtain better estimates of V ar(θ̂i) (i = 1, 2) at the neighborhood

of the confidence limits L and U separately. Let (l1, u1) and (l2, u2) be the two-sided (1− α)100%

confidence intervals for θ1 and θ2, respectively. We know that (li, ui) contains plausible parameter

values of θi (i = 1, 2). Among these plausible values for θ1 and θ2, the values closest to the minimum

L and maximum U are respectively l1 − u2 and u1 − l2 in spirit of the score-type CI (see, Bartlett,

1953). According to the Central Limit Theorem, the variance estimates can now be recovered from
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θ1 = l1 as V̂ ar(θ̂1) = (θ̂1 − l1)2/z2
α/2 and from θ2 = u2 as V̂ ar(θ̂2) = (u2 − θ̂2)2/z2

α/2 for setting L.

As a result,

L = θ̂1 − θ̂2 −
√

(θ̂1 − l1)2 + (u2 − θ̂2)2.

Similarly, we have

U = θ̂1 − θ̂2 +
√

(u1 − θ̂1)2 + (θ̂2 − l2)2.

For θ̂1 and θ̂2 being correlated, we can extend the above results in a straightforward fashion and the

confidence limits for θ1 − θ2 are then

L = θ̂1 − θ̂2 −
√

(θ̂1 − l1)2 + (u2 − θ̂2)2 − 2ĉorr(θ̂1, θ̂2)(θ̂1 − l1)(u2 − θ̂2), and (5)

U = θ̂1 − θ̂2 +
√

(u1 − θ̂1)2 + (θ̂2 − l2)2 − 2ĉorr(θ̂1, θ̂2)(u1 − θ̂1)(θ̂2 − l2), (6)

where ĉorr(θ̂1, θ̂2) is any sensible correlation estimate between θ̂1 and θ̂2.

3.1 Hybrid Fieller-type confidence interval

To construct confidence interval for δ = π1+/π+1, we may let θ1 = π1+ and θ2 = π+1. We may

first consider confidence interval for π1+ - δπ+1. Let L′ denote the lower confidence limit for δ. The

objective is to find L′ such that Pr(π1+/π+1≤ L′) = α/2, that is,

Pr(π1+ − L′π+1 ≤ 0) = α/2.

For any fixed L′, applying (5) to π1+ − L′π+1 gives

LL = π̂1+ − L′π̂+1 −
√

(π̂1+ − l1)2 + L′2(u2 − π̂+1)2 − 2L′ĉorr(π̂1+, π̂+1)(π̂1+ − l1)(u2 − π̂+1).

Setting LL = 0, we obtain

L′ =
[A− π̂1+π̂+1] +

√
[A− π̂1+π̂+1]2 − l1(2π̂1+ − l1)u2(2π̂+1 − u2)

u2(u2 − 2π̂+1)
. (7)

where A = ĉorr(π̂1+, π̂+1)(π̂1+ − l1)(u2 − π̂+1).

Similarly, according to (6), the (1 - α)100% upper limit for π1+/π+1 is given as

U ′ =
[B − π̂1+π̂+1]−

√
[B − π̂1+π̂+1]2 − u1(2π̂1+ − u1)l2(2π̂+1 − l2)

l2(l2 − 2π̂+1)
. (8)

where B = ĉorr(π̂1+, π̂+1)(u1 − π̂1+)(π̂+1 − l2). π̂1+ and π̂+1 are correlated in matched-pair design

and the correlation can be estimated by
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ĉorr(π̂1+, π̂+1) =
ψ1ψ2(π̂11π̂00−π̂10π̂01)

n√
π̂1+(1−π̂1+)π̂+1(1−π̂+1)

(n+m1)(n+m2)

,

where π̂11 = n11/n, π̂00 = n00/n, π̂10 = n10/n, π̂01 = n01/n, ψ1 = n/(n + m1), ψ2 = n/(n + m2),

π̂1+ = ψ1n1+

n + (1−ψ1)u
m1

= n10+n11+u
n+m1

, and π̂+1 = ψ2n+1

n + (1−ψ2)u
m2

= n01+n11+v
n+m2

.

To obtain confidence interval for π1+/π+1 using (7) and (8), one needs two separate confidence

intervals, denoted as (l1, u1) and (l2, u2), for θ1 = π1+ and θ2 = π+1, respectively. Here, we notice

that n1+ +u ∼ Binomial(n+m1, π1+) and n+1 + v ∼ Binomial(n+m2, π+1). According to Brown,

Cai and Dasgupta (2001), we consider only the Wilson, Jeffreys and Agresti-Coull intervals for θ1 =

π1+ and θ2 = π+1. In general, let Yi ∼ Binomial(ni, θi) and θ̂i = Yi/ni (i = 1, 2). To save space,

we simply report their formulae as follows:

(1) The Wilson score interval (WCI)

li = θ̃i −
zα/2
ñi

√
niθ̂i(1− θ̂i) +

z2
α/2

4 , and ui = θ̃i +
zα/2
ñi

√
niθ̂i(1− θ̂i) +

z2
α/2

4 , i = 1, 2,

where θ̃i = (Yi + 0.5z2
α/2)/(ni + z2

α/2), ñi = ni + z2
α/2. For θ1 = π1+, Y1 = n1+ + u, n1 = n + m1,

and Y2 = n+1 + v, n2 = n + m2 for θ2 = π+1.

(2) The Agresti-Coull interval (ACI)

li = θ̃i − zα/2

√
θ̃i(1− θ̃i)/ñi, and ui = θ̃i + zα/2

√
θ̃i(1− θ̃i)/ñi, i = 1, 2.

(3) The Jeffreys interval(JCI)

li = 2Yi+1
2Yi+1+(2[ni−Yi]+1)Fα/2(2[ni−Yi]+1,2Yi+1) , and

ui = 2Yi+1
2Yi+1+(2[ni−Yi]+1)F1−α/2(2[ni−Yi]+1,2Yi+1) , i = 1, 2,

where Fr(ν1, ν2) is the upper r quantile from the F-distribution with (ν1, ν2) degrees of freedom.

3.2 Hybrid logarithmic transformation confidence interval

To construct confidence interval for the correlated proportion ratio π1+/π+1, one can also first con-

struct a confidence interval for log(π1+/π+1) (i.e., logπ1+ - logπ+1), say [Lln, Uln]. For this purpose,

we can simply set θ1 = log(π1+) and θ2 = log(π+1). From (5) and (6), we can readily obtain a

100(1− α)% confidence interval for the log rate difference. Then, a 100(1− α)% confidence interval

for π1+/π+1 can be obtained as [exp(Llog), exp(Ulog)].
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To obtain confidence interval for logπ1+ - logπ+1, we need two separate confidence intervals for

logπ1+ and logπ+1. Suppose [lθ, uθ] is a 100(1−α)% confidence interval for θ. A 100(1−α)% CI for

logθ can be obtained by substitution method as

[log(lθ), log(uθ)].

Hence, the three confidence intervals (i.e., the Wilson score, Agresti-Coull, and Jeffreys confidence

intervals) for θ1 = π1+ and θ2 = π+1 described in Section 3.1 can be adopted here. Besides, the

correlation coefficient estimate between log(π̂1+) and log(π̂+1), denoted as ĉorr(logπ̂1+, logπ̂+1), can

be obtained by the delta method. It can be easily shown that ĉorr(logπ̂1+, logπ̂+1) = ĉorr(π̂1+, π̂+1).

When data are complete, let ψ1, ψ2 be one and m1, m2, u and v be zero in the above equations,

we can obtain the responding confidence intervals. This has been given by Tang et al. (2010).

4 Performance Evaluation Using Exact Approach

In this section, we investigate the performance of various confidence intervals in small to moderate

sample sizes with respect to their exact coverage probabilities, expected confidence interval widths,

and distal and mesial non-coverage probabilities. A summary of abbreviation for various confidence

intervals are presented in Table 3.

Let N = n + m1 + m2 represent the total sample size. All these measures are then examined

for small ( e.g., N=20 ) and moderate ( e.g., N=50 ) sample sizes via numerical evaluation. For

each given total sample size N , we consider (i) (10% + 10% balanced missing data ): n = 0.8×N ,

and m1 = m2 = 0.1×N ; (ii) (20% + 0% imbalanced missing data): n = 0.8×N , m1 = 0.2×N and

m2 = 0; (iii) (20% + 20% balanced missing data): n = 0.6×N , m1 = 0.2×N and m2 = 0.2×N ;

(iv)(0% + 0% complete data): n = N , m1 = 0 and m2 = 0. Since the computing time for exact

coverage probabilities is very tedious, we only consider δ0 = 0.91 and 1.1, π+1 = 0.5, and N =

20 and 50. Here, π1+ = δ0π+1. To introduce dependence/correlation between the paired binary

outcomes, we assume the bivariate binary observations are coming from a bivariate distribution with

the correlation coefficient defined by

ρ = (π11 − π1+π+1)/[π1+(1− π1+)π+1(1− π+1)]1/2.

Hence, given π1+, π+1 and ρ, we have π11 = π1+π+1 + ρ[π1+(1− π1+)π+1(1− π+1)]1/2, π01 = π+1 -

π11, π10 = δπ+1 - π11, and π00 = 1 - δπ+1 - π01. For the correlation coefficient, i.e., ρ, we consider

ρ = −0.9,−0.5,−0.1, 0.5, 0.9.
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For each configuration of (π+1, δ0, ρ), we can calculate π=(π11, π10, π01). For each given setting

(n, m1, m2, π), we can compute the corresponding exact coverage probabilities(ECP) by

ECP =
∑n

n10=0

∑n−n10
n01=0

∑n−n10−n01
n11=0

∑m1
u=0

∑m2
v=0 I(L ≤ δ0 ≤ U)f(n11, n10, n01, u, v|n,m1,m2,π),

where [L,U ] is any of the ten confidence intervals under investigation, and

f(n11, n10, n01, u, v|n,m1,m2,π) = n!
n11!n10!n01!(n−n11−n10−n01)!

m1!
u!(m1−u)!

m2!
v!(m2−v)!π

n11
11 πn10

10 πn01
01 (1−

π11 − π10 − π01)n−n11−n10−n01(π11 + π10)u(1− π11 − π10)m1−u(π11 + π01)v(1− π11 − π01)m2−v.

The corresponding expected confidence widths(ECW)is given by

ECW =
∑n

n10=0

∑n−n10
n01=0

∑n−n10−n01
n11=0

∑m1
u=0

∑m2
v=0(U − L)f(n11, n10, n01, u, v|n,m1,m2,π).

In addition, we will characterize the interval location by evaluating the mesial and distal non-coverage

probabilities. The definitions of the Mesial Non-Coverage Probabilities (MNCP) and Distal Non-

Coverage Probabilities (DNCP) are derived from the left non-coverage probability (LNCP) and the

right non-coverage probability (RNCP) commonly used in the literature (see, Newcombe, 2011)

Recall that LNCP and RNCP are defined by

LNCP =
n∑

n10=0

n−n10∑
n01=0

n−n10−n01∑
n11=0

m1∑
u=0

m2∑
v=0

I(δ0 < L)f(n11, n10, n01, u, v|n,m1,m2,π),

and

RNCP =
n∑

n10=0

n−n10∑
n01=0

n−n10−n01∑
n11=0

m1∑
u=0

m2∑
v=0

I(δ0 > U)f(n11, n10, n01, u, v|n,m1,m2,π).

The terms mesial and distal are defined relative to the true value of δ0. For δ0 > 1, when the interval

is too far to the right to include δ0, this is sometimes referred to as non-coverage at the left or mesial

end of the interval. Conversely, when the interval is too far to the left to include δ0, this is sometimes

referred to as non-coverage at the right or distal end of the interval. Consequently, the definitions

of MNCP and DNCP are identical to LNCP and RNCP provided δ0 > 1. However, if δ0 < 1, when

the interval is too far to the right to include δ0, this is sometimes referred as non-coverage at the

left or distal end of the interval. Conversely, when the interval is too far to the left to include δ0,

this is sometimes referred as non-coverage at the right or mesial end of the interval. Consequently,

the definitions of MNCP and DNCP need to be interchanged here. When δ0 = 1, left and right

non-coverage should be balanced.
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The non-coverage probability (NCP) is the sum of these measures and the ratioMNCP/(MNCP+

DNCP ) = MNCP/NCP can effectively separate the function of assessing location from assessment

of overall coverage. For a balanced confidence interval, the ratio should be close to 0.5. We classify

this ratio measure as satisfactory if it is between 0.4 and 0.6, the interval is too mesially located if

it is below 0.4, and too distally located if it is above 0.6.

We expect good methods for constructing confidence intervals have their ECP s close to the

pre-specified 1− α level. When the ECPs are well controlled, one then prefers confidence intervals

with shorter widths: i.e., smaller ECW values. When the ECWs are smaller, one would also prefer

MNCP/NCP to be between 0.4 and 0.6.

Results of numerical evaluations of these confidence intervals are presented in Tables 4, 5 and 6

for exact coverage probabilities, in Tables 7, 8 and 9 for expected confidence widths, and in Tables

10-12 for symmetry of non-coverage probabilities. From these results, we observe the following:

(1) In general, when the total sample size is larger, the expected confidence widths is narrower. Also,

the confidence widths increase with proportion of missing observations.

(2) All confidence widths decrease as the correlation coefficient (i.e. ρ) increase and there is not any

significant effect of ρ on ECPs.

(3)There is no any significant effect of δ on exact coverage probabilities and confidence widths.

(4)The asymptotic Wald, score, and log-test-based intervals can have substantial under-coverage

probabilities when the correlations are extreme (i.e.ρ = −0.9 or 0.9). The likelihood ratio intervals

can be overly conservative with high correlations (with > 99% coverage), which results in longer

interval widths.

(5)The hybrid Wilson score confidence intervals (WCI and WCIlog)tend to have under-coverage

probabilities. On the other hand, the hybrid Jeffrey confidence intervals (WCI and WCIlog) tend to

be overly conservative (> 99% coverage in many cases) and have asymmetric non-coverage probabil-

ities (MNCP/NCP > 0.6 in many cases). The hybrid Agresti-Coull confidence intervals (i.e., ACI

and ACIlog) behave satisfactorily in the sense that they (i) generally well control their coverage

probabilities around the pre-chosen confidence level; (ii) consistently yield shorter confidence widths;

and (iii) usually guarantee their ratios of the MNCP/NCP lying in the interval [0.4, 0.6], indicating

symmetry of the CI. In particular, if one would like a CI that yield the shortest confidence width, then

the hybrid Agresti-Coull confidence intervals based on the Fieller’s theorem is the optimal choice.
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5 Two real examples

5.1 Osoba’s example

We re-visit the study considered by Osoba et al. (1986). From Table 1, we have n00 = 9, n01 = 23,

n10 = 6, n11 = 77, n = 115, u = 14, m1 = 16, v = 12 and m2 = 26. The ratio between the rates of

vomiting experience after using MPRED and METCLO is estimated to be 0.9322. The 95% CIs for

π1+/π+1 based on various methods are summarized in Table 13. All CIs include 1, suggesting that

the rates of vomiting experience between MPRED and METCLO are not significantly different.

5.2 A neurological study

A neurological study of meningitis patients reported in Choi and Stablein (1982) are revisited here

to illustrated our proposed methodologies. According to our setting, we have n00 = 6, n01 = 3,

n10 = n11 = 8, n = 25, u = 4, m1 = 6, v = 2 andm2 = 2. The ratio for incidence rates of neurological

complication before and after the standard treatment δ = π1+/π+1 = (n10+n11+u
n+m1

)/(n01+n11+v
n+m2

) =

1.34. The 95% CIs for π1+/π+1 based on various methods are summarized in Table 14. Since all

resulting CIs include the value 1, applying these confidence interval estimators leads to the conclusion

that the incidence rates of neurological complication before and after the standard treatment are

essentially the same. This result is consistent to Tang et al. (2009).

6 Discussion

In this article, we propose the use of a hybrid method for combining two individual confidence

intervals for a single proportion to form a confidence interval for the ratio of the two proportions

in the presence of incomplete data. We incorporate the hybrid method with (i) Fieller’s theorem;

(ii) logarithmic transformation. According to our numerical evaluation, the hybrid Agresti-Coull

confidence intervals (i.e., ACI and ACIlog )behave satisfactorily. In particular, ACI generally

yields the shortest confidence widths and the exact coverage probabilities are usually close to the

pre-specified coverage level. Unlike the asymptotic score confidence interval, all hybrid confidence

intervals described in this paper possess closed form solution. In terms of computational simplicity,

they are more preferable than the asymptotic score confidence interval. It is also noteworthy that

the asymptotic score confidence interval could produce overly inflated exact coverage probabilities,

which may lead to reasonably wide expected widths. In view of the above observations, we highly
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recommend the hybrid Agresti-Coull confidence interval based on Fieller’s theorem (i.e., ACI) in

practice.

In order to compare with the method of Choi and Stablein(1982), we assume data are missing

completely at random (MCAR) in this paper. This assumption is reasonable for some studies where

missing data are mostly caused by loss-to-followup or invalid test results. For example, in a vaccine

study comparing a new vaccine versus a placebo (or an active control vaccine), most missing data are

generally related to out-of-day-range visits or loss-to-followup, and MCAR assumption is reasonable.

In other studies, such as a crossover trial of drugs, patients missing treatment might be outcome

related, and the missing at random assumption (or non-ignorable missing) may be more plausible.

We are currently conducting further investigations on corresponding methods based on the missing

at random and non-ignorable missing assumption.
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Table 1: Clinical data for comparing MPRED and METCLO

Y = 0 Y = 1 Subtotal Supplement on X Total
X = 0 9 23 32 2 34
X = 1 6 77 83 14 97
Subtotal 15 100 115 16 131
Supplement on Y 14 12 26
Total 29 112 141 157

Table 2: Observed counts and cell probabilities for matched-pair design with incomplete data

Y = 0 Y = 1 Subtotal Supplement on X Total
X = 0 n00(π00) n01(π01) n0+(π0+) m1 − u n0+ +m1 − u

X = 1 n10(π10) n11(π11) n1+(π1+) u n1+ + u

Subtotal n+0(π+0) n+1(π+1) n(1.0) m1 n+m1

Supplement on Y m2 − v v m2

Total n+0 +m2 − v n+1 + v n+m2 n+m1 +m2

Table 3 Summary of abbreviations for various confidence interval estimators

Abbreviation Confidence interval CI

TlCI Asymptotic Likelihood-ratio-test-based CI

TsCI Asymptotic Score-test-based CI

TwCI Asymptotic Wald-test-based CI

TlogCI Asymptotic Log-test-based CI

ACI Hybrid Agresti-Coull CI based on Fieller’s theorem

WCI Hybrid Wilson score CI based on Fieller’s theorem

JCI Hybrid Jeffrey CI based on Fieller’s theorem

ACIlog Hybrid Agresti-Coull CI based on logarithmic transformed method

WCIlog Hybrid Wilson score CI based on logarithmic transformed method

JCIlog Hybrid Jeffrey CI based on logarithmic transformed method
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Table 4. Exact coverage probabilities(percent) of various 95 percent confidence intervals for δ with N = 20 and π+1 = 0.5

under incomplete data

n m1 m2 δ ρ TlCI TsCI TwCI TlogCI ACI WCI JCI ACIlog WCIlog JCIlog

12 4 4 0.91 -0.9 96.72 86.41 99.90 95.14 94.84 93.50 97.29 94.83 93.44 97.28

-0.5 95.52 89.86 99.88 95.14 94.47 93.18 97.56 94.39 92.99 97.47

-0.1 96.96 93.53 99.74 95.06 94.40 93.02 98.35 94.20 92.87 98.20

0.1 95.53 95.32 99.48 94.97 94.50 93.12 98.76 94.25 93.02 98.59

0.5 95.25 98.38 97.55 94.38 95.13 94.11 99.46 94.86 94.10 99.30

0.9 97.24 99.92 90.92 89.75 95.18 97.20 99.95 94.91 96.64 99.85

1.1 -0.9 94.92 86.70 99.43 94.96 94.90 93.41 96.75 94.89 93.39 96.74

-0.5 95.60 90.25 99.40 94.97 94.49 92.93 96.82 94.45 92.82 96.77

-0.1 96.90 93.85 99.40 94.92 94.47 92.75 97.76 94.34 92.57 97.63

0.1 95.84 95.58 99.34 94.83 94.61 92.85 98.26 94.43 92.69 98.10

0.5 95.64 98.49 98.24 94.19 95.35 93.71 99.19 95.11 93.63 99.00

0.9 97.84 99.93 91.58 89.59 95.51 96.92 99.94 95.30 96.91 99.86

16 2 2 0.91 -0.9 94.83 85.36 99.96 95.58 95.23 94.29 96.29 95.22 94.18 96.29

-0.5 95.70 89.28 99.94 95.19 94.68 93.92 96.33 94.49 93.83 96.17

-0.1 96.68 93.56 99.68 95.01 94.19 93.42 96.66 94.07 93.32 96.34

0.1 96.99 95.63 99.17 94.87 94.10 93.35 97.04 93.99 93.24 96.65

0.5 95.32 98.92 95.55 93.69 94.98 94.35 98.33 94.86 94.40 97.91

0.9 99.00 99.98 99.84 98.11 97.51 97.29 99.91 97.80 97.86 99.86

1.1 -0.9 95.93 83.63 99.29 95.49 95.20 94.32 95.15 95.19 94.32 95.15

-0.5 95.61 88.39 99.20 95.10 94.66 93.77 95.84 94.56 93.73 95.69

-0.1 96.37 93.10 99.14 94.91 94.20 93.39 96.21 94.07 93.28 95.89

0.1 96.70 95.33 99.05 94.78 94.13 93.30 96.62 94.04 93.22 96.23

0.5 96.35 98.85 97.22 93.57 94.90 94.09 98.03 95.09 94.26 97.62

0.9 99.23 99.98 91.53 98.28 94.78 97.56 99.96 95.33 97.82 99.94

16 4 0 0.91 -0.9 95.16 83.97 99.97 96.57 95.20 95.26 93.59 95.18 95.25 93.58

-0.5 96.23 88.60 99.99 96.75 94.58 94.80 93.69 94.51 94.71 93.68

-0.1 96.89 93.24 99.97 97.03 94.08 94.38 94.43 93.95 94.32 94.31

0.1 94.07 95.44 99.93 97.31 93.98 94.28 95.01 93.81 94.24 94.70

0.5 96.76 98.90 99.68 98.26 94.83 94.83 96.35 94.75 94.88 95.69

0.9 98.20 99.98 98.14 99.84 94.82 97.73 98.45 95.08 98.09 98.61

1.1 -0.9 95.54 84.75 97.90 95.95 95.15 95.79 94.50 95.14 95.77 94.50

-0.5 96.22 89.46 98.44 96.46 94.60 94.89 94.37 94.55 94.87 94.28

-0.1 94.07 93.74 98.82 96.74 94.21 94.31 94.83 94.03 94.29 94.57

0.1 96.12 95.76 99.01 96.94 94.17 94.20 95.25 94.01 94.18 94.90

0.5 95.43 98.92 99.37 97.70 95.00 94.98 97.08 95.27 95.14 96.64

0.9 99.06 99.98 99.56 98.23 95.35 98.15 99.69 95.37 99.11 99.52
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Table 5. Exact coverage probabilities(percent) of various 95 percent confidence intervals for δ with N = 50 and π+1 = 0.5

under incomplete data

n m1 m2 δ ρ TlCI TsCI TwCI TlogCI ACI WCI JCI ACIlog WCIlog JCIlog

30 10 10 0.91 -0.9 95.66 86.24 99.52 95.11 94.93 93.32 97.57 94.93 93.30 97.56

-0.5 96.42 90.02 99.33 95.12 94.74 93.36 98.57 94.71 93.33 98.55

-0.1 96.22 93.75 98.93 95.07 94.59 93.26 99.29 94.55 93.23 99.27

0.1 95.41 95.53 98.58 95.04 94.52 93.25 99.54 94.48 93.21 99.52

0.5 96.51 98.51 97.36 94.91 94.51 93.41 99.86 94.49 93.39 99.83

0.9 99.50 99.93 94.52 93.89 95.43 94.42 99.98 95.59 94.85 99.96

1.1 -0.9 96.09 85.89 96.82 95.11 95.06 93.13 96.81 95.06 93.12 96.79

-0.5 95.01 89.67 96.91 95.05 94.75 93.05 98.01 94.71 93.02 97.99

-0.1 95.53 93.51 96.87 95.02 94.62 92.88 98.90 94.56 92.86 98.87

0.1 95.62 95.35 96.77 95.00 94.55 92.79 99.24 94.50 92.77 99.21

0.5 96.20 98.45 96.06 94.88 94.54 92.74 99.72 94.53 92.73 99.67

0.9 99.47 99.92 92.70 93.94 95.43 94.10 99.95 95.67 94.15 99.91

40 5 5 0.91 -0.9 95.93 86.48 99.23 95.12 95.06 94.50 96.43 95.05 94.50 96.43

-0.5 96.56 90.24 99.09 95.12 94.81 94.21 96.97 94.77 94.17 96.93

-0.1 96.45 94.21 98.70 95.03 94.60 94.05 97.52 94.57 93.99 97.40

0.1 96.13 96.14 98.33 94.97 94.50 93.98 97.87 94.47 93.90 97.71

0.5 95.49 99.14 96.82 94.74 94.36 93.95 98.72 94.37 93.89 98.46

0.9 99.22 99.99 91.96 92.28 95.45 95.40 99.68 95.79 95.68 99.32

1.1 -0.9 96.05 85.74 96.55 95.02 94.95 94.36 96.19 94.95 94.35 96.17

-0.5 95.89 89.73 96.65 95.06 94.79 94.09 96.57 94.78 94.08 96.55

-0.1 95.96 93.94 96.55 95.00 94.62 93.88 97.10 94.57 93.85 96.99

0.1 95.66 95.95 96.36 94.94 94.52 93.78 97.43 94.47 93.74 97.29

0.5 96.69 99.09 95.26 94.72 94.38 93.62 98.30 94.42 93.64 98.03

0.9 99.62 99.99 85.15 91.99 95.98 95.33 99.42 95.11 95.65 99.02

40 10 0 0.91 -0.9 96.73 85.55 98.99 95.70 94.93 95.48 90.88 94.93 95.40 90.88

-0.5 95.09 89.62 99.03 95.72 94.82 95.14 91.94 94.77 95.08 91.93

-0.1 94.76 93.87 98.97 95.84 94.60 94.87 93.31 94.55 94.81 93.26

0.1 94.57 95.91 98.86 95.96 94.48 94.74 94.14 94.44 94.67 94.04

0.5 96.31 99.09 98.33 96.43 94.36 94.51 96.04 94.33 94.48 95.78

0.9 97.40 99.99 97.12 97.29 95.75 95.77 97.87 95.97 96.02 97.32

1.1 -0.9 96.21 84.99 96.39 95.47 94.97 95.25 92.61 94.97 95.24 92.61

-0.5 95.84 89.41 96.61 95.66 94.80 94.96 93.52 94.79 94.95 93.51

-0.1 96.20 93.72 96.81 95.76 94.62 94.67 94.66 94.58 94.69 94.56

0.1 95.98 95.77 96.88 95.86 94.54 94.52 95.30 94.50 94.53 95.15

0.5 95.18 99.00 97.00 96.21 94.51 94.26 96.80 94.53 94.28 96.54

0.9 96.79 99.99 96.68 96.66 95.63 95.66 99.11 94.93 96.17 98.63
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Table 6. Exact coverage probabilities(percent) of various 95 percent confidence intervals for δ with N = 20, 50 and π+1 = 0.5

under complete data

n m1 m2 δ ρ TlCI TsCI TwCI TlogCI ACI WCI JCI ACIlog WCIlog JCIlog

20 0 0 0.91 -0.9 96.09 85.72 99.67 96.53 94.69 94.69 95.57 94.68 94.69 95.57

-0.5 98.44 89.88 99.98 96.61 94.75 94.36 95.34 94.61 94.29 95.34

-0.1 95.89 94.27 99.82 96.82 94.10 94.36 94.94 94.06 93.69 94.91

0.1 94.50 96.36 99.59 97.03 94.88 94.29 94.78 93.82 93.45 94.74

0.5 94.47 99.39 98.35 98.19 94.60 94.92 95.75 95.03 94.91 95.57

0.9 95.53 99.99 99.99 99.99 95.87 99.91 99.95 99.90 99.90 99.93

1.1 -0.9 94.42 86.09 98.62 96.52 94.69 94.66 95.69 94.69 94.66 95.69

-0.5 94.45 90.32 99.04 96.40 95.05 94.54 95.38 95.04 94.52 95.38

-0.1 95.52 94.47 99.31 96.76 94.50 94.30 94.83 94.39 94.03 94.81

0.1 96.03 96.49 99.45 97.02 94.28 94.16 94.77 94.19 93.82 94.70

0.5 96.45 99.41 99.78 98.11 94.86 94.92 96.02 95.46 95.31 95.84

0.9 98.04 99.99 93.00 99.99 94.93 99.89 99.95 99.90 99.89 99.91

50 0 0 0.91 -0.9 95.76 84.77 98.87 95.64 95.02 95.02 95.75 95.02 95.02 95.71

-0.5 95.82 89.06 98.92 95.70 94.85 94.83 95.77 94.82 94.78 95.75

-0.1 94.05 93.81 98.68 95.78 94.63 94.57 95.60 94.55 94.56 95.58

0.1 94.72 96.08 98.43 95.88 94.50 94.47 95.53 94.42 94.44 95.51

0.5 94.42 99.39 97.48 96.38 94.28 94.32 95.42 94.22 94.22 95.46

0.9 98.37 99.99 96.39 95.08 94.49 94.55 94.84 98.27 98.28 98.57

1.1 -0.9 94.36 85.39 96.71 95.74 95.06 95.06 95.95 95.06 95.06 95.95

-0.5 94.28 89.63 96.72 95.62 94.82 94.81 95.72 94.82 94.78 95.72

-0.1 94.16 94.10 96.84 95.75 94.65 94.62 95.60 94.61 94.55 95.60

0.1 94.35 96.26 96.80 95.86 94.53 94.48 95.52 94.46 94.48 95.51

0.5 94.78 99.42 96.57 96.39 94.26 94.33 95.40 94.37 94.44 95.40

0.9 98.62 99.99 93.02 94.16 94.47 92.47 92.65 99.26 99.26 99.38
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Table 7. Expected confidence widths of various 95 percent confidence intervals for δ with N = 20 and π+1 = 0.5 under

incomplete data

n m1 m2 δ ρ TlCI TsCI TwCI TlogCI ACI WCI JCI ACIlog WCIlog JCIlog

12 4 4 0.91 -0.9 1.9278 1.8287 2.1543 2.3409 2.3126 2.1582 1.8584 2.3113 2.1568 1.8562

-0.5 1.8706 1.7733 1.9186 2.0296 2.0233 2.1276 1.6634 2.0262 2.1293 1.6591

-0.1 1.8109 1.7179 1.6654 1.7063 1.7258 1.9040 1.4655 1.7378 1.9141 1.4576

0.1 1.6005 1.6902 1.5296 1.5379 1.5722 1.7121 1.3648 1.5908 1.7277 1.3539

0.5 1.5323 1.6348 1.2296 1.1789 1.2589 1.2593 1.1645 1.2947 1.2858 1.1438

0.9 1.0755 1.0763 0.8592 0.7647 0.9648 0.8923 0.9861 1.0214 0.9254 0.9492

1.1 -0.9 2.4320 2.0385 2.2293 2.5228 2.5291 2.1497 1.9182 2.5285 2.1491 1.9177

-0.5 1.9943 1.9834 1.9731 2.2033 2.2372 2.0990 1.7215 2.2410 2.1016 1.7194

-0.1 1.9248 1.9284 1.6939 1.8697 1.9346 2.0200 1.5184 1.9485 2.0317 1.5142

0.1 1.8994 1.9009 1.5421 1.6952 1.7777 1.9171 1.4141 1.7992 1.9360 1.4082

0.5 1.6772 1.8460 1.2001 1.3213 1.4564 1.5548 1.2046 1.4987 1.5914 1.1921

0.9 1.2911 1.3009 0.7617 0.8878 1.1506 1.0982 1.0131 1.2196 1.1517 0.9885

16 2 2 0.91 -0.9 2.0621 1.6658 2.0674 2.2313 2.2079 2.0915 2.1214 2.2066 2.0903 2.1196

-0.5 1.8115 1.6151 1.8196 1.9085 1.9077 1.8104 1.8340 1.9087 1.8109 1.8320

-0.1 1.5643 1.5644 1.5497 1.5702 1.5902 1.5224 1.5315 1.5997 1.5300 1.5313

0.1 1.4309 1.5390 1.4026 1.3917 1.4217 1.3625 1.3722 1.4383 1.3760 1.3730

0.5 1.0832 1.4883 1.0655 0.9990 1.0624 1.0180 1.0383 1.1007 1.0489 1.0378

0.9 0.8234 0.8377 0.5949 0.4765 0.6990 0.6794 0.7153 0.7675 0.7334 0.6991

1.1 -0.9 1.9675 1.8536 2.1436 2.4024 2.4056 2.2297 2.2495 2.4048 2.2289 2.2491

-0.5 1.9023 1.8032 1.8735 2.0701 2.1010 1.9496 1.9616 2.1028 1.9510 1.9613

-0.1 1.7582 1.7528 1.5747 1.7196 1.7764 1.6669 1.6541 1.7876 1.6765 1.6575

0.1 1.6207 1.7277 1.4090 1.5337 1.6036 1.5145 1.4907 1.6227 1.5311 1.4969

0.5 1.5704 1.6774 1.0179 1.1222 1.2337 1.1706 1.1442 1.2779 1.2094 1.1558

0.9 0.9107 0.9271 0.4257 0.5753 0.8534 0.8078 0.7983 0.9367 0.8820 0.8080

16 4 0 0.91 -0.9 1.9649 1.7694 1.7615 1.9088 2.3332 2.2390 2.8839 2.3322 2.2401 2.8803

-0.5 1.9019 1.7091 1.5808 1.6719 2.0128 2.1238 2.4425 2.0147 2.1253 2.4418

-0.1 1.6458 1.6489 1.3834 1.4234 1.6743 1.7268 1.9829 1.6863 1.7378 1.9942

0.1 1.6076 1.6188 1.2762 1.2927 1.4946 1.5127 1.7437 1.5150 1.5324 1.7638

0.5 1.5409 1.5587 1.0373 1.0111 1.1108 1.1267 1.2517 1.1572 1.1787 1.2899

0.9 0.8654 0.8586 0.7451 0.6804 0.7191 0.7604 0.7923 0.8033 0.8788 0.8301

1.1 -0.9 2.0987 1.9839 1.8591 2.0558 2.5556 2.0999 3.0548 2.5551 2.1087 3.0531

-0.5 1.9293 1.9239 1.6576 1.8120 2.2319 2.0644 2.6288 2.2344 2.0680 2.6306

-0.1 1.8907 1.8639 1.4361 1.5553 1.8877 1.8737 2.1794 1.9007 1.8846 2.1951

0.1 1.8430 1.8340 1.3151 1.4199 1.7046 1.6851 1.9434 1.7266 1.7038 1.9702

0.5 1.7014 1.7741 1.0420 1.1275 1.3132 1.2568 1.4505 1.3630 1.3028 1.5067

0.9 1.1534 1.1143 0.6982 0.7843 0.9093 0.8858 0.9678 1.0023 0.9899 1.0547
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Table 8. Expected confidence widths of various 95 percent confidence intervals for δ with N = 50 and π+1 = 0.5 under

incomplete data

n m1 m2 δ ρ TlCI TsCI TwCI TlogCI ACI WCI JCI ACIlog WCIlog JCIlog

30 10 10 0.91 -0.9 1.0326 0.9362 1.2006 1.2078 1.1996 1.1018 1.0279 1.1992 1.1014 1.0274

-0.5 0.9965 0.9265 1.0851 1.0748 1.0719 0.9871 0.9851 1.0722 0.9872 0.9838

-0.1 0.9186 0.9168 0.9589 0.9320 0.9335 0.8627 0.9406 0.9358 0.8640 0.9378

0.1 0.9002 0.9120 0.8904 0.8554 0.8590 0.7956 0.9176 0.8630 0.7980 0.9139

0.5 0.8932 0.9023 0.7381 0.6863 0.6950 0.6483 0.8704 0.7041 0.6538 0.8639

0.9 0.8926 0.9062 0.5513 0.4791 0.5156 0.4881 0.8250 0.5331 0.4985 0.8146

1.1 -0.9 1.0380 1.0380 1.2436 1.3157 1.3142 1.1914 1.0455 1.3140 1.1911 1.0451

-0.5 1.0283 1.0283 1.1132 1.1747 1.1797 1.0712 0.9964 1.1804 1.0717 0.9952

-0.1 1.0187 1.0187 0.9686 1.0225 1.0336 0.9398 0.9448 1.0368 0.9420 0.9421

0.1 1.0138 1.0138 0.8889 0.9406 0.9547 0.8685 0.9178 0.9598 0.8721 0.9142

0.5 1.0042 1.0042 0.7068 0.7591 0.7804 0.7102 0.8616 0.7918 0.7184 0.8551

0.9 0.9946 0.9946 0.4685 0.5362 0.5906 0.5370 0.8069 0.6123 0.5531 0.7959

40 5 5 0.91 -0.9 1.1253 0.9743 1.1658 1.1741 1.1651 1.1248 1.1153 1.1648 1.1245 1.1149

-0.5 0.9982 0.9649 1.0417 1.0319 1.0283 0.9938 0.9952 1.0284 0.9938 0.9938

-0.1 0.9757 0.8555 0.9043 0.8773 0.8781 0.8498 0.8657 0.8800 0.8513 0.8625

0.1 0.9065 0.8508 0.8286 0.7932 0.7960 0.7710 0.7965 0.7996 0.7738 0.7916

0.5 0.8655 0.6414 0.6552 0.6016 0.6093 0.5919 0.6455 0.6186 0.5993 0.6341

0.9 0.4809 0.4920 0.4216 0.3390 0.3783 0.3713 0.4790 0.4001 0.3886 0.4506

1.1 -0.9 0.9949 0.9684 1.2116 1.2786 1.2745 1.2194 1.1794 1.2743 1.2192 1.1791

-0.5 0.9921 0.9590 1.0715 1.1276 1.1302 1.0829 1.0529 1.1306 1.0832 1.0519

-0.1 0.9136 0.9496 0.9139 0.9626 0.9713 0.9315 0.9154 0.9739 0.9337 0.9132

0.1 0.8994 0.9449 0.8254 0.8723 0.8840 0.8480 0.8411 0.8886 0.8519 0.8377

0.5 0.8484 0.9355 0.6154 0.6661 0.6845 0.6562 0.6763 0.6961 0.6664 0.6679

0.9 0.5383 0.5261 0.2942 0.3832 0.4392 0.4191 0.4911 0.4665 0.4437 0.4679

40 10 0 0.91 -0.9 0.9943 0.8934 1.1145 1.1270 1.1915 1.1649 1.4044 1.1912 1.1646 1.4034

-0.5 0.9882 0.8828 1.0003 0.9972 1.0506 1.0324 1.2249 1.0508 1.0326 1.2232

-0.1 0.8932 0.8723 0.8742 0.8563 0.8958 0.8842 1.0356 0.8982 0.8864 1.0336

0.1 0.8745 0.8670 0.8050 0.7799 0.8112 0.8022 0.9364 0.8154 0.8063 0.9339

0.5 0.7546 0.8564 0.6480 0.6079 0.6183 0.6135 0.7249 0.6293 0.6243 0.7185

0.9 0.6009 0.6459 0.4459 0.3840 0.3781 0.3759 0.4996 0.4040 0.4020 0.4759

1.1 -0.9 1.0048 0.9984 1.1684 1.2300 1.3109 1.2160 1.4779 1.3107 1.2158 1.4774

-0.5 1.0008 0.9878 1.0413 1.0930 1.1630 1.0879 1.2973 1.1634 1.0881 1.2968

-0.1 0.9745 0.9773 0.8992 0.9439 1.0003 0.9427 1.1045 1.0031 0.9449 1.1055

0.1 0.9202 0.9720 0.8203 0.8629 0.9110 0.8614 1.0018 0.9160 0.8655 1.0041

0.5 0.8641 0.9114 0.6371 0.6804 0.7075 0.6723 0.7779 0.7200 0.6828 0.7827

0.9 0.6509 0.6690 0.3849 0.4449 0.4586 0.4354 0.5284 0.4866 0.4599 0.5326
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Table 9. Expected confidence widths of various 95 percent confidence intervals for δ with N = 20, 50 and π+1 = 0.5 under

complete data

n m1 m2 δ ρ TlCI TsCI TwCI TlogCI ACI WCI JCI ACIlog WCIlog JCIlog

20 0 0 0.91 -0.9 1.5405 1.5370 1.7070 1.8316 2.1005 2.1046 2.3419 2.0998 2.1039 2.3404

-0.5 1.4976 1.4912 1.5217 1.5913 1.8011 1.8585 1.9999 1.8013 1.8586 2.0003

-0.1 1.4502 1.4454 1.3176 1.3375 1.4787 1.5483 1.6339 1.4862 1.5562 1.6443

0.1 1.4198 1.4226 1.2056 1.2028 1.3047 1.3593 1.4373 1.3192 1.3744 1.4572

0.5 1.1734 1.1768 0.9507 0.9067 0.9194 0.9334 1.0046 0.9575 0.9711 1.0568

0.9 0.7296 0.7311 0.6237 0.5342 0.4847 0.4852 0.5195 0.5664 0.5610 0.6342

1.1 -0.9 1.7109 1.7082 1.7856 1.9592 2.2835 2.2232 2.5465 2.2831 2.2228 2.5457

-0.5 1.6701 1.6627 1.5769 1.7109 1.9785 1.9671 2.1999 1.9794 1.9678 2.2011

-0.1 1.6189 1.6172 1.3447 1.4471 1.6476 1.6945 1.8251 1.6567 1.7039 1.8371

0.1 1.5894 1.5945 1.2158 1.3065 1.4681 1.5245 1.6225 1.4851 1.5423 1.6447

0.5 1.2478 1.2491 0.9165 0.9959 1.0687 1.1034 1.1737 1.1135 1.1501 1.2322

0.9 0.8235 0.8337 0.5067 0.6041 0.6124 0.6129 0.6631 0.7136 0.7160 0.7963

50 0 0 0.91 -0.9 1.0231 0.8227 1.0816 1.0878 1.1288 1.1297 1.2079 1.1286 1.1296 1.2077

-0.5 0.9264 0.8138 0.9645 0.9553 0.9879 0.9888 1.0560 0.9878 0.9888 1.0559

-0.1 0.8765 0.8049 0.8340 0.8102 0.8316 0.8323 0.8879 0.8332 0.8338 0.8898

0.1 0.7992 0.8005 0.7616 0.7306 0.7451 0.7457 0.7950 0.7483 0.7487 0.7989

0.5 0.7688 0.7916 0.5945 0.5472 0.5429 0.5431 0.5784 0.5520 0.5520 0.5899

0.9 0.4567 0.4827 0.3657 0.2843 0.2533 0.2539 0.2687 0.2829 0.2821 0.3064

1.1 -0.9 1.0976 0.9105 1.1233 1.1799 1.2338 1.2271 1.3213 1.2336 1.2270 1.3211

-0.5 1.0481 0.9016 0.9915 1.0391 1.0849 1.0805 1.1605 1.0850 1.0806 1.1607

-0.1 0.9432 0.8927 0.8423 0.8843 0.9191 0.9164 0.9820 0.9212 0.9184 0.9846

0.1 0.8850 0.8883 0.7581 0.7991 0.8269 0.8247 0.8829 0.8309 0.8287 0.8877

0.5 0.7608 0.7794 0.5563 0.6020 0.6100 0.6085 0.6502 0.6215 0.6200 0.6640

0.9 0.4235 0.4705 0.2352 0.3196 0.3029 0.3013 0.3214 0.3394 0.3380 0.3650
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Table 10. MNCP/NCP of various 95 percent confidence intervals for δ with N = 20 and π+1 = 0.5 under incomplete data

n m1 m2 δ ρ TlCI TsCI TwCI TlogCI ACI WCI JCI ACIlog WCIlog JCIlog

12 4 4 0.91 -0.9 0.4906 0.5701 0.3852 0.5413 0.5146 0.5138 0.5807 0.5143 0.5094 0.5805

-0.5 0.4819 0.5693 0.6447 0.5302 0.5229 0.5304 0.6968 0.5167 0.5181 0.6987

-0.1 0.4631 0.5723 0.6062 0.5503 0.5409 0.5481 0.7820 0.5260 0.5369 0.7840

0.1 0.4508 0.5740 0.6676 0.5648 0.5547 0.5616 0.6320 0.5352 0.5492 0.6334

0.5 0.4353 0.5649 0.6961 0.6244 0.5937 0.5988 0.6316 0.5612 0.5647 0.6357

0.9 0.4799 0.1507 0.6987 0.7174 0.5889 0.6230 0.6080 0.5431 0.5201 0.6473

1.1 -0.9 0.4892 0.5591 0.6230 0.5270 0.5174 0.5118 0.5814 0.5172 0.5108 0.5774

-0.5 0.4863 0.5645 0.6017 0.5363 0.5233 0.5201 0.6958 0.5211 0.5137 0.6933

-0.1 0.4778 0.5705 0.6739 0.5570 0.5426 0.5307 0.7798 0.5317 0.5222 0.7766

0.1 0.4674 0.5734 0.7751 0.5714 0.5586 0.5401 0.6343 0.5411 0.5326 0.6271

0.5 0.4400 0.5661 0.3524 0.6326 0.6049 0.5662 0.6488 0.5676 0.5600 0.6410

0.9 0.5131 0.1298 0.2295 0.7356 0.5794 0.4839 0.6960 0.5369 0.4869 0.6962

16 2 2 0.91 -0.9 0.4934 0.4654 0.2032 0.5057 0.5314 0.5164 0.5251 0.5309 0.5066 0.5245

-0.5 0.4935 0.4759 0.7238 0.5227 0.5196 0.5141 0.5750 0.5215 0.5065 0.5592

-0.1 0.4799 0.4816 0.6740 0.5493 0.5261 0.5263 0.6266 0.5217 0.5201 0.6045

0.1 0.4671 0.4833 0.6932 0.5754 0.5423 0.5438 0.6763 0.5302 0.5329 0.6519

0.5 0.4260 0.4679 0.6993 0.6935 0.6134 0.6282 0.6436 0.5794 0.5740 0.6078

0.9 0.2429 0.2376 0.5999 0.8202 0.5721 0.8748 0.6526 0.5249 0.7571 0.6332

1.1 -0.9 0.4951 0.5023 0.2835 0.5155 0.5201 0.5049 0.5818 0.5194 0.5049 0.5814

-0.5 0.4834 0.4926 0.6680 0.5260 0.5221 0.5192 0.5629 0.5289 0.5166 0.5586

-0.1 0.4813 0.4892 0.6667 0.5520 0.5289 0.5247 0.6171 0.5341 0.5187 0.5984

0.1 0.4699 0.4876 0.7358 0.5807 0.5452 0.5351 0.6707 0.5429 0.5301 0.6480

0.5 0.4155 0.4648 0.3203 0.7051 0.6249 0.6008 0.6425 0.5832 0.5845 0.6072

0.9 0.2797 0.2416 0.3286 0.8189 0.5457 0.7541 0.6302 0.5813 0.7203 0.6182

16 4 0 0.91 -0.9 0.4193 0.4907 0.4000 0.5098 0.5178 0.5797 0.6341 0.5199 0.5807 0.6340

-0.5 0.4373 0.4818 0.6203 0.4971 0.5316 0.5557 0.6207 0.5368 0.5627 0.6198

-0.1 0.4398 0.4744 0.6368 0.5104 0.5379 0.5594 0.6253 0.5368 0.5602 0.6218

0.1 0.4336 0.4691 0.6921 0.5246 0.5487 0.5709 0.6420 0.5424 0.5664 0.6366

0.5 0.3745 0.4351 0.6000 0.6138 0.6253 0.6428 0.6869 0.6185 0.6255 0.6837

0.9 0.2030 0.2694 0.5007 0.6997 0.5369 0.8429 0.6977 0.6016 0.7970 0.6984

1.1 -0.9 0.5312 0.4984 0.5312 0.6512 0.5442 0.4710 0.1731 0.5452 0.4688 0.1732

-0.5 0.5406 0.5043 0.6406 0.6602 0.5191 0.4577 0.1752 0.5177 0.4594 0.1747

-0.1 0.5236 0.5077 0.6236 0.7043 0.5279 0.4797 0.2117 0.5052 0.4764 0.2115

0.1 0.5122 0.5093 0.6122 0.7487 0.5456 0.5015 0.2289 0.5086 0.4878 0.2295

0.5 0.4778 0.4980 0.6778 0.6776 0.6040 0.5930 0.2455 0.5314 0.5222 0.2416

0.9 0.7079 0.5997 0.6079 0.6951 0.5648 0.7784 0.6255 0.5170 0.5921 0.6204
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Table 11. MNCP/NCP of various 95 percent confidence intervals for δ with N = 50 and π+1 = 0.5 under incomplete data

n m1 m2 δ ρ TlCI TsCI TwCI TlogCI ACI WCI JCI ACIlog WCIlog JCIlog

30 10 10 0.91 -0.9 0.5345 0.5221 0.3816 0.5263 0.5069 0.5233 0.7314 0.5070 0.5236 0.7285

-0.5 0.5292 0.5188 0.7009 0.5187 0.5109 0.5149 0.7732 0.5111 0.5128 0.7732

-0.1 0.5137 0.5176 0.6038 0.5282 0.5155 0.5213 0.6261 0.5120 0.5158 0.6240

0.1 0.5104 0.5173 0.6527 0.5368 0.5194 0.5267 0.6571 0.5144 0.5179 0.6534

0.5 0.5281 0.5112 0.6920 0.5695 0.5441 0.5533 0.6491 0.5314 0.5280 0.6445

0.9 0.6093 0.3290 0.6990 0.6479 0.6101 0.6433 0.6991 0.5633 0.5554 0.6989

1.1 -0.9 0.4917 0.5025 0.9408 0.5140 0.5137 0.5079 0.7251 0.5135 0.5083 0.7218

-0.5 0.4897 0.5011 0.8721 0.5193 0.5110 0.5105 0.7627 0.5103 0.5103 0.7624

-0.1 0.4872 0.4995 0.7614 0.5298 0.5150 0.5132 0.6122 0.5122 0.5128 0.6103

0.1 0.4834 0.4981 0.6882 0.5397 0.5194 0.5165 0.6445 0.5146 0.5166 0.6411

0.5 0.4603 0.4865 0.4998 0.5765 0.5436 0.5396 0.6439 0.5324 0.5397 0.6383

0.9 0.4111 0.2778 0.3198 0.6556 0.6199 0.5838 0.6988 0.5842 0.5889 0.6985

40 5 5 0.91 -0.9 0.4731 0.5016 0.7506 0.4916 0.4989 0.4925 0.3713 0.4988 0.4920 0.3711

-0.5 0.4867 0.5004 0.4280 0.4859 0.4897 0.4871 0.3807 0.4915 0.4889 0.3821

-0.1 0.4476 0.4997 0.4562 0.4761 0.4867 0.4817 0.3466 0.4883 0.4866 0.3559

0.1 0.5270 0.5003 0.7480 0.4656 0.4830 0.4761 0.3207 0.4856 0.4835 0.3309

0.5 0.5057 0.5186 0.4073 0.4198 0.4495 0.6405 0.6075 0.4645 0.4660 0.6261

0.9 0.5049 0.5896 0.6000 0.6379 0.5545 0.6404 0.6094 0.4137 0.6271 0.6128

1.1 -0.9 0.5081 0.4932 0.9399 0.5000 0.4919 0.5261 0.6040 0.4919 0.5250 0.6018

-0.5 0.4899 0.4990 0.8601 0.5158 0.5111 0.5076 0.6170 0.5101 0.5077 0.6159

-0.1 0.4894 0.5014 0.7377 0.5276 0.5143 0.5108 0.6504 0.5106 0.5090 0.6436

0.1 0.4875 0.5018 0.6558 0.5377 0.5181 0.5150 0.6754 0.5125 0.5118 0.6684

0.5 0.4647 0.4885 0.4473 0.5896 0.5521 0.5467 0.7895 0.5353 0.5359 0.7729

0.9 0.3119 0.3152 0.3390 0.7853 0.5206 0.6976 0.6901 0.5881 0.6743 0.6859

40 10 0 0.91 -0.9 0.5072 0.4989 0.5981 0.5031 0.4931 0.5548 0.5823 0.4928 0.5600 0.5822

-0.5 0.4904 0.4999 0.3125 0.4944 0.5088 0.5490 0.5808 0.5096 0.5482 0.5800

-0.1 0.4868 0.4970 0.6271 0.5015 0.5120 0.5446 0.5808 0.5132 0.5432 0.5789

0.1 0.4832 0.4943 0.7791 0.5089 0.5161 0.5447 0.5828 0.5168 0.5419 0.5797

0.5 0.4497 0.4710 0.5655 0.5495 0.5481 0.5692 0.5942 0.5503 0.5688 0.5915

0.9 0.2624 0.2697 0.2996 0.7493 0.5367 0.7501 0.7000 0.5376 0.7488 0.7000

1.1 -0.9 0.4921 0.5023 0.5744 0.5824 0.5079 0.4781 0.5551 0.5079 0.4765 0.5551

-0.5 0.4918 0.5031 0.5370 0.5932 0.5084 0.4870 0.5675 0.5082 0.4859 0.5679

-0.1 0.4928 0.5041 0.5746 0.6172 0.5122 0.4993 0.5849 0.5072 0.4950 0.5864

0.1 0.4931 0.5037 0.5332 0.6373 0.5164 0.5090 0.5968 0.5069 0.5005 0.6006

0.5 0.4825 0.4865 0.5308 0.7122 0.5399 0.5572 0.5362 0.5175 0.5306 0.5516

0.9 0.4365 0.4521 0.6044 0.6160 0.5792 0.7333 0.6862 0.5635 0.6421 0.6617
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Table 12. MNCP/NCP of various 95 percent confidence intervals for δ with N = 20, 50 and π+1 = 0.5 under complete data

n m1 m2 δ ρ TlCI TsCI TwCI TlogCI ACI WCI JCI ACIlog WCIlog JCIlog

20 0 0 0.91 -0.9 0.5045 0.4871 0.4666 0.4505 0.4793 0.4802 0.5677 0.4795 0.4802 0.5677

-0.5 0.4411 0.5104 0.6913 0.4137 0.5075 0.5193 0.4629 0.5167 0.5255 0.4636

-0.1 0.4894 0.5167 0.7042 0.3945 0.4884 0.4560 0.4569 0.4866 0.5137 0.4602

0.1 0.4823 0.5208 0.7391 0.3743 0.4780 0.4296 0.4467 0.4794 0.5051 0.4512

0.5 0.4790 0.5721 0.7796 0.2323 0.4437 0.2803 0.3508 0.4247 0.4369 0.3764

0.9 0.3265 0.6451 0.6758 0.6245 0.5203 0.3038 0.6577 0.6812 0.6807 0.6716

1.1 -0.9 0.4444 0.4955 0.5370 0.4771 0.4698 0.4699 0.5788 0.4697 0.4699 0.5790

-0.5 0.4478 0.4931 0.5576 0.4149 0.4918 0.5098 0.4766 0.4927 0.5116 0.4768

-0.1 0.4728 0.4920 0.5128 0.4066 0.4754 0.4931 0.4649 0.4850 0.5145 0.4673

0.1 0.4049 0.4934 0.4444 0.3883 0.4685 0.4806 0.4498 0.4793 0.5088 0.4568

0.5 0.3644 0.5379 0.7032 0.5350 0.5404 0.5873 0.3571 0.4281 0.4466 0.3865

0.9 0.2477 0.6362 0.7176 0.5881 0.5830 0.6526 0.6807 0.6780 0.6861 0.6973

50 0 0 0.91 -0.9 0.2385 0.4832 0.7599 0.4721 0.5101 0.5098 0.4843 0.5102 0.5098 0.4898

-0.5 0.4754 0.4914 0.4604 0.4611 0.4899 0.4883 0.5015 0.4900 0.4908 0.5004

-0.1 0.4260 0.4905 0.6844 0.4458 0.4888 0.4881 0.4945 0.4899 0.4890 0.4965

0.1 0.3761 0.4902 0.6888 0.4299 0.4852 0.4801 0.4925 0.4848 0.4825 0.4946

0.5 0.2621 0.5160 0.6055 0.3558 0.4411 0.4374 0.4454 0.4633 0.4578 0.4613

0.9 0.2621 0.3000 0.6000 0.6120 0.5323 0.6253 0.6235 0.6933 0.6861 0.6492

1.1 -0.9 0.5370 0.4971 0.6797 0.4748 0.4687 0.4688 0.5004 0.4687 0.4687 0.5004

-0.5 0.4831 0.4960 0.6378 0.4552 0.4916 0.4941 0.5009 0.4915 0.4921 0.5000

-0.1 0.3521 0.4944 0.5456 0.4397 0.4869 0.4865 0.4952 0.4903 0.4946 0.4961

0.1 0.1964 0.4942 0.3101 0.4239 0.4813 0.4860 0.4890 0.4893 0.4929 0.4951

0.5 0.4242 0.5198 0.4950 0.3436 0.4422 0.4498 0.4358 0.4589 0.4644 0.4605

0.9 0.3294 0.3403 0.6094 0.6096 0.4383 0.4837 0.5231 0.4261 0.4270 0.5707
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Table 13 Various 95% CIs for π1+/π+1 based on

the Osoba study

Method Lower limit Upper limit

TlCI 0.8129 1.0624

TsCI 0.8126 1.0631

TwCI 0.8210 1.0434

TlogCI 0.8328 1.0441

ACI 0.8238 1.0488

WCI 0.8265 1.0410

JCI 0.7904 1.0694

ACIlog 0.8235 1.0489

WCIlog 0.8262 1.0413

JCIlog 0.7909 1.0665

Table 14 Various 95% CIs for π1+/π+1 based on

the neurological data set

Method Lower limit Upper limit

TlCI 0.8621 2.2049

TsCI 0.8504 2.2143

TwCI 0.8217 1.8582

TlogCI 0.8769 2.0475

ACI 0.8835 2.1248

WCI 0.8896 1.9948

JCI 0.9318 2.2490

ACIlog 0.8833 2.1348

WCIlog 0.8893 2.0018

JCIlog 0.9342 2.2625
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