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The interfacial and electrical properties of sputtered HfTiON on sulfur-passivated GaAs with or

without TaON as interfacial passivation layer (IPL) are investigated. Experimental results show

that the GaAs metal-oxide-semiconductor capacitor with HfTiON/TaON stacked gate dielectric

annealed at 600 �C exhibits low interface-state density (1.0� 1012 cm�2 eV�1), small gate

leakage current (7.3� 10�5 A cm�2 at Vg¼Vfbþ 1 V), small capacitance equivalent thickness

(1.65 nm), and large equivalent dielectric constant (26.2). The involved mechanisms lie in the

fact that the TaON IPL can effectively block the diffusions of Hf, Ti, and O towards GaAs

surface and suppress the formation of interfacial As-As bonds, Ga-/As-oxides, thus unpinning the

Femi level at the TaON/GaAs interface and improving the interface quality and electrical

properties of the device. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818000]

GaAs-based metal-oxide-semiconductor field-effect

transistor (MOSFET) with high-k gate dielectric has received

significant efforts in the past decades due to its higher carrier

mobility, larger energy bandgap, and lower power consump-

tion than those of its Si counterpart.1,2 However, direct depo-

sition of high-k dielectric on GaAs yields poor electrical

characteristics due to easy formation of native oxide on the

GaAs surface which results in an extremely high density of

interface states, thus inducing Fermi-level pinning at the

GaAs/high-k interface.3 So, different surface-passivation

techniques of GaAs have been intensively studied. For

instance, depositing a thin layer of Si or Ge before deposition

of high-k dielectric has been demonstrated to be effective in

improving the interface quality.4–6 However, Si or Ge can al-

ter the doping concentration or even induce a counter doping

in the GaAs substrate because they are amphoteric dopant

for GaAs.7 Al2O3 or AlON as interfacial passivation layer

(IPL) also provides excellent interface quality in GaAs MOS

devices,8,9 but their low k value (�8 for Al2O3 and �10 for

AlON) limits further device scaling. Ta-based oxynitride

(TaON) with a high-k value (�26) close to that of HfO2 has

been used as the interlayer of Hf-based Ge MOS devices,

which have showed excellent electrical properties.10 Also,

TaON has a large bandgap (�4.4 eV) and high thermal sta-

bility, and so is a promising candidate as IPL on GaAs. In

this work, surface pretreatments including sulfur passivation

by (NH4)2S and especially TaON as IPL are adopted to

improve the interface quality of GaAs MOS device with a

very high-k HfTiON gate dielectric, and thus excellent elec-

trical properties have been achieved with small gate leakage

current and low interface-state density as compared to its

counterpart without the TaON IPL.

MOS capacitors were fabricated on Si-doped n-GaAs

(100) wafers with a doping concentration of 0.5� 1.0

� 1018 cm�3. The wafers were degreased in acetone, ethanol,

and isopropanol, and dipped in diluted HCl to remove the

native oxide, followed by (NH4)2S dipping for 40 min at

room temperature for sulfur passivation of the GaAs surface

and then drying by N2. Subsequently, a thin TaN layer of

�2 nm was deposited on the wafers as IPL by reactive sput-

tering of a Ta target in an Ar/N2 (24 sccm/12 sccm) ambient,

and then a �8 nm HfTiN film was in situ deposited by co-

sputtering of Hf and Ti targets in the same ambient (denoted

as HfTiON/TaON sample). For comparison, a control sample

with only HfTiN (�10 nm) as gate dielectric was prepared

(denoted as HfTiON sample). Post-deposition annealing

(PDA) was performed at 500 �C or 600 �C for 60 s in N2

(500 sccm) to transform HfTiN/TaN into HfTiON/TaON by

using the residual oxygen in the annealing system. Al was

thermally evaporated and patterned as gate electrode and

also as the back electrode to decrease contact resistance.

Finally, the samples were annealed at 300 �C for 20 min in

forming gas (5% H2þ 95% N2).

High-frequency (HF, 1-MHz) capacitance-voltage (C-V)

and gate leakage characteristics (Jg vs. Vg) of the samples

were measured using HP4284A precision Laboratoire Central

de Recherche meter and HP4156A precision semiconductor

parameter analyzer, respectively. High-resolution transmission

electron microscopy (HR-TEM) was used to observe the

cross-section of the HfTiON/TaON stacked gate dielectric.

X-ray photoelectron spectroscopy (XPS) was used to analyze

the chemical states at/near the high-k/GaAs interface.

Physical thickness of the gate dielectric was determined by

ellipsometer and HR-TEM.

a)Authors to whom correspondence should be addressed. Electronic

addresses: jpxu@mail.hust.edu.cn and laip@eee.hku.hk.
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Fig. 1 is the typical HF C-V curve of the samples. For the

sample without TaON IPL, a stretch out of the C-V curve is

obviously observed, indicating a high density of defective

states at the conduction-band edge of GaAs caused by a con-

siderable amount of As-O, As-As, and Ga-O bonds at the

GaAs/HfTiON interface.11–13 However, the stretch out is

diminished for the two HfTiON/TaON samples, and even dis-

appears for the one annealed at 600 �C, which should be

ascribed to the blocking role of TaON against oxygen diffu-

sion from the HfTiON gate dielectric to the surface of the

GaAs substrate, similar to the works in Refs. 14 and 15. The

thin interface layer of TaON (2.6 nm) is observed between

HfTiON (8.2 nm) and GaAs, as shown in Fig. 2, and the total

physical thickness (Tox) of the stacked gate dielectric is basi-

cally consistent with the measured result by ellipsometry

(11.1 nm). So, Tox’s of the other samples were also measured

by ellipsometry, as listed in Table I. In addition, from Fig. 1,

it can be seen that the accumulation capacitance is larger for

the HfTiON/TaON sample than the HfTiON sample under the

same annealing temperature, although the physical thicknesses

of their dielectric films are approximately equal. This indi-

cates that the TaON IPL can efficiently suppress the growth of

Ga-/As-oxides and thus a low-k interfacial layer on the GaAs

substrate.16 The larger accumulation capacitance for the

HfTiON/TaON sample annealed at 600 �C than that annealed

at 500 �C is because better interface quality can be obtained at

higher annealing temperature. The quasi-saturation of the C-V

curve in the accumulation regime and a large slope in the

depletion regime for the HfTiON/TaON sample annealed at

600 �C indicate unpinned Fermi level17 and good interface

properties. Moreover, the hysteresis voltage is smaller for the

HfTiON/TaON samples than the HfTiON samples, especially

for the HfTiON/TaON sample annealed at 600 �C (50 mV), as

shown in Fig. 1, implying fewer slow states in the dielectric

and near/at the interface due to the reduction of Ga and As dif-

fusions in the sample with TaON IPL.18

The capacitance equivalent thickness (CET), equivalent k
value, flatband voltage (Vfb) and equivalent oxide-charge den-

sity (Qox) of the samples were extracted from their HF C-V

curves, as listed in Table I. Interface-state density (Dit) at

midgap is also extracted from the C-V curves using the

Terman’s method for comparison purpose. The CET of the

HfTiON/TaON stacked dielectric annealed at 600 �C is

1.65 nm, the smallest among the samples, which is associated

with efficiently suppressed growth of the low-k interfacial

layer (see Fig. 2). As a result, this sample achieves the largest

equivalent k value of 26.2. The positive shift of Vfb indicates

presence of negative oxide charges in the dielectric film.

Smaller positive shift of Vfb for the HfTiON/TaON sample

annealed at 600 �C (0.93 V) than that annealed at 500 �C
(1.19 V) should be attributed to the fact that more incorporated

nitrogen atoms can diffuse to fill up the oxygen vacancies in

the oxynitride during the higher annealing temperature,19

resulting in a reduction of defect traps in the film and near the

interface. The negative Qox could be associated with acceptor-

like interface and near-interface traps.20,21 The Qox of the

HfTiON/TaON sample annealed at 600 �C (9.3� 1012 cm�2)

is smaller than that of its counterpart annealed at 500 �C
(1.3� 1013 cm�2), probably due to the formation of more-

densified high-quality TaON and HfTiON films and better

release of near-interface stress during the PDA at higher tem-

perature,22 thus better quality for the HfTiON/TaON and

TaON/GaAs interfaces. Moreover, the samples with TaON

IPL exhibit smaller Dit than those without, with the smallest

value for the HfTiON/TaON sample annealed at 600 �C
(1.0� 1012 cm�2 eV�1). This further indicates the effective

blocking role of the TaON interlayer against the diffusions of

Hf, Ti, and O towards the GaAs surface during the annealing

at higher temperature, as confirmed by the XPS analysis

below, thus reducing the defects at/near the interface.23

Fig. 3 is the gate leakage properties of the samples.

High gate leakage current density is observed when a posi-

tive gate voltage is applied to the samples without TaON

interlayer, with 3.8� 10�3 A/cm2 and 1.4� 10�2 A/cm2 at

Vg¼Vfbþ 1 V for the samples annealed at 600 �C and

500 �C, respectively. This is likely due to interface trap-

assisted tunneling24,25 because a high density of interface

states exists at the high-k/GaAs interface of the unpassivated

FIG. 1. HF (1-MHz) C-V characteristics of GaAs MOS capacitors with/

without TaON, annealed at 500 and 600 �C.

FIG. 2. The cross-sectional HR-TEM image of Al/HfTiON/TaON/GaAs

annealed at 600 �C.

TABLE I. Parameters of the GaAs MOS capacitors extracted from HF C-V

curves.

Vfb Tox Qox Dit CET

Sample (V) (nm) (cm�2) (cm�2 eV�1) (nm) k

HfTiON/TaON 600 �C 0.93 11.1 �9.3� 1012 1.0� 1012 1.65 26.2

HfTiON/TaON 500 �C 1.19 11.2 �1.3� 1013 3.8� 1012 1.69 25.9

HfTiON 600 �C 1.67 11.4 �1.7� 1013 5.4� 1012 1.80 24.7

HfTiON 500 �C 1.68 11.9 �1.4� 1013 7.8� 1012 2.22 20.9

092901-2 Wang et al. Appl. Phys. Lett. 103, 092901 (2013)
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samples, as listed in Table I. At a moderate or high oxide

electric field, the energy levels of some traps in the HfTiON

dielectric are lowered to below the Fermi level of the gate,

and thus these traps become effective centers for generating

the trap-assisted tunneling current.26 The trapped electrons

tunnel from the occupied traps to the nearest unoccupied

ones and then tunnel to the conduction band of the HfTiON

dielectric.27 In addition, the interfacial Ga-/As-oxide induced

lowering of the conduction-band offset between HfTiON and

GaAs is another possible reason.28 However, a large reduc-

tion (nearly two orders of magnitude) of gate leakage current

density is obtained for the HfTiON/TaON samples, with

7.3� 10�5 A/cm2 and 3.6� 10�4 A/cm2 for the samples

annealed at 600 �C and 500 �C, respectively. The smallest

gate leakage current of the HfTiON/TaON sample annealed

at 600 �C is closely related to its smallest Dit and Qox. In

other words, improved interface properties and reduced

defects in the gate oxide can effectively reduce the trap-

assisted tunneling current caused by the tunneling of trapped

carriers in the sample.25

In order to further identify the effects of the TaON inter-

layer on the interfacial chemical states, the thickness of the

HfTiON layer is reduced by etching to �3 nm from the

GaAs surface (as marked in Fig. 2) using an in situ Arþ ion

beam in the XPS chamber. So, the chemical states near/at

the high-k/GaAs interface can be analyzed. The presence of

nitrogen is confirmed by the N 1s spectrum, as shown in the

inset of Fig. 4(a). In Fig. 4(a)), a peak at 22.9 eV should cor-

respond to Ta-N bonds, while the two peaks at 26.1 eV and

28.2 eV come from Ta-O bonds, indicating that a TaON

interfacial layer has been formed on the GaAs substrate.

In Fig. 5(a), the intensity of the two Ti 2p peaks is obvi-

ously decreased for the sample with TaON interlayer as com-

pared to the one without, suggesting that the Ti content near

the GaAs surface is lower in the former. Moreover, the spec-

tra of the HfTiON/TaON sample in Fig. 4(a) reveal a smaller

Hf-O peak than that of the HfTiON sample in Fig. 4(b), and,

similarly, from Fig. 5(b), it is also found that the O 1s peak

is smaller for the former than the latter. Based on the oxygen

peak area, thickness of dielectric film and annealing time of

the two 600 �C-annealed samples, the ratio of oxygen diffu-

sion rate for the sample with TaON to that without TaON is

estimated to be 81%. These imply that TaON can effectively

block the Ti, Hf, and O diffusions to the surface of the GaAs

substrate and protect it from oxidation, thus reducing the

interface states and gate leakage current, as shown in Table I

and Fig. 3.

From Figs. 4 and 6, Ga-S and As-S peaks are also

observed in the Ga 3d and As 3d spectra of the two 600 �C-

annealed samples with or without TaON IPL. This implies

that sulfur passivation is beneficial to reducing the formation

of Ga-O and As-O bonds,3 but cannot fully eliminate them.

In Fig. 4(b), for the sample without TaON interlayer, the Ga-

O peak is clearly observed and the content of Ga-O bond at

the interface is calculated to be 34% based on the Ga-O/Ga3d

peak-area ratio,6,13 demonstrating the existence of a signifi-

cant amount of Ga oxide at the interface. Nevertheless, for

the sample with TaON interlayer, no Ga-O peak appears,

implying that the formation of Ga oxide at the interface is

effectively suppressed by the TaON interlayer. Similarly,

As-O bonding only occurs in the HfTiON sample (its content

is 2% from the As-O/As3d peak-area ratio) but disappears in

the HfTiON/TaON sample, as shown in Fig. 6. Such a low

content of As-O bond at the HfTiON/GaAs interface may be

due to the decomposition of As oxide into Ga oxide and ele-

mental As (As2O3þGaAs ! Ga2O3þAs) during the PDA

at 600 �C, which is also the reason for the high content of

Ga-O bond at the interface.12 These indicate that the TaON

film as IPL is more effective in suppressing the formation of

the Ga-/As-oxides and low-k interfacial layer, thus resulting

in good interface properties and large accumulation capaci-

tance, as shown in Fig. 1. Also, it can be observed that the in-

tensity of the As-As peak for the sample with TaON

interlayer (a content of 6% from the As-As/As3d peak-area

ratio) is lower than that of the sample without TaON IPL

FIG. 3. Jg-Vg characteristics of GaAs MOS capacitors with/without TaON,

annealed at 500 and 600 �C.

FIG. 4. Ga 3d spectra of the HfTiON/GaAs interface for samples annealed

at 600 �C. (a) with TaON and (b) without TaON.

FIG. 5. XPS spectra of the HfTiON/GaAs interface for samples annealed at

600 �C. (a) Ti 2p and (b) O 1s.

092901-3 Wang et al. Appl. Phys. Lett. 103, 092901 (2013)
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(a content of 17%). It is well known that a considerable

amount of As-O and As-As bonds lead to Fermi-level pin-

ning of the GaAs surface.11 Therefore, all these XPS results

show that the TaON IPL on sulfur-passivated GaAs can

effectively remove the defective interface bonds and unpin

the Femi level of the GaAs surface, thus greatly improving

the interfacial and electrical properties of the devices.

In summary, an ultrathin TaON film has been used to pas-

sivate the surface of GaAs substrate, together with (NH4)2S

treatment. The XPS results show that the TaON interlayer

formed prior to the deposition of high-k HfTiON gate dielec-

tric can effectively block the diffusions of Hf, Ti, and O

towards the GaAs surface and thus suppress the formation of

interfacial Ga-/As-oxides and relevant defects, eliminating the

Fermi-level pinning at the HfTiON/GaAs interface. As a result,

largely improved interface properties and reduced gate leakage

current have been achieved for the sulfur-passivated GaAs

MOS capacitor with HfTiON/TaON stacked gate dielectric

annealed at 600 �C. Therefore, TaON interlayer is a promising

surface-passivation technique for making high-performance

GaAs-based MOSFETs with high-k gate dielectric.

This work was financially supported by the National

Natural Science Foundation of China (Grant No. 61176100)

and the University Development Fund (Nanotechnology

Research Institute, 00600009) of the University of Hong Kong.
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