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Coherent Laser Source for High Frame-Rate Optical
Time-Stretch Microscopy at 1.0 μm

Xiaoming Wei, Andy K. S. Lau, Terence T. W. Wong, Chi Zhang, Kevin M. Tsia,
and Kenneth K. Y. Wong, Senior Member, IEEE

Abstract—We demonstrate a coherent picosecond pulsed fiber
laser for the high frame-rate optical time-stretch microscopy at
1.0 μm. The spectrum of a picosecond pulsed laser is commonly
broadened before the time-stretch imaging, which however will
degrade its stability and coherence. As a result, it is required to
enhance the degraded signal-to-noise ratio by averaging, which
would compromise the frame rate on the other hand. Instead of
pursuing such kind of spectrum-broadened picosecond pulsed laser
sources, we propose a pulse train extracted directly from an all-
normal dispersion mode-locked fiber laser with a rectangle-shaped
optical spectrum. It delivers stable and coherent performance for
the serial time-encoded amplified microscopy at 1.0 μm. With this
robust picosecond pulsed laser, real-time stain-free flow imaging
with a frame rate of 26.25 MHz and a spatial resolution of < 2 μm is
demonstrated. Featured with the compact configuration and good
coherence property, it is a promising picosecond pulsed fiber laser
source for the ultrafast interferometric time-stretch microscopy at
1.0 μm.

Index Terms—Medical and biological imaging, supercontinuum
generation, ultrafast technology, ytterbium mode-locked laser.

I. INTRODUCTION

IN GREAT demand for the studies of high-speed dynamical
phenomena and high–throughput cellular/molecular diag-

nostics, the imaging system with high temporal resolution has
attracted great attention in recent years [1], [2]. Nowadays, the
world-fastest charge-coupled devices (CCD) and complemen-
tary metal–oxide–semiconductor (CMOS) imagers can operate
at a frame rate of 1 and 10 MHz [3], respectively. However,
this kind of imagers is featured with relatively long shutter or
exposure times, a time-consuming readout process, and a fun-
damental tradeoff between sensitivity and speed [4]–[6]. Thus,
it does not facilitate the real-time high-speed imaging with high
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spatial resolution and sensitivity. In addition, it requires high-
power illumination focusing on the biological samples, which is
harmful for the specimens. While the CCD/CMOS imagers are
still the mainstream in optical microscopy applications, the se-
rial time-encoded amplified microscopy (STEAM) recently has
been proposed and demonstrated to support real-time ultrahigh
frame-rate imaging without sacrificing the sensitivity [7], [8].
Based on the space-frequency-time mapping and single-pixel
detection, it eliminates the requirement of CCD/CMOS imagers.
With the commonly available components and techniques at the
telecommunication window, i.e., 1.5 μm, prior works on the
STEAM were mostly demonstrated at this wavelength [7]–[15].
For optical diagnostics and biophotonic applications, however,
the 1.0-μm spectral window is more favorable [16].

In theory, a broad optical spectrum is required to conduct the
unique space-frequency-time encoding process in the STEAM
system [7]. As a potential candidate, supercontinuum (SC) gen-
erated by pump pulses along a piece of highly-nonlinear fiber
(HNLF) has been used to implement the STEAM systems at both
1.0 μm [16] and 1.5 μm [7], [10]–[15]. The numerical simulation
results have revealed that the nonlinear effects, including four-
wave mixing, modulation instability (MI) and stimulated Raman
scattering, play a key role in the SC generation with long pulses
[17]. Unfortunately, MI is initiated from the noise, featuring this
kind of SC picosecond pulse train with a large shot-to-shot fluc-
tuation and bad temporal coherence outside the pumped area.
Thus, the averaging operation is usually conducted to enhance
the signal-to-noise ratio (SNR) of the STEAM signal with such
kind of picosecond SC source, which however limits the frame
rate and hinders the real-time flow imaging. Consequently, the
frame rate of a STEAM system with picosecond SC at 1.0 μm
is limited to 10 MHz for the static imaging [16]. Those short-
comings do not facilitate most of the applications in the scope
of observing transient processes and rapid dynamics. In this
regard, a stable pulse train directly extracted from a resonator
with a broad and flat optical spectrum is an ideal candidate for
the real-time high frame-rate optical time-stretch microscopy.

At 1.5 μm, a femtosecond nonlinear polarization rotation
(NPR) mode-locked fiber laser is characterized with a broad
optical spectrum, which benefits from the flexibility in the dis-
persion management of the optical fiber at this wavelength
[18], [19]. When it is used directly to conduct STEAM, how-
ever, the non-flat optical spectrum does not facilitate the space-
frequency-time mapping process of a signal. It is because that
the amplitude of the serial time-encoded waveform of a spatial
signal will become non-uniform and finally the weak part of it
will be buried in the noise. Thus, the femtosecond pulsed laser
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at this wavelength is often required to nonlinearly broaden and
slightly flatten its optical spectrum, which however would make
the system more complex and costly [10]–[13]. On the contrary,
induced by the balance between the spectral broadening and
gain-narrowing in an all-normal dispersion cavity [20], the NPR
mode-locked ytterbium fiber laser at 1.0 μm can directly deliver
a pulse train with a broad rectangle-shaped optical spectrum.
Thus, it eliminates the requirements of spectral broadening and
flattening, which makes the system more compact and reduces
the cost of the imaging system. In addition, the all-normal dis-
persion mode-locked laser at 1.0 μm delivers picosecond pulse,
which is easier to amplify, compared with the femtosecond pulse
provided by the NPR mode-locked fiber laser at 1.5 μm. Such
a novel fiber laser has been widely studied recently, but its
practical applications have been rarely presented yet [21]–[24].
Here, we present an all-normal dispersion mode-locked ytter-
bium fiber laser with a wide tuning range (1025–1085 nm) and a
rectangle-shaped optical spectrum for the STEAM application.
By comparing with the commonly-used SC laser source, we
demonstrate that it is a promising candidate for the real-time
high frame-rate optical time-stretch microscopy at 1.0 μm.

II. COHERENT LASER SOURCE

The experimental setup of the mode-locked ytterbium fiber
laser by a NPR technique is shown in the dotted box in Fig. 1(a).
A piece of the double-cladding highly-doped ytterbium fiber
(DC Yb fiber) was served as the gain medium, whose length is
around 1 m. This active fiber was pumped by a 980-nm laser
diode (LD) through a 980/1060 nm wavelength-division mul-
tiplexing (WDM) coupler. A polarization insensitive isolator
(ISO) was employed to ensure the unidirectional operation. The
pulse compression inside the cavity was realized by two polar-
ization controllers (PCs) and a polarization beam splitter (PBS):
the PCs were used to adjust the state of polarization of the light-
wave inside the cavity, while the PBS provided polarization-
dependent loss. By adjusting the orientation of the PCs, we can
filter out the peak of the pulse after the PBS and block the edge
of the pulse, and then the initial noise-like pulse was compressed
to a stable ultrashort optical pulse after enough round trips. A
free-space bandpass filter was utilized to induce spectral filtering
effect and realize wavelength-tunable operation simultaneously.
All the collimators were used to extract the lightwave out or cou-
ple it back into the fiber. The round-trip time of the cavity was
about 38.1 ns, corresponding to a repetition rate of 26.25 MHz.
By rotating the incident angle of the filter, the central wave-
length of a mode-locked spectrum can be tuned from ∼1025 to
∼1085 nm continuously, as shown in Fig. 1(b). The output power
measured at the PBS varied in the range of 9.65 and 10.48 mW
when the central wavelength was tuned over this range, owing
to the different cavity loss at different central wavelength.

To quantify the stability and coherence of the mode-locked
pulse train, we fixed the central wavelength of the mode- locked
laser at ∼1064 nm [the green curve in Fig. 1(c)]. As can be
observed, the pulse train delivers an almost rectangle-shaped
optical spectrum benefiting from the balance between the spec-
tral broadening and gain-narrowing in the all-normal dispersion

Fig. 1. (a) The experimental setup of the mode-locked ytterbium fiber laser
and the STEAM schematic. (b) The optical spectra of the mode-locked pulse
with different central wavelength. (c) The optical spectra of the mode-locked
pulse centered at 1064 nm. Inset: the autocorrelation trace (left) and the eye
diagram of the mode-locked pulse (right). (d) The optical output power over
170 min at 1064 nm.

regime [20]. The pulsed duration is 4.2 ps with 1.1-ps jitter
as shown in the inset of Fig. 1(c). In order to investigate the
temporal coherence of the mode-locked pulse, the pulse train
was launched into a homemade Mach–Zehnder interferometer
(MZI) with a path difference almost equal to the separation of
the adjacent pump pulses, i.e., ∼7.47 m, corresponding to a
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Fig. 2. (a) The histogram of the pulse train. Inset: the pulse train recorded by
the real-time oscilloscope. (b) 250 stretched pulses overlapped together, where
the red curve is the calculated average from those pulses.

round-trip time of 38.1 ns. As can be observed from the red
curve of Fig. 1(c), the interference spectrum reveals a stable
modulation structure, produced by the temporal overlapping of
the neighboring mode-locked pulses. The contrast ratio of the
interference fringe is around 15 dB. The coherence characteris-
tic of other central wavelength was also examined by the same
method, and similar results were obtained for the wavelength
from 1025 to 1068 nm. For the wavelength longer than 1068 nm,
however, the contrast ratio of the interference fringe was reduced
to around 10 dB, which can be attributed to the increasing ASE
noise at around 1030 nm associated with the mode-locked pulse
[as shown in Fig. 1(b)]. To examine the long-term stability of the
mode-locked pulse, the optical power at 1064 nm was recorded
over 170 min by a power meter (Thorlabs, PM100D), and it
showed a ∼0.03-dB fluctuation, as shown in Fig. 1(d). With the
excellent temporal coherence and broad rectangle-shaped spec-
trum, it is a promising broadband laser source for the real-time
interferometric time-stretch microscopy at 1.0 μm.

The real-time pulse train recorded by a 16-GHz real-time os-
cilloscope is shown in the inset of Fig. 2(a), where the observa-
tion time was 12 μs and the pulse repetition rate was 26.25 MHz.
250 pulses from the recorded pulse train were used to calculate
the histogram of the pulse intensity, as illustrated in Fig. 2(a).
As can be observed there, the intensity of the mode-locked pulse
has a very small fluctuation, giving a ratio of standard deviation
to the mean (std/mean) of the pulse intensity at 1.2%. To exam-
ine the performance of the frequency-time mapping, the pulse
train was stretched by a 5-km single-mode fiber (SMF) with to-
tal group-velocity dispersion around 0.15 ns/nm. 250 stretched
pulses were recorded by the same real-time oscilloscope, and
then overlapped together, as shown in Fig. 2(b). Ignoring the
noise from the detection system (random noise with an ampli-
tude of ∼2 mV),it reveals that the stretched pulses deliver stable

frequency-time mapping. The average of those stretched pulses,
illustrated as the red curve in Fig. 2(b), is consistent with its
optical spectrum [Fig. 1(c)], indicating a linear frequency-time
mapping process.

III. COMMONLY-USED LASER SOURCE FOR STEAM

Generally speaking, a commercially available picosecond
laser source at 1.0 μm has a spectral bandwidth less than 1 nm.
In order to utilize it in the space-frequency-time mapping inside
the STEAM system, we have to broaden its spectrum to over
10 nm, with a flat top at the same time, as shown in [16](the
first demonstrated 1.0-μm STEAM). Unfortunately, both the
stability and coherence property of the generated SC pulse are
poor due to the nonlinear effects in the SC generation process.
To elaborate it further, we conducted experimental analyses to
examine the degraded performance of the SC with a picosecond
pump pulsed laser here.

A picosecond pulsed laser, time-bandwidth LYNX, was uti-
lized as the pump source for the SC generation. Its pulsed dura-
tion was measured to be 9 ps, and the optical spectrum is shown
as the green curve in Fig. 3(a), which reveals a narrow bandwidth
(<0.5 nm). Fig. 3(b) shows the histogram of the pump pulse in-
tensity, which was calculated from 250 pulses recorded by the
real-time oscilloscope. The std/mean of the pump pulse intensity
was 1.7%, comparable with that of the homemade all-normal
dispersion mode-locked ytterbium fiber laser presented above.
After passing the pump pulse through a 20-m photonic crystal
fiber, the generated SC pulse spectrum is shown in Fig. 3(a).
Noted that the generated SC pulse has been amplified by a com-
mercial ytterbium-doped fiber amplifier to boost up its power
density (∼3 mW/nm), which is essential for the STEAM pro-
cess, otherwise the signal would be deeply buried in the noise
after the space-frequency-time mapping. Then, the generated
SC was launched into a MZI to examine the temporal coher-
ence. The optical path difference of the MZI is about 9.8 m,
consistent with the 50-ns temporal separation of the pump pulse
(i.e., a repetition rate of 20 MHz). The interference spectrum
is depicted as the blue curve in Fig. 3(a). It reveals interfer-
ence fringes around the pump region, as shown in the inset of
Fig. 3(a). Outside the pump region, however, no such interfer-
ence fringe can be observed, suggesting poor coherence in these
regions. To investigate the pulse-to-pulse fluctuation of the gen-
erated SC pulse, a longpass filter (beyond 1075 nm) was used to
extract the redshift part of the SC. The histogram of the redshift
SC is shown in Fig. 3(c), together with the real-time pulse train
in the inset. It is clear that the distribution of the SC pulse in-
tensity has a wider distribution range compared with that of the
original pump pulse, and the std/mean has increased from 1.7%
to 14.9%. The timing jitter of the SC pulse was measured to be
4.1 ps, which was also worse than that of the all-normal disper-
sion mode-locked pulse. The overlapped pulses of the redshift
part after stretching by the same SMF, as shown in Fig. 3(d),
however are very noisy due to the noise-initiated MI effect with
random phase distribution.

The experimental results show that the performance
of a picosecond pulse train, especially the stability, has
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Fig. 3. (a) The optical spectra, where the green curve is the pump spectrum and
blue curve is the interference spectrum after passing a MZI. Inset: the enlarged
view of the pump region of the interference spectrum. (b) The histogram of
the pump pulse intensity. Inset: the pump pulse train recorded by the real-
time oscilloscope. (c) The histogram of the redshift part of the amplified SC
pulse intensity. Inset: the pulse train recorded by the real-time oscilloscope. (d)
250 stretched pulses overlapped together, where the red curve is the calculated
average from those pulses.

been degraded significantly in the process of the spectral
broadening, which actually does not facilitate the high
quality imaging with the STEAM system. To stabilize the
picosecond SC, stabilization techniques including triggering
with a pulse-seed or CW-seed [25], [26], introducing a
feedback loop [27], modulating the pump pulse train [28]
and engineering the dispersion of the fiber medium [29],
have been proposed. However, all these techniques inevitably
raise the cost and complexity of the STEAM system. Al-
though CW-stabilized picosecond SC has been used to
demonstrate the static STEAM imaging at 1.5 μm [15],
its resolution was limited to around 31.3 μm and no flow
STEAM imaging of biological sample has been presented yet.
Femtosecond pulse, on the other hand, has been demonstrated to
support stable generation of SC pulse [17]. By using this kind of

Fig. 4. (a) The light microscope image of the resolution target, where the
imaged area of the STEAM has been marked with black dotted line. (b) The
STEAM image by using the homemade all-normal dispersion mode-locked fiber
laser. (c) The STEAM image by using the SC laser source.

femtosecond SC source, a 6.1-MHz flow imaging of the metal
microsphere flowing at a speed of 2.4 m/s was realized in [7].
However, as in the case with picosecond SC source, it requires
spectral broadening and flattening. In addition, the amplification
of femtosecond pulse needs complicated chirp management.
Compared with those femtosecond/picosecond SC sources,
the all-normal dispersion mode-locked fiber laser at 1.0 μm
is superior since no spectral reshaping is required, and the
pulse with picosecond duration is easier to be amplified. More
importantly, the frame rate of the STEAM system with this laser
is limited by the fundamental repetition rate of the mode-locked
pulse, but not the noise issue. Thus, a 200-MHz frame rate can
be expected by using a shorter cavity length, i.e., ∼1 m.

IV. IMAGING PERFORMANCE

To compare the performance of these two sources, they were
respectively employed in the STEAM system, whose schematic
diagram is shown in Fig. 1(a). The detail of the experimental
setup of the STEAM system at 1.0 μm has already been covered
in Ref. [6]. With the frame rates of 26.25 MHz for the all-normal
dispersion mode-locked ytterbium fiber laser and 5 MHz (4
averages) for the SC pulsed laser, the STEAM images of the
smallest group (Group 7 with a smallest linewidth of∼2 μm) of a
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Fig. 5. Stain-free real-time image of the HeLa cells with a flow speed of
∼11 m/s. Noted that the spectral shower illuminated into the page, while it
was along the horizontal direction for Fig. 4(b) and (c), and along the vertical
direction here.

resolution target [Fig. 4(a)] are shown in Fig. 4(b) and (c),
respectively. The images were captured by 200 line scans with a
step of 0.5 μm, from top to the bottom in Fig. 4(b) and (c). It is
clear that the mode-locked laser delivers a better image quality
in terms of noise and image contrast compared with the SC
source. It is mainly attributed to the more stable oscillation of the
all-normal dispersion mode-locked fiber laser. Considering the
good temporal coherence and stability of this homemade mode-
locked ytterbium fiber laser, it is an ideal candidate laser source
for STEAM system, especially the high frame-rate real-time
interferometric optical time-stretch microscopy at 1.0 μm.

In order to further demonstrate its stable performance in the
high-speed time-stretch imaging system, we utilized this mode-
locked laser to conduct the ultrahigh-speed stain-free flow imag-
ing. Different from Fig. 1(a), the STEAM setup was modified by
adding another identical objective lens and a mirror behind the
sample to achieve a double-pass transmission operation mode.
The sample, human cervical cancer cells (HeLa), was flowing
at a speed of ∼11 m/s in a polydimethylsiloxane microfluidic
channel. By illuminating the spectral shower on a direction per-
pendicular to the flow direction, the information of the flow cells
was naturally encoded into the spectral shower at a frame rate of
26.25 MHz without the scanning operation. 3000 time-stretch
pulses (frames) encoded with the information of the flow cells
were recorded by the real-time oscilloscope, and all of them
were then digitally stacked along the flow direction as shown
in Fig. 5, by which we can recover the dynamic process of
the flow HeLa cells. As can be observed, the stable and clean
mode-locked pulses make the cells well distinguished from the
background, which again verifies that it is a promising fiber laser
source for the high-speed time-stretch microscopy.

V. CONCLUSION

In summary, we have demonstrated a stable and coherent pi-
cosecond pulsed fiber laser for the high frame-rate real-time
optical time-stretch microscopy at 1.0 μm. It has been veri-
fied experimentally that the stability of the original picosec-
ond pulse train would be degraded significantly in the process
of spectral broadening for STEAM imaging, which is mainly
due to the MI effect. By mode-locking at all-normal dispersion
regime, a stable broadband picosecond pulse train can be directly
achieved from a compact resonator with good temporal coher-
ence. When it is applied to the STEAM system, the image of the
resolution target with higher image contrast and less noise can be
obtained at a higher frame rate (26.25 MHz), compared with the
picosecond pulsed SC laser. Its promising performance is also
evident from the real-time stain-free flow imaging, where the
cells are well distinguished from the clean background. Such

a stable and coherent laser source would find applications in
the ultrafast real-time interferometric time-stretch microscopy
at the optimal diagnostic window (i.e., 1.0 μm). It would not
only make the STEAM-based imaging system much more com-
pact and low-cost, but also facilitate the frame-rate enhancement
without degrading the stability and coherence.
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