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Transit Assignment: Approach-based Formulation, Extragradient Method, and 

Paradox 

W.Y. Szeto, Y. Jiang 

Department of Civil Engineering, the University of Hong Kong, Pokfulam Road, Hong Kong, 

PR China 

 

Abstract 

This paper uses the concept of approach proportion to propose a novel variational inequality 

(VI) formulation of the frequency-based transit assignment problem. The approach proportion 

is defined as the proportion of passengers leaving a node through its outgoing link. To solve 

the VI problem, an extragradient method with adaptive stepsizes is developed. Unlike the 

existing methods for solving the frequency-based transit assignment problem, the 

convergence of our method requires only the pseudomonotone and Lipschitz continuous 

properties of the mapping function in VI, and it is not necessary for the Lipschitz constant to 

be known in advance. A Braess-like paradox in transit assignment is also discussed, where 

providing new lines to a transit network or increasing the frequency of an existing line may 

not improve the system performance in terms of expected total system travel cost. Various 

numerical examples are given to illustrate some paradox phenomena and to test the 

performance of our proposed algorithm.  

 

Keywords: frequency-based transit assignment, approach proportion, extragradient method, 

variational inequality, paradox 

 

 

 

 

 

 

 

 

  



 

1. INTRODUCTION  

The transit assignment problem has received considerable attention, as finding solutions 

for this issue is essential both for designing or managing transit networks and for evaluating 

transit system performance. Many transit assignment models have been developed, and some 

of the earliest can be traced back to Dial (1967) and Fearnside and Draper (1971). However, 

these early models did not consider the route choice problem of passengers at stops served by 

several competing lines—known as the common line problem.  

The first model to handle the common line problem was developed by Chriqui and 

Robillard (1975). By assuming that passengers are willing to minimise their individual 

expected travel cost, a hyperbolic model was solved through finding an optimal set of 

attractive lines directly serving two locations. This idea was further generalised to the optimal 

strategy concept (Spiess, 1984; Spiess and Florian, 1989). According to this concept, a 

strategy associated with a node is defined by a set of rules that, when applied, allow a 

passenger to travel efficiently from that node to his/her destination. A strategy specifies a set 

of attractive lines at every node, and hence an ordered set of successor nodes. An optimal 

strategy is defined as a strategy that minimises the passenger’s expected travel time. The 

behavioural assumption used by Spiess (1984) and Spiess and Florian (1989) was that 

passengers use their individual optimal strategies in travelling. Assuming that this is true, 

Spiess and Florian (1989) proposed a linear programming model to tackle the common line 

problem, and provided their proof that their model’s dual solution satisfied the user 

equilibrium conditions.  

Later, two modelling streams were derived from the abovementioned behavioural 

assumption by using different network representations: the hyperpath graph representation 

(Nguyen and Pallottino, 1988; Wu et al., 1994; Cominetti and Correa, 2001; Cortés et al., 

2013), and the route-section representation (de Cea and Fernández, 1993; Lam et al., 1999; Li 

et al., 2009; Lam et al., 2002; Szeto et al., 2011, 2013). The hyperpath graph representation 

captures a strategy by using a hyperpath. The route-section representation aggregates 

common lines into sections, and a sequence of sections forms a route. Hence, each route in 

the route-section approach can be seen as a special case of travel strategy.  

Although both of these modelling representations are based on the same behavioural 

assumption, they have different pros and cons. The merit of the hyperpath graph 

representation is that the optimal sets of attractive lines can be easily determined, but the cost 

involved is the requirement to create more boarding and alighting nodes. The route-section 



 

representation always reduces the numbers of links required to form the network when the 

number of common lines is large. Moreover, this representation allows the transit assignment 

problem to be easily solved by using available algorithms. However, the optimal set of 

attractive lines on each section has to be determined before aggregating attractive common 

lines. 

These two modelling streams adopt similar methods to handle the in-vehicle congestion 

issue. These methods can be classified into two approaches, namely the capacity constraint 

approach and the congestion cost function approach. The difference between these 

approaches is that passengers are forbidden to board a fully occupied transit vehicle in the 

capacity constraint approach, but they are permitted to do so in the congestion cost function 

approach. The capacity constraint approach is more realistic, but its resultant models are 

normally solved by the method of successive averages (MSA), which can guarantee 

convergence only under some conditions, and these conditions for convergence may not be 

satisfied by the models themselves. In addition, there may be no solution for the problems 

that result from insufficient capacity. One advantage of the congestion cost function approach 

is that  a solution must exist to the resultant transit assignment problem under a very mild 

assumption (e.g., Szeto et al., 2013). However, the models that result from this approach may 

allow link flows to be greater than the link capacities, which is unrealistic. 

Most of the abovementioned models are developed from the frequency-based approach, in 

which frequency is assumed to follow certain distributions to approximate the average 

waiting and travel times. However, during the last 20 years a schedule-based approach has 

been proposed for modelling detailed arrivals and departures (Tong and Wong, 1999; Poon et 

al., 2004; Hamdouch et al., 2011; Nuzzolo et al., 2012). In general, the frequency-based 

approach is more suitable for strategic long-term planning, and the schedule-based approach 

can best be used for modelling daily operations.  

Most of the abovementioned models have adopted link flows, path flows or hyperpath 

flows as decision variables. When congestion effects are considered, the resultant models are 

often solved by methods that require strong conditions to be satisfied for guaranteeing 

convergence. For example, the symmetric linear method (e.g., Wu et al., 1994) requires that 

the link cost function must be strictly monotone1 for convergence. The methods of de Cea and 

Fernández (1993) (i.e., the diagonalisation method) and of Szeto et al. (2013) (i.e., self-

                                                 
1  A vector function F is strictly monotone on a non-empty set C if for all , ,C x y x y , 

    ( ) 0T y - x F y - F x  .   



 

adaptive projection and contraction algorithm with column generation) have assumed 

monotone2 mapping to ensure convergence. Kurauchi et al. (2003), Cepeda et al. (2006), 

Sumalee et al. (2009, 2010), Schmöcker et al. (2011), and Cortés et al. (2013) all adopted the 

MSA, whose convergence requires the cost function to be strictly pseudo-contractive 

(Johnson, 1972). However, these conditions may not always be satisfied, especially when 

asymmetric link cost functions are used in transit assignment.  

This paper proposes a link-based variational inequality (VI) formulation, which can be 

transformed into an approach-based formulation. This proposed formulation is based on the 

concept of approach proportion. To solve the approach-based formulation, we use an 

extragradient projection method, also known as the double projection method. The 

convergence of the algorithm only requires mild assumptions, i.e., pseudomonotone3 and 

Lipschitz continuous properties. Moreover, it is not necessary to know the Lipschitz constant 

in advance. This algorithm, however, cannot be used directly to solve our proposed 

formulation, and some modifications of the cost and flow updating algorithms are required. 

Hence, we also propose a cost and a flow updating scheme. 

The proposed formulation can also be used to evaluate the performance of a transit 

network design. In fact, one important application of any transit assignment model is to 

evaluate network design strategies, such as proposals to improve the system performance 

through new transit itineraries or adjustments to service frequency. To the best of our 

knowledge, little effort has been spent on investigating whether a paradox actually exists in 

transit assignment, even though there are many studies concerning paradoxes in traffic 

assignment, and there are similarities between traffic assignment and transit assignment in 

terms of formulation approaches. Only Cominetti and Correa (2001) have actually revealed a 

paradox, showing that the transit time will not be affected under a certain range of demand 

increments. However, unlike Cominetti and Correa’s work, in which the changes occur at the 

demand side, our paper focuses on the changes in the supply side of transit networks, such as 

routes and frequency. A small network is created, and various scenarios are tested to 

investigate the existence of the paradox and the roles that different parameters or factors play 

in its occurrence. Our numerical results verify that providing a new transit line and increasing 

transit frequency may fail to improve, and may even deteriorate the network performance in 

                                                 
2 A vector function F is monotone on a non-empty set C if for all , ,C x y x y ,     ( ) 0T y - x F y - F x . 
3 A vector function F is pseudomonotone on a non-empty set C if for all , ,Cx y   ( ) 0T y - x F x  implies that 

    0
T y - x F y .   



 

terms of expected total system travel cost (including in-vehicle travel time cost and waiting 

time cost). 

The contributions of this paper include the following:  

   Identifying and illustrating the Braess-like paradox in transit assignment, by which 

providing a new transit line or increasing service frequency may not necessarily 

enhance the system performance. 

 Identifying the factors that affect the occurrence of this paradox, and illustrating their 

effects via examples.  

 Proposing link-based equilibrium conditions for transit assignment, and proposing a 

link-based VI formulation.  

   Proposing a novel approach-based VI formulation to represent the frequency-based 

transit assignment problem, in which the congestion effect is tackled via the 

congestion cost function approach. This approach provides an alternative way to view 

and formulate transit assignment. 

   Proposing use of an extragradient method with adaptive stepsizes to solve the VI 

problem. Compared with existing methods, the proposed algorithm requires only mild 

assumptions to converge. 

 Proposing algorithms to update flows and costs for evaluations of the mapping 

function in the VI formulation, with discussions of the computational complexity 

involved. 

 Demonstrating the effects of different parameters in the extragradient method via 

various experiments. 

The remainder of this paper proceeds as follows: Section 2 introduces the route-section 

approach to representing transit networks, followed by the notations and assumptions used in 

this paper. The section then presents the path-based formulation and the link-based 

formulation, which is further modified into the link-based VI formulation. In conclusion, an 

approach-based VI formulation is derived. The solution algorithm is detailed in Section 3. 

Section 4 depicts a series of experiments to illustrate the transit paradox problem and tests the 

performance of the algorithm. Finally, Section 5 gives our conclusions. 



 

2. FORMULATION 

2.1. Network Presentation  

We consider a general transit network consisting of a set of transit lines with a set of transit 

stops (nodes), where passengers can board, alight or transfer. This network is converted into a 

route-section network, as explained by de Cea and Fernández (1993). The idea of the route-

section representation is to classify passengers waiting at transit stops (including origins and 

transfers) into different groups according to their next alighting nodes (which may be their 

next transfer locations or their destinations). For the passengers boarding at the same transit 

stop and alighting at the same stop, a link called a ‘section’ is created to connect the boarding 

and alighting stops. Different lines serving the same pair of nodes (i.e., common lines) are 

then aggregated into one section.  

To illustrate the route-section representation, a small transit network containing four nodes 

and four transit lines is given in Figure 1(a), and its route-section representation is given in 

Figure 1(b). In Figure 1(a), four bus lines are denoted as L1, L2, L3, and L4, and in Figure 

1(b), six sections are denoted as S1, S2, S3, S4, S5, and S6. The notation S3(L2, L3) means 

that L2 and L3 are attractive lines in section S3. In Figure 1(a), passengers at node A who 

board L2 can only alight at either node X or node Y. Hence, two sections (S2 and S5) are 

created in Figure 1(b) to connect node A to node X, and node A to node Y. The line number 

in a pair of brackets next to the section name is the transit line in that section. Only L2 can 

take the passengers from node A to nodes X and Y directly. Therefore, L1 is inside the pairs 

of brackets next to S2 and S3. Another example is that passengers waiting at node X can only 

board either L2 or L3, and alight at node Y. Therefore, a section called S3, connecting X to Y, 

is created in Figure 1(b). This section contains the two common lines, and is based on the 

assumption that both L2 and L3 are attractive. The set of attractive lines in each section is 

determined using the method proposed by Chriqui and Robillard (1975). Only attractive lines 

are considered in this representation. 

 

(a)  A small transit network                (b) Route section representation 

Figure 1 A small transit network and its route-section representation 



 

2.2. Notations  

The following notations are used throughout this paper. 

2.2.1. Sets 

N   set of nodes or stops in the transit network; 

L   set of lines in the transit network; 

S     set of sections or approaches; 

As   set of attractive lines in section s; 

iA ( iA ) set of sections emanating from (going into) node i; 

R, D, W set of origins, destinations, and OD pairs, respectively; 

rdQ   set of paths between an OD pair  ,r d W ;  

d     set of nodes following a topological ordering, with destination d as the last node 

and dimension d . 

2.2.2. Indices 

r, d, l, p indices of origin, destination, line, and path, respectively; 

, ,i j j   indices of nodes; 

, ,s s m   indices of route sections; 

l
x    the xth stop on line l; 

( )
l

x s                the xth stop on line l, which is also the tail node of section s; 

( )
l

y s                the yth stop on line l, which is also the head node of section s; 

t(s), h(s) the tail and head nodes of section s, respectively, where     ,s t s h s ; 

d
u     the uth node in the topological set; u = 1 means that the node is the farthest away 

from destination d; 

, ,k k k    iteration numbers. 

2.2.3. Parameters 

T  ( W )  value of travel time (waiting time); 

l
st     in-vehicle travel time of line l on section s; 

l
sf   frequency of line l on section s; 

l
sw    relative frequency of line l on section s; 



 

l    capacity of a single vehicle of line l; 

    unit conversion parameter;
d
rg   demand of OD pair rd; 

m
s    competing section indicator; 1m

s  , if section m is a competing section of 

section s; otherwise, 0m
s  ; 

s
p   element in the path-section incidence matrix. If route p contains section s, 1s

p  ;         

otherwise 0s
p  ; 

, ,a b n  additional waiting time function parameters; 

s   additional waiting time function parameter of section s; 

ln    number of stops in line l; 

, , ,     parameters in the extragradient method; 

,k k   stepsizes in iteration k. 

2.2.4. Decision variables  

d
sv    number of passengers travelling on section s toward destination d; 

v    vector of ( , ,d
sv s S d D   ) with dimension S D ; 

rd
pf   path flow from origin r to destination d via path p; 

f   vector of (  , , ,rd r
p

dp Q d Wf r   ) with dimension P W ; 

d
s   proportion of passengers leaving node t(s) via approach s to destination d; 

α    vector of ( , ,d
s s S d D    ) with dimension S D . 

2.2.5. Functions of decision variables or parameters 

cs   expected cost associated with section s; 

ts   mean in-vehicle travel time on section s; 

s   mean waiting time for passengers boarding the first arriving vehicle on section s; 

s   additional waiting time for passengers boarding on section s due to insufficient 

capacity; 

vs   number of passengers on section s; 

d
slv   number of passengers using line l on section s toward destination d; 

sv    number of passengers on the competing sections of section s; 



 

rd
p   expected travel cost from origin r to destination d via path p; 

h    vector of (  , , ,rd rd
p p Q r d W    ) with dimension P W ; 

id   minimum expected travel cost between nodes i and d; 

d
s
i   minimum expected travel cost from node i to node d via section or approach s; 

π    vector of ( , , ,s
id s S i N d D     ) with dimension S N D  ; 

d
iq    number of passengers leaving node i toward destination d. 

     

2.3. Assumptions 

As in the literature (e.g., Spiess and Florian, 1989; de Cea and Fernández, 1993), the 

following classical assumptions are made throughout this paper. A1) Passengers are assumed 

to arrive at transit stops randomly. A2) A passenger waiting at a transfer node considers a set 

of attractive lines before boarding, and he/she boards the first arriving bus if possible. A3) 

The waiting time for a transit line on a link is independent of the waiting times for other lines 

on the same section. A4) Vehicle headways are assumed to follow exponential distribution. 

A5) The passenger selects the transit route that minimises his/her expected travel cost. A6) 

The travel demand between each origin-destination (OD) pair in the system is assumed to be 

known and fixed. This assumption is reasonable for strategic planning when the day-to-day 

variation, especially during the peak hour period, is small or negligible. A7) For simplicity, 

the capacity of each transit vehicle is assumed to be the same. However, there is no 

conceptual difficulty in extending the formulation to a scenario in which vehicles of different 

capacities traverse different routes.  

Based on the preceding route-section representation, notations, and assumptions, the cost 

components and the formulations are presented below. 

2.4. Cost Components 

The expected cost associated with section s, sc  is defined as 

, .s T s W s W sc t s S            (1) 

The first term on the right-hand side represents the mean in-vehicle travel time cost. The 

second term is the mean waiting time cost, which represents the monetary value of the mean 

waiting time for the first vehicle to arrive. The third term denotes the perceived congestion 



 

cost, which can be interpreted as the monetary value of the additional waiting time due to in-

vehicle congestion. The following three sub-sections describe the individual cost components.  

2.4.1. Mean in-vehicle travel time cost 

The mean in-vehicle travel time cost of a section is equal to the product of the value of 

time and the mean in-vehicle travel time over that section. The mean in-vehicle travel time 

over a section is the weighted average of the in-vehicle travel times of all of the attractive 

lines in that section. Mathematically, the mean in-vehicle travel time st  over section s can be 

expressed as 

, ,
s

l l
s s s

l A

t w t s S


     (2) 

where l
sw  is defined by 

 , , .

s

l
l s
s sj

s
j A

f
w s S l A

f


   


 

 (3) 

2.4.2. Mean waiting time cost  

The mean in-vehicle travel time cost of a section is the product of the waiting time 

required on a section and the value of the waiting time. The waiting time on a section is 

defined as the time that a passenger waits at a transit stop (i.e., the tail node of a link) for the 

arrival of the first vehicle belonging to the set of attractive lines. Under assumptions A1) – 

A4), the mean waiting time can be expressed as 

, .

s

s l
s

l A

s S
f





  


  (4) 

In this case, the unit of frequency is vehicles/hour, and that of waiting time is in minutes, 

60   min/h. 

2.4.3. Perceived congestion cost 

The perceived congestion cost associated with section s models the additional waiting time 

cost due to in-vehicle congestion on the section. Such cost for the passengers arriving at node 

t(s) and using section s is a function of the section flow, but this cost is also affected by the 

relative presence of two groups of passengers, as described in the literature.   

One group is the group of passengers boarding before t(s), using one or more attractive 

lines in section s, and alighting after t(s). These are the passengers already on-board when the 

bus arrives at stop t(s). They contribute to the flows on other sections, and directly affect the 



 

waiting time of passengers who board at t(s) and alight at h(s). The greater the number of 

these passengers on these sections, the more congested the vehicles are, and the less 

remaining capacity there is for passengers boarding at t(s). Hence, these sections are referred 

to as the competing sections of section s, and the flow on these competing sections is called 

the competing section flow of section s.   

The other group of passengers consists of those arriving at stop t(s) and using one or more 

attractive lines contained in section s, but who alight after n(s). This group forms part of the 

flows on other sections, but also competes for the remaining capacity of one or more 

attractive transit lines with the passengers on section s (i.e., they alight at t(s) instead of after 

t(s)). Hence, these sections are also the competing sections of section s. 

Recall that sv  is the flow, or the number of passengers per hour boarding the lines 

belonging to section s, and sv  represents the flows on the competing sections of section s. In 

that case, the flows on section s and its competing sections can mathematically be represented 

by  

 , ,
s

d
s sl

d D l A

sv v S
 

    and  (5) 

 
,

, .
s m

m d
s ml

d D m S m s
s

l A A

v v s S
   

       (6) 

Equation (5) states that the flow on section s is obtained by aggregating all of the attractive 

line flows on section s. Equation (6) indicates that the competing section flow of section s is 

the sum of the attractive line flows on its competing sections.  

The line flow d
slv  is determined by  

, , , .d d l
sl s s sv v w s S l A d D       (7) 

Equation (7) states that the flows on section s are distributed to the transit lines on that section 

based on the relative frequencies determined by equation (3). 

To illustrate the concept of competing section flows and competing section indicators, we 

take section S3 in Figure 1(b) as an example. Node t(S3) refers to node X and h(S3) to node 

Y. The first group of passengers who compete with the passengers on S3 are the passengers 

on section S5, because section S5 starts before node X, ends after node X, and contains one of 

the attractive lines in S3 (i.e., Line L2). Hence, S5 is a competing section of S3, and 5
3 1  . 

The second group of passengers who compete with the passengers on S3 is the group of those 

travelling on section S6 because S6 and S3 share the same boarding stop, and have a common 

attractive line (i.e., Line L3). Hence, S6 is a competing section of S3, and 6
3 1  . After 



 

identifying the competing sections, the competing section flow of S3 is obtained by 

combining these two groups of passengers. For example, 3v  is calculated by 

 3 52 63
d d

d D

v v v


  .  

In addition, we should note that sections S3 and S6 are mutually competing (i.e., 

6 3
3 6 1   ). Both S3 and S6 emanate from the same nodes and contain L2. This implies that 

both the S3 and S5 passengers board L2 at the same stop. Hence, S3 is a competing section of 

S5, and vice versa, implying that the second condition of the competing section flow applies. 

However, sections S3 and S5 are not mutually competing (i.e., 3 5
5 3  ) because 5

3 1   , but 

3
5 0  . We conclude that 3

5 0  , as 1) section S3 do not start before node A, which is the tail 

node of S5 (i.e., the passengers on S3 do not board transit lines before node A , and the S3 

flow violates the first condition for competing section flow), and 2) S3 and S5 do not emanate 

from the same node, implying that the S3 flow violates the second condition for competing 

section flow.  

Based on the preceding discussion, an additional waiting time function is developed and 

given in equation (8). This function is more general than that proposed by de Cea and 

Fernández (1993). Our equation introduces different weights to the flows on board and the 

flows waiting at the stop. Mathematically, the additional waiting time function for route 

section s is expressed as  

 

, ,

s

n

s s
s s l l

s
l A

av bv
s S

f
 




 
 

   
 
 


   (8) 

where the denominator is interpreted as the capacity of section s; calibration parameters a, b, 

s  and n are used to model different effects of various flows on additional waiting time and 

hence the congestion cost ( W s  ), because the congestion cost due to waiting at stops may be 

higher than that due to in-vehicle congestion. These parameters are related to the passengers’ 

perceptions concerning the level of congestion. A larger value means that the congestion level 

has a higher effect on the travel cost of passengers, leading to a higher congestion cost for a 

given ratio of flow to capacity. Based on equation (8), the congestion cost function can be 

expressed as W s     . 



 

2.5. Path-based User Equilibrium (UE) Formulation  

2.5.1. Path cost 

The UE can be defined using path flows and path costs. Path cost is a function of section 

flows, which in turn are a function of path flows. Given the path flow, 
rd
pf

, the section flows 

can then be determined by 

 , , .
rd

d s rd
p p

r
s

R p Q

v f s S d D
 

        (9)

Based on the section flows, the expected section costs can be determined by (1) – (8). 

Given the expected section costs, the expected cost associated with path p between OD pair 

rd can be expressed as 

, , ( , ) .rd s rd
p p s

s S

p Q r d Wc 


      (10) 

2.5.2. Path-based user equilibrium conditions  

The path flow pattern is called the equilibrium route flow pattern if it satisfies the 

Wardropian conditions in transit networks, which are  

 , if 0;
 , , .

, if 0,

rd rd
prd rd

p rd rd
p

f
p Q r d W

f





     




  (11) 

By definition, route flow must be non-negative and satisfy flow conservation at UE. These 

conditions are expressed as 

 0, , , ,rd
p

rdp Q r d Wf     and   (12) 

, ( , )
rd

rd d
p r

p Q

f g r d W


   .  (13) 

By combining conditions (11) and (12), the path-based UE constraints can be represented 

as follows:  

 
 

 

( ) 0

0

, , , ,

0

, , , ,

, , , .

rd rd rd
p p

rd r

rd

rd

rd

d
p

rd
p

p Q r df W

p Q r d W

p Q r df W

 

 

  



  
  


  

 









  (14) 

2.5.3. Path-based VI formulation 

The path-based UE transit assignment problem is to determine ** [ ]rd
pff   to satisfy 

conditions (1) – (13) simultaneously. The superscript ‘*’ refers to a solution of rd
pf   f   that 



 

fulfils all of these conditions. This problem has been shown to be equivalent to the VI 

problem (see Florian and Spiess, 1983), that is, to determine an optimal vector *f  such that 

   * * 0, ,f   
T

f f h f f   (15) 

where    | 0,  , , ,  ,  ,
rd

rd rd rd rd d
f p p p r

p Q

f f r d W p Q f g r d W


           
  

   and rd
pf   f  , 

  rd
p   h f .  

2.6. Link-based User Equilibrium Formulation 

The path-based formulation suffers from the computational burden of path enumeration 

when solving large network problems. To overcome this issue, one method is to use column 

generation techniques during the computation process. In that case, paths are only generated 

when necessary. The second method is to reformulate the problem into a link-based 

formulation, so that path enumeration is replaced by shortest path determination during the 

computation process. This section considers the second method. 

2.6.1. Link-based equilibrium conditions  

To reformulate the path-based transit assignment into a link-based assignment, we need the 

equivalent link-based UE conditions. In line with Ban et al. (2008), we propose the link-based 

user equilibrium conditions, which can be expressed as 

  
 if 0;  

, , ,
 if 0,  

id d
id s
s d iid

s

v
i N s d D

v
A





 

   
 

 (16) 

where id
s  and id  are, respectively, defined by 

  ( ) , , ,,id h s d
ss ic i N s A d D         and  (17) 

  , , . min
i

s
id id

s A
i N d D 


      (18) 

The function value id
s  represents the minimum expected travel cost from node i to 

destination d via section s, and the value is obtained by adding the expected section cost to the 

minimum expected travel cost from the head node of section s to d. Condition (16) implies 

that if the flow entering section s from node i and going to destination d is positive (i.e., 

0d
sv  ), then the expected travel cost from node i to d via section s equals the minimum 

expected path travel cost from i to d. In other words, section s is involved in the lowest 



 

expected cost path from i to d. Otherwise, if no traveller enters section s, then the expected 

travel cost via s to d is not less than the minimum expected travel cost from i to d. 

At UE, the following non-negativity constraint and flow conservation constraint must hold: 

  0, , ,d
sv s S d D     and  (19) 

  , , .
i i

d d d
s i s

s A s A

v g v i N d D
  

        (20) 

By combining conditions (16) and (19), the link-based UE constraints can be represented 

in the following form:  
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 (21) 

These link-based UE conditions are similar to those used for traffic assignment, except that 

only route sections containing the set of attractive lines are considered in the UE conditions 

for transit assignment. Therefore, for each OD pair, we can create a small network with only 

the route sections considered as attractive by the passengers being used to prove Proposition 1.  

Proposition 1: The link-based UE conditions (21) imply the path-based UE conditions (14), 

and vice versa.  

Proof. See Appendix I. 

Proposition 1 basically means that if the link flow solution satisfies condition (21), then the 

corresponding path flow solution must also satisfy condition (14). The converse is also true. 

2.6.2. Link-based VI formulation  

The link-based UE transit assignment problem is to determine * *d
sv   v  to satisfy 

constraints (1) – (8), (20), and (21). This link-based UE problem is shown to be equivalent to 

the  VI problem of finding * *d
sv   v  such that  

    * * 0, ,v   
T

v v π v v   (22) 

where d
sv   v ,   id

s   π v , *v stands for an UE solution of section flows, and 

| 0,  , ,  ,  ,
i i

d d d d d
v s s s i s

s A s A

v v s d v g v i d
  

         
  

  . The proof of equivalence is given in 

Appendix II. 



 

2.7. Approach-based Formulation  

2.7.1. Approach-based equilibrium conditions  

Alternatively, the above formulation can be reformulated using the concept of approach 

proportion, in which the approach of a node is defined by the route section coming out from 

that node, and an approach proportion is defined as the proportion of passengers leaving a 

node via the approach considered. Denote the approach proportion, d
s , where is A , as the 

proportion of passengers per hour leaving node i and going to destination d via route section s. 

Then, the proportion must satisfy the following conditions: 

0 1, , ,d
s s S d D      and  (23) 

1, , .
i

d
s

s A

i N d D


      (24) 

Inequality (23) is the definitional constraint, and equation (24) states that the sum of all of the 

approach proportions coming out from node i equals 1.  

Let d
iq  be the flow leaving node i and heading to destination d. Then, the section flow d

sv  

can be replaced by d d
s iq . Thereby, the link-based UE conditions (21) are equivalent to 
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id id d d
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id id
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  (25)

 

 

Moreover, the flow conservation constraint (20) can be expressed as 

 
( ) , , .

i i

d d d d d
s t s i s i

s A s A

q g q i N d D 
  

       (26) 

By definition, the outflow d
iq  is non-negative; hence, condition (25) can be reduced to  
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  (27)

 

 

Condition (27) implies that if the proportion of passengers per hour leaving node i and 

going to destination d via route section s is positive (i.e., 0d
s  ), then the expected travel 

cost from node i to node d via section s is equal to the minimum expected travel cost between 

the two nodes. Moreover, if the approach proportion is zero (i.e., 0d
s  ), then the expected 

travel cost via section s is greater than or equal to the minimum expected travel cost between 

nodes i and d. These conditions are consistent with the link-based UE conditions.  



 

The approach-based UE condition (27) is further explained by Figure 2. Figure 2(a) is the 

original transit network, and Figure 2(b) is the corresponding route-section representation. 

The dotted line represents the minimum expected cost path connecting node j (j’) to 

destination d, and its cost,  'jd j d  , is marked next to node j (j’). Assuming that L1, L2, …, 

L  are the attractive lines connecting node i to node j, these lines are combined into one 

section, referred to as section s without loss of generality, with the expected section cost sc  as 

shown in Figure 2(b). Similarly, section 's  is constructed to aggregate the set of attractive 

lines L  ,  L 1   , …, L connecting node i and node 'j .  

In Figure 2(b), there are two paths from node i to destination d. One path is via section or 

approach s, and the other is via approach 's . The proportions of these two approaches are 

denoted as d
s  and '

d
s , respectively. The expected travel cost from node i to node d via 

approach s is obtained by adding the expected route-section cost sc  to the minimum expected 

path cost from the head node of section s (i.e., node j) to destination d. Similarly, the expected 

travel cost from node i to node d via 's  is obtained by adding the expected route-section cost 

'sc  to the minimum expected path cost from the head node of section 's  (i.e., node 'j ) to 

destination d.  

Suppose that '
id id

s  . That is, the lowest expected travel cost from node i to node d is 

equal to the expected travel cost associated with path 'i j d  . Then, this path is a lowest 

expected cost path, and approach 's  is on the lowest expected cost path. Moreover, the 

approach proportion of approach 's  must satisfy condition (27), because the term inside a 

pair of round brackets equals zero, and approach 's  may carry flow, but the proportion must 

be between zero and one inclusively (i.e., '1 0d
s   ) based on condition (23).  

Under the preceding supposition, if approach s carries flow (i.e., 1 0d
s  ), then the 

expected travel cost from node i to node d via approach s must equal the minimum expected 

path cost from node i to destination d (i.e., i
s
id d  ), and approach s must be on another 

lowest expected cost path from node i to node d. (i.e., '
id d id
s s

i    ). Otherwise, condition 

(27) is violated. If section s carries no flow (i.e., 0d
s  ) under the preceding supposition, 

approach s may or may not be on one of the lowest expected cost paths. Approach s is on one 

of these paths only if the expected cost associated with path i j d   equals the expected cost 

associated with the lowest expected cost path 'i j d  . Nevertheless, in most cases, the 



 

expected cost associated with path i j d   is larger than that associated with 'i j d  , and 

approach s is NOT on the lowest expected cost path 'i j d  . 

 

      (a) Transit network                                     (b) Route section representation  

Figure 2 Network representation of the approach-based formulation 

 

2.7.2. Approach-based VI formulation  

The approach-based transit assignment is to determine * *d
s   α  to satisfy constraints (1) 

– (8), (23), (24), (26) and (27). As with the link-based formulation, the approach-based 

formulation can be expressed as a  VI: to determine * *d
s   α  such that  

      0, ,  
T* *α -α π α α   (28) 

where   ,id
s   π α ,d

s   α  *α  is the optimal solution vector, and 
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   . Note that 

  id
s   π α  can be replaced by   id id

s    π v , as * 1
i i

d d
s s

s A s A
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i d s A

  


   . The proof of equivalence between the approach-based problem 

formulation and VI (28) is similar to that between the link-based formulation and VI (22), and 

hence the proof for this last formulation is omitted. 

For a solution to exist, the above VI problem requires (i) that the mapping function is 

continuous, and (ii) that   is a non-empty compact convex set (Theorem 1.4 in Nagurney, 

1993). The continuity condition is satisfied, as id
s  and id  obtained by equations (17) and 
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(18) are continuous functions. The second condition is satisfied by the definition of the 

approach proportion (see (23) and (24)), and by the flow conservation condition (26). 

Therefore, for the proposed approach-based VI formulation, the existence of a solution is 

guaranteed. However, the uniqueness of the UE solution further requires that the mapping 

function is strict monotone. This requirement may not be fulfilled for the asymmetric, non-

linear section cost function, in which case multiple solutions may be possible.  

Although we use the term ‘approach proportion,’ the definition we use is different from 

that proposed by Bar-Gera (2002). We define ‘approach proportion’ based on outgoing links 

from nodes, whereas Bar-Gera’s definition is based on incoming links. The reason for this 

redefinition is that by defining the proportion of flows using outgoing links as decision 

variables, the resulting formulation can easily capture the common line feature, and determine 

how passengers select transit lines from the set of attractive lines. As a result, in our model 

the decision variable, the sub-graph, the flow loading and cost updating schemes required in 

the solution process are all different, as we describe below.  

 

3. SOLUTION ALGORITHM  

3.1. Overview of the Algorithm  

To solve the VI problem, we adopt a projection method that belongs to the class of 

extragradient methods introduced by Korpelevich (1976). The advantage of the extragradient 

method is that it does not require knowing the Lipschitz constant in advance. However, this 

projection method cannot be applied directly to solve the approach-based transit assignment 

problem. Therefore, a revised algorithm is proposed and its outline is presented as follows:  

Step 0. Construct a route-section transit network (see Section 3.2). 

Step 1. Set the iteration counter 0k   and create an initial subnetwork kG   using the 

lowest expected cost path tree. 

Step 2. Adopt the extragradient method to solve the transit assignment problem on the 

subnetwork kG   (see Section 3.3). 

Step 3. Update the subnetwork. If kG   is a UE bush, then stop the algorithm; otherwise 

update kG   to 1kG  , set 1k k   , and return to Step 2. 

3.2. Network Construction Algorithm  

A prerequisite of the solution algorithm is to construct a route-section network using real 

network information. To the best of our knowledge, this approach has not been previously 



 

mentioned in the literature. Therefore, it is presented in this paper. The proposed algorithm 

contains two parts. The first part is to combine common lines into sections based on the bus 

line information. The second part is to identify the competing sections.  

Step 0. Initialise parameters and sets. Set 0, ,m
s s m   ; ,sA s  . 

Step 1. Find and combine common lines into sections. 

 For each line l L ,  

  For each pair of stops  , , , , 1, 2, ,l l l
x yi j i j x y n x y      , 

   if  : ( , )s S s i j    , then 

     ( , )S S s i j   , 

   else,  

    s sA A l  , where  ,s i j .  

   End if     

Step 2. Identify competing sections. 

 If  , , , 1, 2, ,  and s mA A s m s m S s m     , then   

  if    t s t m , then 

     1, 1m s
s m    . 

  else,  

    for each s ml A A   , 

           set     ( ) ( )( ), ( ) ,l l
x s x mx s x m t s t m     and  

           ( ) ( )( ), ( ) ,l l
y s y my s y m h s h m     . 

   If ( ) ( )x s x m  and ( ) ( )x s x m , then 1m
s  ; 

   If ( ) ( )x m x s and ( ) ( )x m x s , then 1s
m  . 

  End if 

 End if 

 

Step 1 scans all stops and creates the set of common lines for each section, which is used 

in Step 2 to identify competing sections by checking each pair of sections. The necessary 

condition of the competing sections is the existence of at least one common attractive line 

between two sections. Once such a condition is satisfied, two scenarios are distinguished:  



 

a) if the two sections share the same boarding stop, i.e.,    t s t m , then they are 

mutually competing, i.e., 1m
s   and 1s

m  ; and 

b) if section s starts before and ends after section m, then m competes with s, and vice 

versa.  

The above algorithm implicitly assumes that all lines are attractive on each section. 

However, the above algorithm can be easily modified to address a more general case in which 

not all lines are attractive. Hence, the assumption is not restrictive, as the set of attractive 

lines can be determined via, for example, the method used by Chriqui and Robillard (1975).  

It is worthwhile mentioning that the network construction algorithm is not required in the 

hyperpath network representation, because there is no competing section in the hyperpath 

network. However, this representation requires more links and nodes than the route-section 

representation, especially if the number of common lines is large. It is unclear whether the 

hyperpath or the route-section representation can be solved quicker. Moreover, the congestion 

cost functions adopted in the two methods are often different. Hence, they require different 

algorithms with various convergence requirements to solve for solutions, and it may not be 

fair to directly compare the solution speeds of the two approaches with different convergence 

requirements. 

3.3.Extragradient Method  

In general, the extragradient method iteratively utilises two projection operators to make 

predictions and corrections until a convergence criterion is satisfied. Hence, this method is 

referred to as the double projection method. Accordingly, two stepsizes are required for the 

prediction and correction operators, respectively. Initially, Korpelevich (1976) set these two 

stepsizes to be identical and applied an Armijo-type scheme to update them, which resulted in 

a long computation time. To speed up the computation process, different rules for updating 

stepsizes have been proposed (He and Liao, 2002; Noor, 2003; Panicucci et al., 2007).  

The extragradient method with adaptive stepsizes was first developed by He and Liao 

(2002), and has been shown to converge under the condition that the mapping function is 

pseudomonotone, which is a mild condition compared to the monotone requirement (Schaible, 

1995). The major improvement of this method over the traditional double projection method 

is that the stepsizes are determined adaptively, leading to a faster convergence speed. 

Panicucci et al. (2007) adopted the improved extragradient method to solve the asymmetric 

path-based traffic assignment problem. However, as they solved the path-based problem, a 



 

path set was initially generated using, for example, a k shortest path algorithm, and the path 

set was updated (if necessary) using a column generation heuristic. In contrast, the path set 

generation heuristic can be avoided when the improved extragradient method is used to solve 

the proposed approach-based formulation, although the convergence of the method is still 

based on the pseudomonotone requirement. The algorithmic steps are as follows: 

Step 0. Initialise parameters and generate an initial solution kα  by assigning all of the 

demand of each OD pair to the lowest expected cost path, where the superscript k 

refers to the solution obtained in iteration k. Set the iteration counter, 0k  ; set the 

initial stepsize of the prediction projection, 0 1.0  ; select the parameters for 

updating the stepsizes of the prediction and correction, including 0 1  , 

(0, 2)   and 0 1    ; set the acceptable error 0.001  .  

Step 1. Check the stopping criteria. Determine [ ]k id
sπ(α )  using the procedures 

described in Section 3.3.2. Then, check whether one of the following conditions are 

met: 

a.  ( ) ( ) , ( ) ,max ( ) ( ) , , ,t s d t s d d k t s d d k
s s s s s d           where ( )t s d

s equals 1 if 

section s carries flows (i.e., flow proportions greater than zero), and equals zero 

otherwise; 

b.   The maximum allowable computation time is reached.   

Step 2. Perform the prediction projection.  

Calculate  1k k k
kP





   α α π α  using the method depicted in Section 3.3.1, where 

P


 represents the projection on the solution set   of the problem.  

Step 3. Perform the correction projection.  

Calculate the value of the corresponding mapping function 1kπ(α )  (see Section 3.3.2). 

If 
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 (adaptive stepsize k ), 

  1 1( )k k k
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    α α π α  (see Section 3.3.1), and 

  1k k  . Go to step 1. 

Otherwise, reduce the stepsize k  by 
1

min(1, )k k
kr

      and go to Step 2. 

In Step 0, the initial solution is obtained by an all-or-nothing assignment. In Step 1, the 

maximum difference between the expected travel cost via the presently used approach and the 

minimum expected travel cost is taken as one of the stopping criteria for the extragradient 

algorithm. If the difference is small, then the solution is very close to an optimal solution. The 

second criterion is the maximum allowable computation time. If the maximum allowable 

computation time is reached, then the extragradient algorithm ceases without outputting an 

optimal solution. Steps 2 and 3 carry out the prediction and correction projections using 

adaptive stepsizes k  and k , respectively.  

3.3.1. A linear projection method 

The projection operation can be performed by many methods. In this section, a simple 

linear projection method (Panicucci et al., 2007) is adopted, which makes use of the 

decomposable structure of the simplex constraint set (i.e., 1
i

d
s

s A




 , 0, ,d
s i d   ). Given a 

vector d
sz   z   iAk k

k R


 α π α  associated with the proportions of passengers leaving 

node i = t(s) to destination d (i.e., the input to the prediction projection operator), or z

1( )k k
k

α π α  (i.e., the input to the correction projection operator), where iA  is the 

dimension of the sections that emanate from node i, the following steps can be used to find 

the projection of z  onto the simplex : 1i

is A

d d
s s

A
R 








   

  

 
 : 

Step 0. Initialise ' 0k  , and set , ' 1 / , .
i

d k d d
s s j i i

j A

z z A s A


 



 
      

 
  

Step 1. Check the stopping criterion.  

If , ' 0d k
s   is A  , then 1 , 'k d k

s
    α  or 1 , 'k d k

s
    α , and stop. 



 

Otherwise, create the index set  , ': 0d k
gG g   . 

Step 2. For all is A , compute  

, ' 1
, ' , '

0, if ,

1 / , if .
i

d k
s d k d k
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Set ' ' 1k k  , and return to Step 1. 

 

The above algorithm performs very simple computations, and the projection of z onto the 

simplex : 1i

is A

d d
s s

A
R 








   

  

 
  can be found in most iA  iterations.  

3.3.2. Update the mapping function  

After performing the linear projection method, the following two procedures are used to 

obtain the corresponding mapping function. The first procedure is the flow update and the 

other is the expected travel cost update. These two algorithms are quite similar in the sense 

that they both use the topological order to scan a network by a single pass. Given the 

topological order, a forward scan is used to update flows, followed by a backward scan to 

update the cost vector ( )π α . To find the topological order, a depth-first search is adopted 

(Cormen et al., 2001). 

The following are the algorithmic steps to update flow:  

Flow update 

Step 0. Initialisation. Set 0, ,  d
sv s d  . 

Step 1. For each destination d , 

  for u = 1 to d ,  

  set d
ui   ,  

   for ( , ) is i j A  ,  

    d d d
s s iv q ; 

    d d d
j j sq q v  .  

 



 

Given the section flows, the section cost can be easily obtained following equations (1) – 

(8). Afterwards, the following subroutine is called to determine the elements of the cost 

vector ( )π α  in condition (27):  

Expected travel cost update 

Step 0. Initialisation: set ,  ,  ;  0,id ddi d d      . 

Step 1. For destination d , 

    for u = d  to 1, 

    set d
ui  .  

          for ( , ) is j i A  ,  

                 jd id
s sc   ;  

                   min( , )jd jd id
sc     . 

 

The above algorithm is similar to Dijkstra’s shortest path algorithm, except that this 

algorithm starts from a destination node.  

3.3.3. Computational complexity analysis 

For a single destination, the running time of the flow updating algorithm is  O V E , 

where V stands for the total number of vertices (i.e., nodes) and E for the number of edges 

(i.e., route sections or links). To analyze the computational complexity, we consider the case 

of a single destination. The worst scenario of the first loop occurs when all of the nodes are 

contained in the topological order set. In such a condition, it costs ( )O V  time to check all of 

the vertices. Meanwhile, because there is no cyclic flow, the worst scenario of the second 

loop is that all of the links are used, and the computational complexity is ( )O E . By 

aggregating these two conditions, the computational complexity for the single destination 

case is  O V E . Similarly, it can be shown that the complexity of the single destination 

case to update expected travel cost is also  O V E . In practice, it is possible to reverse the 

network order to save computation time if the dimension of the set of destinations is larger 

than that of origins.  

3.4. The Necessity of Subnetwork Updating  

The double projection algorithm is performed on an acyclic subnetwork. The reason for 

using subnetworks is that the projection algorithm may produce cyclic paths if the network is 



 

cyclic. To illustrate such an issue, a small example is arbitrarily created in Figure 3. In this 

network there are five sections, namely S1 – S5. At node i, there are three approaches, S1 – 

S3. Travellers at node i can select one of these approaches to travel to destination d. If S3 is 

selected, then the resultant lowest expected cost path to destination d (i.e., either i – j’ – i – d 

or i – j’ – i – j – d) must be cyclic, with i visited twice. The demand and cost function settings 

are also shown in the figure. Assume that at iteration k all demands are assigned to the section 

with the lowest expected cost path, which is section S1. The resultant flow pattern is 
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v . Accordingly, the approach proportion and the corresponding mapping 

funcion value are 
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id

k id
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id
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π . Note that the approach 

proportions at j and j’ always equal one, because there is only one exit approach at these 

nodes, and hence we omit the two approach proportions in this analysis. Following the double 

projection algorithm, we compute  1 ;k k k
kP





    α α π α  thus, the input of the 

projection operator is  
1.0 10010

20.0

30.0

k k
k

 
     
  

α π α . Using the linear projection algorithm, 

the vector of the updated approach proportions is 
1

1
S2

S3

0.000

0.505

0.495

id
S

k id

id







 
 

  
  

α . This result indicates 

that a proportion of passengers select an approach that is on a cyclic path, because S3
id > 0.  

However, it has been shown that in traffic assignment, the optimal solution is acyclic by 

origin (i.e., no cyclic flow starting from any origin is found at optimality, and there must be 

no flows on cyclic paths at UE), even if the original network is cyclic. Similarly, it can be 

easily shown that the optimal solution for our proposed formulation is also acyclic by 

destination. This can be shown simply by reversing the directions of sections and changing 

destinations to origins (or vice versa), and then by using Lemmas 1-3 as proposed by Bar-

Gera (2002). 
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Figure 3 An example of cyclic paths 

 

Proposition 2: The optimal approach-based solution by destination is acyclic.  

Proof. See Lemmas 1-3 in Bar-Gera (2002). □  

Proposition 2 implies that discarding approaches that are on cyclic paths will not affect the 

optimal solution, because the optimal solution is acyclic. This proposition also implies that 

for each UE solution found there exists an acyclic network, called a UE bush. Accordingly, 

obtaining a UE solution on a whole network is equivalent to finding a UE bush and 

performing the assignment on the UE bush, which can be done by iteratively updating an 

initial acyclic subnetwork. The benefits of using subnetworks include 1) reducing the size of 

the network on which the projection algorithm is conducted, and 2) avoiding production of 

cyclic flows. Hence, the double projection algorithm can be performed more efficiently.  

To start the algorithm, a shortest spanning tree is adopted as an initial subnetwork for each 

destination. Then we adopt the updating method as proposed by Nie (2010). First, unused 

sections with no passenger flows are deleted. Afterwards, selected sections are added to 

expand the subnetwork. The following two conditions are used to determine whether section s 

should be added to existing subnetwork kG  .  

1) ,jd id
sc     , ( , ) and  kd D s i j s G       

2) , , ( , ),  and = ,k d d
x yx y d D s i j s G i j                

Condition 1) requires that an added section promises to reduce the expected travel cost. 

Condition 2) guarantees that the updated network is still acyclic after adding the new section. 

(Proposition 3 in Nie (2010)). After obtaining a new subnetwork, the projection operation is 

performed again. The above procedure is repeated until no sections can be added, indicating 

that a UE bush is obtained.   



 

4. NUMERICAL EXAMPLES 

4.1. Paradox Examples 

To illustrate the paradoxical phenomenon, a simple network is built. Figure 4 shows the 

route-section presentation. Three bus lines are designed, and denoted as L1, L2 and L3. 

Assuming that all of the lines are attractive, the corresponding route-sections are constructed 

following the network construction algorithm described in Section 3.2. The notation S3(L3) 

in Figure 4 means that L3 is an attractive line in section S3. Section S1(L1) is drawn by a 

dashed line, as it is assumed that L1 does not initially exist. Table 1 lists the required data. 

For illustration purposes, the path information is presented instead of the approach 

information, as the purpose of this example is to illustrate the existence of the paradox rather 

than the approach formulation. Three paths exist in the network. Take path 2 as example. This 

path connects OD pair AC, and passes sections S1 and S2, whereas section S1 contains L1 

and section S2 contains L2 as the attractive lines. The headway of L1 varies in the following 

tests. As a result, path 2, which passes S1(L1), is not available until L1 is added (i.e., the 

frequency of L1 is greater than 0). Unless specified, values of parameters are set as follows: 

the value of in-vehicle cost 1.0T   dollar per hour; the value of waiting time 2.0W   

dollars per hour; the congestion function parameters are 1 3 20.1,  0.3,      and 1.0a  ; 

3n  ; bus capacity 120l   passengers per bus; the demand levels of the two OD pairs 

360C C
A Bg g   passengers per hour. 

 

Figure 4 Small network 
 
Table 1 Input data of the small network   

   (a) Path data                                     (b) Line data 

OD Pair 
Path 
No. 

 Path 
  Line 

No.
Travel time 
(minutes) 

Headway 
(minutes) 

Frequency 
(buses/h) 

(1) A-C   1 S3(L3)   1 9 - - 

  2 S1(L1)-S2(L2)   2 3 10 6 

(2) B-C    3 S2(L2)   3 14 24 2.5 

A B  C 

S1(L1) S2(L2)

S3(L3) 



 

 

4.1.1. Adding a new line to the transit network and increasing the frequency of an 

existing transit line  

Three scenarios, as described below, are designed to demonstrate the paradox phenomenon.  

 Scenario 1: without line L1; 

 Scenario 2: L1 is provided, and its frequency is set to be 4.6 buses per hour; 

 Scenario 3: L1 is provided, and its frequency varies from 3.4 to 5.0 buses per hour. 

The results of expected total system travel cost (ETSTC) are summarised in Table 2. 

 

Table 2 Summary of three scenarios 

Scenario 1 Scenario 2 Scenario 3 

With S1(L1) No Yes Yes  

Frequency of L1 

(buses/h) 
- 4.6 3.4-5.0 

ETSTC (dollars) 31508.5 31890.0 See Figure 5 

 

Comparing scenario 1 with scenario 2, the ETSTC increases from 31508.5 dollars to 

31890.0 dollars, demonstrating that providing a new line in a transit network may deteriorate 

the whole network’s performance in terms of the ETSTC.     

This situation is analogous to the Braess paradox in traffic assignment, in which adding a 

new link to a network can increase the ETSTC. In our case, the increase in the ETSTC 

happens because some passengers of OD pair 1 are diverted from L3 to L2, inducing more 

congestion cost associated with section 2. More importantly, the total increment of the 

congestion cost associated with section S2 outweighs the cost reduction associated with S3. 

This paradox occurs because the introduction of the new transit line does not take into 

account the selfish route choice behaviour of passengers and their response to the new service. 

This example illustrates the importance of considering these factors when introducing new 

transit services.  

The results of scenario 3 are plotted in Figure 5, which illustrates the changes in the 

ETSTC with respect to the frequency of L1. In addition, to facilitate the explanation of the 

changes in the ETSTC, the equilibrium costs of the two OD pairs are plotted in Figure 6. 

According to these figures, we can identify four regions of frequency: 1) less than 3.8 buses/h 



 

(and greater than 0 buses/h); 2) between 3.8 and 4.1 buses/h; 3) between 4.1 and 4.6 buses/h, 

and 4) more than 4.6 buses/h. 

In the first region, in which the frequency is less than 3.8 buses/h, the ETSTC remains 

stable, as do the corresponding equilibrium costs of the two OD pairs in Figure 6. This result 

indicates that adding the new line does not affect the expected travel cost. Because L1 is not 

considered as an attractive line, none of the passengers at node A switch to section S2. Such a 

condition implies that the buses of L1 would be vacant, and the operator would lose money 

by providing the L1 services even with a low frequency.  

In the second region, the ETSTC starts to decline. When the frequency is greater than 3.8 

buses/h, the new line is considered an attractive line by the travellers departing at node A. By 

adding L1 to the set of attractive lines, the expected travel cost of travellers can be reduced. 

This result can also be seen in Figure 6, which shows that by increasing the frequency, the 

equilibrium travel cost for OD pair 1 is reduced. However, the equilibrium cost for OD pair 2 

grows due to the additional congestion cost induced by the passengers selecting S1(L1). 

Nevertheless, the rate of cost increase for OD pair 2 is mild compared with the rate of cost 

decrease for OD pair 1. Therefore, on the condition that the demand levels are equal for the 

two OD pairs, the initial ETSTC still decreases, and no paradox is observed in this region. At 

the frequency of 4.09 buses/h, the rate of cost increase for OD pair 2 equals that of the cost 

decrease for OD pair 1. As a result, the ETSTC arrives at one bottom value.  

The paradox occurs in the third region, where the frequency of L1 keeps increasing from 

4.09 to 4.6 buses/h. The ETSTC soars to a peak of 31890.0 dollars. The equilibrium cost for 

OD pair 2 grows sharply, because more passengers are attracted to route 2 when the 

frequency is larger. This increase in passengers on route 2 exacerbates the congestion on 

section S3(L3) due to the BPR-type congestion cost function, by which costs grow rapidly as 

flow approaches capacity. Although the cost for OD pair 1 keeps decreasing, the curve tends 

to be flat. Hence, the increment in the ETSTC is mainly driven by the rise in the expected 

travel cost for OD pair 2. 

In the last region, where the frequency of L1 is greater than 4.6 buses/h, the ETSTC starts 

to descend again. The congestion cost of S3(L3) stops growing, as all of the travellers 

between OD pair 1 have switched to section S1. After the frequency of L1 is greater than 4.8 

buses/h, the ETSTC drops below 31508.5 dollars, which equals the ETSTC of the scenario 

without L1 (i.e., scenario 1).  

The above scenarios illustrate that the frequency paradox phenomenon can be observed 

within certain regions of the frequency setting. These scenarios also illustrate that there are 



 

regions where the paradox can be avoided and the system performance can be improved. 

However, the regions associated with better system performance can be significantly different 

from each other in terms of flow distribution. When the increased frequency reaches the 

second region (i.e., 3.8 to 4.1 buses/h), the passengers at node A are distributed into two lines, 

and in the last region (i.e., greater than 4.6 buses/h), the passengers select only one line to 

board. From the operator’s point of view, both the total fare revenues associated with these 

regions and the operating cost of providing the corresponding level of service vary greatly. 

These factors of revenue and operating cost will influence the strategy of bus companies in 

competitive markets such as Hong Kong.  

In addition, it is worth mentioning that the occurrence of the paradox depends on both the 

initial condition and the increment in the frequency. For example, when the initial frequency 

is 3.6 buses/h, if the frequency increment is 0.3 bus/h, the system performance improves. If 

the frequency increment is 1.0 buses/h, the paradox occurs. However, if the initial frequency 

is 4.0 buses/h, a 0.3 bus/h increment in the frequency would induce the paradox, but a 1.0 

bus/h increment in the frequency would not. The paradoxical region investigated and marked 

in the graphs is the region where a small increment in frequency can lead to the paradox.  

 

 

Figure 5 Expected total travel cost under various frequencies in scenario 3 
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Figure 6 Equilibrium costs of OD pairs 1 and 2 

4.1.2. Effects of the perceived congestion parameters  

Figure 7 illustrates how different values in perceived congestion parameters influence the 

existence of the paradox. The perceived congestion parameter value, n varies from 1 to 3; a 

varies from 0.5 to 1.5; 2  increases from 0.2 to 0.4. In each case, the frequency of L1 

changes from 3.4 to 5.0 buses/h, and the corresponding ETSTC is plotted. The observations 

are summarised as follows. 

First, the values of the perceived congestion parameters affect the occurrence of the 

paradox. The paradox can be observed when 1n  (Figure 7(a)), 0.5a  (Figure 7(b)), or 

2 0.2   (Figure 7(c)), and the paradox is inevitable when these values are large. The 

paradox appears because the route choice behaviour of passengers is not taken into an account 

when the frequency is adjusted. Increasing the frequency can reduce the waiting time for the 

line in question, but it also attracts passengers from other lines to use that line. Hence, the 

network-wide effect cannot be ignored when trying to improve the transit network by 

adjusting frequency.  

Second, the ETSTC grows along with the increasing values of the perceived congestion 

parameters, up to the peak values for the ETSTC. The peak values are larger when the values 

of the parameters are larger. Figure 7 shows that the ETSTC increases as the values of n, a, 

and 2  increase, given a fixed frequency. This increase happens because, by definition, a 

larger value of the perceived congestion parameter implies a higher perceived congestion cost. 

For the same reason, the maximum ETSTC increases with the rising value of the perceived 
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congestion parameters. These patterns can be found whether the frequency is within the 

paradox region or not. 

Third, the perceived congestion parameters affect the width of the paradox region. The 

width of the paradox region can be characterised by the difference between two frequency 

values. The first value is the frequency at which the ETSTC starts to increase, and the second 

is the finishing frequency at which the ETSTC starts to drop from its peak.  

For the starting frequency, we are interested to observe that higher values of n and a can 

defer the occurrence of the paradox. For example, in Figure 7(b), when 1.5a  , the ETSTC 

starts to increase at 4.09 buses/h, but the starting frequency is 4.04 buses/h when 1.0a  . A 

similar phenomenon exists in Figure 7(a). However, in Figure 7(c), a higher value of 2  

advances the occurrence of the paradox. The paradox emerges at 4.04 buses/h when 2 0.3  , 

and at 4.02 buses/h and 2 0.4  .  

For the finishing frequency, the larger the perceived congestion parameter values are, the 

higher the finishing frequency. For example, in Figure 7(a), the paradox region ends at 4.6 

buses/h when n = 3, but it ends at 4.2 buses/h when n = 2. 

Despite these different effects of the perceived congestion parameters on the two 

frequencies, the inference mechanisms in determining these frequencies are the same. These 

mechanisms can be attributed to the changing equilibrium costs of the two OD pairs. If the 

equilibrium cost for OD pair 1 decreases at a rate that is less (greater) than the rate of increase 

for OD pair 2, the ETSTC increases (decreases) and the paradox occurs (vanishes). Thus, the 

starting (finishing) frequency is the point before which the increasing rate of equilibrium cost 

for OD pair 1 is less (greater) than the decreasing rate of the equilibrium cost for OD pair 2, 

and after which the increasing rate of the equilibrium cost for OD pair 1 is greater (less) than 

the decreasing rate of the equilibrium cost for OD pair 2. When the perceived congestion 

parameters vary, the rates of change in equilibrium costs are affected due to the various 

changes in perceived congestion cost. Consequently, the starting and finishing frequencies 

and hence the width of the paradox regions change.  

Our experiments indicate that the paradox region is wider when the values of perceived 

congestion parameters are larger. However, we expect that the starting and finishing 

frequencies of the paradox region and the width of each frequency region (including the 

paradox region) depend on the combination of these congestion parameters in general.  



 

    

(a)  Effect of n 

   

(b) Effect of a  
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(c) Effect of 2  

Figure 7 Effects of different perceived congestion parameter values 
  

In general, the above experiments verify the importance of calibrating the perceived 

congestion parameters. These parameters are determined by various factors such as the layout 

of bus stops, the types of buses, the passengers’ behaviour (in terms of whether they choose to 

join a queue or to push and squeeze to board a bus), and their tolerance for waiting and in-

vehicle congestion. A field survey is needed to calibrate the perceived congestion parameters 

to further identify whether the paradox is avoidable during the transit network design process, 

or, if the paradox cannot be avoided, how frequently the service should be provided to 

overcome the paradox region effect.  

   

Figure 8 Effect of demand 
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4.1.3. Effect of demand 

Figure 8 presents the changes in the ETSTC when the demand of OD pair 2 varies from 

120 to 600 passengers/h. The paradox can be avoided when the demand is 120 passengers/h, 

but it occurs when the demand is between 360 and 600 passengers/h. This finding implies that 

the occurrence of paradox also depends on demand levels. 

Surprisingly, the ETSTC keeps increasing when the frequency is larger than 4.0 buses/h 

when demand reaches 600 passengers/h. This result implies that whenever a line is added 

between nodes A and B, the system performance cannot be improved via providing 

adjustments in practical frequency (i.e., less than 5.0 buses/h). Therefore, managers should 

consider alternative methods to enhance the system performance.  

In general, we notice that the effect of varying demand is similar to that of variations in 

perceived congestion parameter values, as higher demand normally generates a higher 

congestion cost.    

4.2. Performance of the Proposed Algorithm  

4.2.1. The Sioux-Falls network 

The proposed algorithm was tested with the Sioux-Falls network, shown in Figure 9. Ten 

itineraries were arbitrarily created. Table 3 describes the headway and stop sequence settings. 

We set 16 OD pairs, and the demand data are shown in Table 4. The algorithm was coded and 

compiled by Compaq Visual Fortran 6.6. The effects of different parameters were tested. In 

this study, we adopted the number of intermediate solutions evaluated as the criterion for 

measuring computation speed. An intermediate solution refers to one feasible solution 

[ ]d
sα  computed during the computation process, and the number of intermediate solutions 

evaluated means the total number of feasible solutions generated during the whole 

computation process. This criterion was used for two reasons. First, the accuracy of CPU time 

measurement provided in Fortran is only up to 0.0001. During this interval, many 

intermediate solutions could be evaluated. To address this issue, we counted the number of 

intermediate solutions evaluated. Second, the number of iterations cannot be adopted as the 

stopping criterion, as the iteration counter only accounts for the number of prediction 

projection operations. Unless specified otherwise, the parameters in the double projection 

method were set to the following: 0.001  , 0.9  , 0.7,   0 1.0  , 1.9  . The 

maximum allowable computation time was set to 600 seconds.  



 

 

Figure 9 Sioux-Falls network 
 

Table 3 Transit route setting of the Sioux-Falls network 

Route No. 
Headway 
(minutes) 

Stop Sequence 

1 6 4 11 23 24  
2 6 1 3 12 13 24  
3 6 11 14 23 24 13  
4 5 8 20 21 22 23  
5 6 7 8 16 18 20  
6 6 14 15 19 20 22 23  
7 3 2 6 8 9 10 11 12  
8 3 4 5 9 10 17 19 20  
9 3 10 16 17 19 20 21 24  
10 3 1 3 4 5 9 10 15 19 20  
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Table 4 Demand data 

OD pair 

Demand 

(passengers/h) OD pair 

Demand 

(passengers/h) 

(1-13) 500.0 (3-13) 500.0 

(1-20) 500.0 (3-20) 500.0 

(1-21) 500.0 (3-21) 500.0 

(1-24) 500.0 (3-24) 500.0 

(2-13) 400.0 (4-13) 400.0 

(2-20) 400.0 (4-20) 400.0 

(2-21) 400.0 (4-21) 400.0 

(2-24) 400.0 (4-24) 400.0 

 

 

 

Figure 10 Effect of   
 

Figure 10 shows the effect of  , which is the parameter to adjust the stepsize of the 

prediction projection operator. The value of   increased from 0.01 to 1.00, and the 

corresponding numbers of solutions evaluated were plotted. When the value of   was 

between 0.9 and 1.0, the computation time was long, as the stepsize could only be reduced. 

However, when 0.01 0.1  , the stepsize became large and the computation time was also 

long. In particular, the algorithm failed to converge within the predefined stop time when 
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0.01 0.06  . Between 0.1 and 0.9, the effect of   was minor. In general, the role of   is 

to control the range between two successive stepsizes. Ranges that are either too large or too 

small are not beneficial for the convergence speed. For our network, the minimum value 

occurred at 0.33  , which was adopted in the following tests. 

 

Table 5 Effect of different combinations of   and   

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average 

0.1 - - - - - - - - - - 
0.2 238 - - - - - - - - 238 
0.3 191 187 - - - - - - - 189 
0.4 189 165 141 - - - - - - 165 
0.5 180 167 151 130 - - - - - 157 
0.6 201 207 168 134 133 - - - - 169 
0.7 212 228 180 132 129 125 - - - 168 
0.8 188 255 170 145 158 143 143 - - 172 
0.9 203 187 174 172 192 148 130 138 - 168 

Average 200 199 164 143 153 139 137 138 - - 
 

Table 5 presents the effects of different combinations of   and  . As convergence 

requires that    (see He and Liao, 2002), the combinations that do not satisfy this 

condition are marked as ‘-’. For each value of  , few intermediate solutions were generated 

when   was large. To find a more general trend, the average numbers of solutions evaluated 

(i.e., the last row and last column) are plotted in Figure 11. This figure clearly shows that the 

computation time reduces with the increments of   and  , and then remains at a stable level. 

We selected 0.6   and 0.7   for later tests. 

 



 

   

Figure 11 Average number of intermediate solutions evaluated 
 

Figure 12 illustrates the effect of the parameter   on the speed of convergence. In general, 

a large value of   accelerates the projection method to converge. In our case, 1.8   was 

chosen for the following tests, as it gave the minimum number of intermediate solutions 

evaluated.  

 

 

Figure 12 Effect of  
 

4.2.2. Winnipeg Network  

To show the efficiency of the proposed algorithm for solving large transit network 

assignment problems, the proposed method was tested using the Winnipeg network. The data 
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for this network were obtained from the base scenario in Emme3, which consists of 1067 

nodes, 3647 OD pairs and 133 transit lines. As the original network is used for multimodal 

assignment, some OD pairs are not connected by transit lines. For simplicity, these OD pairs 

were eliminated. The proposed algorithm was compared to the self-regulated averaging 

method (SAM) developed by Liu et al. (2009). The SAM includes the method of successive 

averages (MSA) as a special case. In the SAM, two stepsize increment parameters are used 

for solution updates to increase the convergence speed. When both stepsizes are equal to 1, 

the SAM becomes equal to the MSA. Preliminary tests were carried out, which found that the 

best combination of the two stepsize increment parameters of the SAM was (1.0, 0.4). 

The convergence curves are presented in Figure 13, from which we can see that the 

proposed projection method converges quickly after generating 44 intermediate solutions, but 

the SAM and MSA have longer tails. More importantly, both the SAM and MSA fail to 

converge, as is shown in Figure 13(b). In addition, we note that both curves are not smooth, 

probably because the mapping function is not strictly monotone (as the congestion cost 

function is asymmetric). 

 

(a) Comparison of convergence                  (b) Convergence of the SAM and MSA  

Figure 13 Comparison of convergence with the SAM and MSA 
 

5. CONCLUSIONS 

This paper develops a new formulation for transit assignment based on the concept of 

approach proportion. The problem is formulated as a VI. An extragradient method with 

adaptive stepsizes is adopted for solving the problem. Compared with the existing solution 

methods, the proposed method requires a mild assumption to converge. To implement the 

extragradient method, a simple linear projection operator is adopted which utilises the 

properties of the solution set. In addition, the paper proposes flow loading and cost updating 

algorithms, and discusses the computational complexity involved. The performance of the 

proposed algorithm is tested with the Sioux-Fall and Winnipeg networks, and the effects of 

0

20

40

60

80

100

120

140

20 40 60 80 100

C
on

ve
rg

en
ce

 m
ea

su
re

m
en

t

No. of intermediate solutions evaluated

Extragradient

MSA

SAM

60

70

80

90

100

110

120

130

140

20 2020 4020 6020 8020 10020

C
on

ve
rg

en
ce

 m
ea

su
re

m
en

t

No. of intermediate solutions evaluated

MSA

SAM



 

different parameters in the algorithm are demonstrated. The advantage of the solution 

algorithm is illustrated by comparing its convergence curve and speed with that of the SAM 

method.  

This paper also illustrates a Braess-like paradox, in which adding a new line to a transit 

network or increasing the frequency of an existing transit line may worsen the network 

performance in terms of the ETSTC. To demonstrate this phenomenon, a small network 

example is created, and different scenarios are tested. The results illustrate that the occurrence 

of the paradox depends on the demand level, the congestion parameters, and the frequency 

setting. The results also show that the paradox can be avoided under certain frequency 

settings. These findings may call for a bilevel transit network design formulation to determine 

the optimal frequency to improve the system performance. 

This paper opens up many research directions. For example, based on the bilevel 

frameworks of Szeto and Lo (2008), Lo and Szeto (2009), Miandoabchi et al. (2012a,b, 2013) 

and Zanjirani Farahani et al. (2013), the proposed model can be combined with the model of 

Szeto and Wu (2011) or Szeto and Jiang (2012) to develop various bilevel transit or 

multimodal network design models. The proposed model can also be extended to consider 

multiple user classes and other demand and supply uncertainties. 
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Appendix I  

This appendix proves that the link-based transit UE conditions (21) imply the path-based 

UE conditions (14), and vice versa.  

Proof of Necessity 

To prove necessity, we need to show that the link-based conditions (21) imply the path-

based conditions (14). This proof is done by the following three steps. 

Step 1. ( ) 0, , ,id id d
s sv i s d      implies that ( ) 0, , ,rd rd rd

p pf r d p     . 

Without loss of generality, we consider a path 
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   in which all sections on this path carry 

flow (i.e., 0
e

d
sv  ), where 1 2, , pn

n n n  represent nodes on path p, and 1 2 1
, , and pn

s s s




represent the sections emanating from nodes 1 2 1
, , and pn

n n n


 , respectively. As 0
e

d
sv  , the 

link-based condition ( ) 0e e

e e

n d n d d
s sv     requires that 0e e

e

n d n d
s   . By definition (17), we 

have 1 0e e

e

n d n d
sc     . By rearranging this equation, we get 1e e

e

n d n d
sc    . This 



 

recursive relationship implies that 
1

1

p

e

n
rd dd

s
e

c 




  , where the left-hand side of the equation 

is the lowest expected travel cost between OD pair rd. For the right-hand side, the first term is 

the expected travel cost associated with path p, rd
p , and the second term equals zero by 

definition. We can therefore conclude that the expected travel cost of a used path p between 

an OD pair rd is equal to the minimum expected travel cost for that OD pair. This analysis 

can be repeated for other used paths between any OD pairs. We can therefore conclude that 

( ) 0, , ,id id d
s sv i s d      implies ( ) 0, , ,rd rd rd

p pf r d p     . 

Step 2. 0, , ,id id
s i s d     implies that 0, , ,rd rd

p r d p    . 

Consider a path 1 11
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pne
e e n
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  . From the link-based 

condition 0, , ,id id
s i s d    and by definition (17), we have 1 0,e e

e

n d n d
sc    
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 . By adding all of these inequalities together, we have 
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( ) 0
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rd dd
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   . 

The first term is the expected travel cost associated with path p, rd
p , and the second term is 

the equilibrium cost between OD pair rd, given that 0dd   by definition. By repeating such 

analysis on other paths, we can conclude that 0, , ,id id
s i s d     implies 

0, , ,rd rd
p r d p    . 

Step 3. 0, ,d
sv s d   implies that 0, , ,rd

pf r d p  . 

Suppose that 0d
sv   holds, but 0rd

pf   for some path p. Consider a section s where there 

is only one path involved. As the flow on this path is negative, the flow on section s will be 

negative, contradicting the assumption. Hence, we conclude that 0d
sv   implies 0rd

pf  . 

Proof of Sufficiency 

To prove sufficiency, we need to show that the path-based conditions (14) imply the link-

based conditions (21). Again, the proof is done by the following three steps. 

Step 1. ( ) 0, , ,rd rd rd
p pf r d p      implies that ( ) 0, , ,id id d

s sv i s d     . 

As ( ) 0rd rd rd
p pf     implies that if a path p between OD pair rd carries flow, the expected 

travel cost associated with path p is equal to the minimum expected travel cost for OD pair rd. 



 

Consider a used path 1 11
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  . The path-based 

conditions imply that for every node 2 3 1
, , ,, pe n
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   subpath 
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   is the minimum expected travel cost path from node en  to 

destination d. The subpath optimality condition can be proven by contradiction. Suppose that 

p is the minimum expected travel cost path from origin r to destination d, but ep  is not the 

minimum expected travel cost path from node en to destination d. This condition implies that 

there is a lower expected cost path, ep , from en  to destination d. As a result, a path is formed 

by ep  and subpath 1 2
1 2

e

s s
r n n n d   that connects r and d, and is shorter than path p, 

which contradicts the assumption. Therefore, we conclude that subpath ep  is the minimum 

expected travel cost path from en  to destination d.  

The expected travel cost associated with subpath ep  is  
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  . 

Similarly, the expected travel cost from 1en  to d is  
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Based on the above two equations, we can obtain  
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Rearranging the above equation, we have  

  1 0e

e

en d n d
sc     . 

By definition, 1
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e e

es
n d n d

sc    . Hence, the above equation can be reduced to 

0e e

e

n d n d
s   . As the flow on path p is greater than zero ( 0rd

pf  ), the flow on each section 

of this path must be greater than zero (i.e., 0
e

d
sv  ), in which case 0

e

d
sv   must occur 

simultaneously with condition 0e e

e

n d n d
s   . As this proof can be applied to any arbitrarily 



 

minimum expected travel cost path of any OD pair, we conclude that 

( ) 0, , ,rd rd rd
p pf r d p      implies ( ) 0, , ,id id d

s sv i s d     . 

Step 2. 0, , ,rd rd
p r d p     implies that 0, , ,id id
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expected travel cost path between OD pair rd, whereas p consists of section " e'( , )ees n n  and 
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 . These two 

subpaths are connected by section " e'( , )ees n n . As path 'p  is the minimum expected travel 

cost path between OD pair rd, the expected travel cost associated with 'p  is '
rd rd
p   . 

Hence, the difference in the expected travel cost between p and 'p  can be represented as 

'
rd rd rd rd
p p p         . Because of the path-based condition 0, , ,rd rd

p r d p    , the 

difference rd rd
p    is non-negative. The difference is actually the expected travel cost 

difference between the two non-overlapping sub-paths because  
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expected travel cost path 'p , and this term can be replaced by 
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' '
' '

1
1

1,..., p

p

e e
n

e n
e en n n n d

ss s 


 
 

 
 , and the second bracket term equals 'en d  because of 

subpath optimality for '
' ' 1

' 1 1p

pe e n
e e nn

ss
n n d

s 


 
 

 
 . Therefore, we can obtain 
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above proof can be applied to any section ,is A i N    in a network. Hence, we can 

conclude that 0, , ,rd rd
p r d p     implies 0, , ,id id

s i s d    . 

Step 3. 0, , ,rd
pf r d p   implies that 0, ,d

sv s d  . 

The non-negativity condition of route flows (i.e., 0, , ,rd
pf r d p  ) implies the non-

negativity condition of section flows, as section flow is the sum of route flows on that section, 

and the sum of non-negative real numbers must be non-negative.  

This completes the proof. □ 

Appendix II  

In this appendix, we prove that the link-based UE problem (1) – (8), (20) and (21) is 

equivalent to the VI formulation (22). In other words, we prove that the link-based flow 

pattern satisfies (1) – (8), (20) and (21) if and only if the flow pattern satisfies the VI 

formulation (22). As the solutions to both problems must satisfy (1) – (8), and (20) by 

definition, we only need to prove the equivalence between the UE conditions (21) and VI (22). 

Proof of Necessity 

We need to prove that the UE constraints (21) imply VI (22). For any section is A , i N , 

a feasible section flow heading to d D  must be non-negative:  

 0d
sv  . 

Multiplying the above inequality and the second condition of (21), we have 

  0.id id d
s sv    

We add the first equation in constraints (21) to the above inequality and obtain  

    * 0, , ,id id d id id d
s s s s iv v i N d D s A            . (29) 

where *d
sv  represents the flow on section s toward destination d at user equilibrium. 

In summing up (29) over all of the links, nodes and destinations, it follows that  

  * 0
i

d d
s s

i d s

i id
s

A

d v v 


   , 

which is VI (22).  



 

Proof of Sufficiency 

We need to prove that any solution to the VI problem satisfies the link-based UE 

conditions. According to the constraint set v , the optimal solution must be * 0d
sv  . Hence, 

the third condition of UE constraints (21) must be satisfied by the optimal solution of VI (22). 

By definition, 0id id
s    must be satisfied. Therefore, the second condition of UE 

constraints (21) must be satisfied, and we only need to prove that  

   * 0, , ,d id id
s s iv i N d D s A        . 

If we assume that  '* ' ' ' '
' ' 0d i d i d

s sv   =  is not satisfied for a specific section '' , ' ,is A i N 

and for a specific flow heading to 'd D , but the VI solution satisfies  * 0d id id
s sv   =  for 

all other cases, then we have  '* ' ' ' '
' ' 0d i d i d

s sv   >  and  

   * 0
ii d s

d id id
s s

A

v  


  .   (30) 

We can also find a feasible solution [ | ]d d
s s vv v v  by the following method. First, for 

each node i, we can always find one section s  that is on the minimum expected travel cost 

path to destination d. It follows that 

 " 0, ,id id
s i N d D      .

 
 

Then, for each node i, we can assign all flows heading to d and passing through this node to 

that section and obtain 0d
sv   . As " 0id id

s   ,  " " 0, ,d id id
s sv i N d D       for s  on 

the minimum expected travel cost path to destination d. The other sections, s , are not on the 

minimum expected travel cost path to d. Hence, " 0,d
sv   and  " " 0, ,d id id

s sv i N d D      . 

For both cases, we have  

    0, , ,d id id
s s iv i N d D s A        .  (31) 

Summing (31) over all links, nodes and destinations, it follows that  

    0
ii d s

d id id
s s

A

v  


  .  (32) 

If we subtract (32) from (30), then we obtain  

  * 0
i

id id d
s s

i A
s

d s

dv v  


  . 

The above condition contradicts the VI formulation (22). Therefore, an optimal solution of 

the VI problem (22) must satisfy the conditions (21). This completes the proof.□ 


